Abundant Wave Accurate Analytical Solutions of the Fractional Nonlinear Hirota–Satsuma–Shallow Water Wave Equation
Abstract
:1. Introduction
2. Computational Solutions vs. Accuracy
2.1. Analytical Solutions
- Through the ESE method’s steps gets the next values:Set ISet IISet IIISet IV
- 2.
- Through the MKud method’s steps gets the next valuesSet ISet IIConsequently, the exact solutions of the fractional nonlinear equation are constructed in the following
2.2. Solutions’ Accuracy
3. Results’ Explanation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Aty, A.H.; Khater, M.M.; Dutta, H.; Bouslimi, J.; Omri, M. Computational solutions of the HIV-1 infection of CD4+ T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy. Chaos Solitons Fractals 2020, 139, 110092. [Google Scholar] [CrossRef]
- Abdel-Aty, A.H.; Khater, M.M.; Attia, R.A.; Abdel-Aty, M.; Eleuch, H. On the new explicit solutions of the fractional nonlinear space-time nuclear model. Fractals 2020, 28, 2040035. [Google Scholar] [CrossRef]
- Jena, R.; Chakraverty, S.; Yavuz, M. Two-hybrid techniques coupled with an integral transform for Caputo time-fractional Navier-Stokes Equations. Prog. Fract. Differ. Appl. 2020, 6, 201–213. [Google Scholar]
- Abdel-Aty, A.H.; Khater, M.M.; Baleanu, D.; Khalil, E.; Bouslimi, J.; Omri, M. Abundant distinct types of solutions for the nervous biological fractional FitzHugh–Nagumo equation via three different sorts of schemes. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Khater, M.M.; Attia, R.A.; Park, C.; Lu, D. On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves. Results Phys. 2020, 18, 103317. [Google Scholar]
- Khater, M.M.; Nofal, T.A.; Abu-Zinadah, H.; Lotayif, M.S.; Lu, D. Novel computational and accurate numerical solutions of the modified Benjamin–Bona–Mahony (BBM) equation arising in the optical illusions field. Alex. Eng. J. 2020, 60, 1797–1806. [Google Scholar] [CrossRef]
- Yavuz, M.; Yokus, A. Analytical and numerical approaches to nerve impulse model of fractional-order. Numer. Methods Partial. Differ. Equ. 2020, 36, 1348–1368. [Google Scholar] [CrossRef]
- Khater, M.M.; Attia, R.A.; Mahmoud, E.E.; Abdel-Aty, A.H.; Abualnaja, K.M.; Mohamed, A.B.; Eleuch, H. On the interaction between (low & high) frequency of (ion–acoustic & Langmuir) waves in plasma via some recent computational schemes. Results Phys. 2020, 19, 103684. [Google Scholar]
- Khater, M.M.; Attia, R.A.; Baleanu, D. Abundant new solutions of the transmission of nerve impulses of an excitable system. Eur. Phys. J. Plus 2020, 135, 1–12. [Google Scholar] [CrossRef]
- Khater, M.M.; Attia, R.A.; Lu, D. Computational and numerical simulations for the nonlinear fractional Kolmogorov–Petrovskii–Piskunov (FKPP) equation. Phys. Scr. 2020, 95, 055213. [Google Scholar] [CrossRef]
- Yavuz, M.; Sulaiman, T.A.; Usta, F.; Bulut, H. Analysis and numerical computations of the fractional regularized long-wave equation with damping term. Math. Methods Appl. Sci. 2020, 44, 7538–7555. [Google Scholar] [CrossRef]
- Khater, M.M.; Mohamed, M.S.; Park, C.; Attia, R.A. Effective computational schemes for a mathematical model of relativistic electrons arising in the laser thermonuclear fusion. Results Phys. 2020, 19, 103701. [Google Scholar] [CrossRef]
- Abdel-Aty, A.H.; Khater, M.M.; Baleanu, D.; Abo-Dahab, S.; Bouslimi, J.; Omri, M. Oblique explicit wave solutions of the fractional biological population (BP) and equal width (EW) models. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Yavuz, M.; Sulaiman, T.A.; Yusuf, A.; Abdeljawad, T. The Schrödinger-KdV equation of fractional order with Mittag-Leffler nonsingular kernel. Alex. Eng. J. 2021, 60, 2715–2724. [Google Scholar] [CrossRef]
- Khater, M.M.; Lu, D.; Hamed, Y. Computational simulation for the (1+1)-dimensional Ito equation arising quantum mechanics and nonlinear optics. Results Phys. 2020, 19, 103572. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Souleymanou, A.; Korkmaz, A.; Khater, M.M.; Mukam, S.P.; Kuetche, V.K. New exact solitary waves solutions to the fractional Fokas-Lenells equation via Atangana-Baleanu derivative operator. Int. J. Mod. Phys. B 2020, 34, 2050309. [Google Scholar] [CrossRef]
- Khater, M.; Chu, Y.M.; Attia, R.A.; Inc, M.; Lu, D. On the Analytical and Numerical Solutions in the Quantum Magnetoplasmas: The Atangana Conformable Derivative (2+1)-ZK Equation with Power-Law Nonlinearity. Adv. Math. Phys. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Attia, R.A.; Alfalqi, S.; Alzaidi, J.; Khater, M.; Lu, D. Computational and Numerical Solutions for-Dimensional Integrable Schwarz–Korteweg–de Vries Equation with Miura Transform. Complexity 2020, 2020, 2394030. [Google Scholar] [CrossRef]
- Qin, H.; Khater, M.; Attia, R.A.; Lu, D. Approximate Simulations for the Non-linear Long-Short Wave Interaction System. Front. Phys. 2020, 7, 230. [Google Scholar] [CrossRef]
- Gao, W.; Rezazadeh, H.; Pinar, Z.; Baskonus, H.M.; Sarwar, S.; Yel, G. Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique. Opt. Quantum Electron. 2020, 52, 1–13. [Google Scholar] [CrossRef]
- Korkmaz, A.; Hepson, O.E.; Hosseini, K.; Rezazadeh, H.; Eslami, M. Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud-Univ.-Sci. 2020, 32, 567–574. [Google Scholar] [CrossRef]
- Jajarmi, A.; Yusuf, A.; Baleanu, D.; Inc, M. A new fractional HRSV model and its optimal control: A non-singular operator approach. Phys. Stat. Mech. Its Appl. 2020, 547, 123860. [Google Scholar] [CrossRef]
- Inc, M.; Korpinar, Z.; Almohsen, B.; Chu, Y.M. Some numerical solutions of local fractional tricomi equation in fractal transonic flow. Alex. Eng. J. 2020, 60, 1147–1153. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers Equation in Fluid Mechanics. Fractals 2020. [Google Scholar] [CrossRef]
- Yavuz, M.; Sene, N. Approximate solutions of the model describing fluid flow using generalized ρ-laplace transform method and heat balance integral method. Axioms 2020, 9, 123. [Google Scholar] [CrossRef]
- Yavuz, M.; Abdeljawad, T. Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel. Adv. Differ. Equ. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Ali, A.T.; Khater, M.M.; Attia, R.A.; Abdel-Aty, A.H.; Lu, D. Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system. Chaos Solitons Fractals 2020, 131, 109473. [Google Scholar] [CrossRef]
- Zhao, Z.; He, L. M-lump and hybrid solutions of a generalized (2+1)-dimensional Hirota–Satsuma–Ito equation. Appl. Math. Lett. 2021, 111, 106612. [Google Scholar] [CrossRef]
- Zhang, L.D.; Tian, S.F.; Peng, W.Q.; Zhang, T.T.; Yan, X.J. The dynamics of lump, lumpoff and rogue wave solutions of (2+1)-dimensional Hirota-Satsuma-Ito equations. East Asian J. Appl. Math 2020, 10, 243–255. [Google Scholar] [CrossRef]
- Tala-Tebue, E.; Rezazadeh, H.; Djoufack, Z.I.; Eslam, M.; Kenfack-Jiotsa, A.; Bekir, A. Optical solutions of cold bosonic atoms in a zig-zag optical lattice. Opt. Quantum Electron. 2021, 53, 1–13. [Google Scholar] [CrossRef]
- Chu, Y.; Shallal, M.A.; Mirhosseini-Alizamini, S.M.; Rezazadeh, H.; Javeed, S.; Baleanu, D. Application of Modified Extended Tanh Technique for Solving Complex Ginzburg–Landau Equation Considering Kerr Law Nonlinearity. CMC-Comput. Mater. Contin. 2021, 66, 1369–1378. [Google Scholar] [CrossRef]
- da Silva, T.F.; Casarotti, S.N.; de Oliveira, G.L.V.; Penna, A.L.B. The impact of probiotics, prebiotics, and synbiotics on the biochemical, clinical, and immunological markers, as well as on the gut microbiota of obese hosts. Crit. Rev. Food Sci. Nutr. 2021, 61, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Korkmaz, A.; Rezazadeh, H.; Mirzazadeh, M.; Eslami, M.; Zhou, Q. The unified method for conformable time fractional Schroö dinger equation with perturbation terms. Chin. J. Phys. 2018, 56, 2500–2506. [Google Scholar] [CrossRef]
- Liu, J.G.; Eslami, M.; Rezazadeh, H.; Mirzazadeh, M. Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. 2019, 95, 1027–1033. [Google Scholar] [CrossRef]
- Shen, W.; Ma, Z.; Fei, J.; Zhu, Q. Novel characteristics of lump and lump–soliton interaction solutions to the (2+1)-dimensional Alice–Bob Hirota–Satsuma–Ito equation. Mod. Phys. Lett. B 2020, 34, 2050419. [Google Scholar] [CrossRef]
Value of | Absolute Error | Value of | Absolute Error | ||||
---|---|---|---|---|---|---|---|
0 | 0.666666667 | 0.666666667 | 0 | 0.26 | 0.537334231 | 0.540427702 | 0.003093471 |
0.01 | 0.66646668 | 0.666466687 | 6.66684 × 10 | 0.27 | 0.527670559 | 0.531271644 | 0.003601085 |
0.02 | 0.66586688 | 0.665866987 | 1.06678 × 10 | 0.28 | 0.517712301 | 0.521881361 | 0.00416906 |
0.03 | 0.664867746 | 0.664868286 | 5.40129 × 10 | 0.29 | 0.507466562 | 0.512268611 | 0.004802049 |
0.04 | 0.663470077 | 0.663471784 | 1.70739 × 10 | 0.3 | 0.49694059 | 0.502445467 | 0.005504876 |
0.05 | 0.661674988 | 0.661679158 | 4.16943 × 10 | 0.31 | 0.486141768 | 0.492424307 | 0.006282539 |
0.06 | 0.659483911 | 0.65949256 | 8.64823 × 10 | 0.32 | 0.475077598 | 0.482217803 | 0.007140204 |
0.07 | 0.656898591 | 0.656914619 | 1.60274 × 10 | 0.33 | 0.463755696 | 0.471838905 | 0.008083209 |
0.08 | 0.653921083 | 0.653948435 | 2.73526 × 10 | 0.34 | 0.452183778 | 0.461300833 | 0.009117055 |
0.09 | 0.650553747 | 0.65059758 | 4.38328 × 10 | 0.35 | 0.440369653 | 0.450617058 | 0.010247405 |
0.1 | 0.646799248 | 0.646866089 | 6.68405 × 10 | 0.36 | 0.428321208 | 0.43980129 | 0.011480082 |
0.11 | 0.64266055 | 0.642758463 | 9.79132 × 10 | 0.37 | 0.416046402 | 0.428867467 | 0.012821065 |
0.12 | 0.638140907 | 0.638279661 | 0.000138754 | 0.38 | 0.403553253 | 0.417829735 | 0.014276482 |
0.13 | 0.633243865 | 0.633435098 | 0.000191233 | 0.39 | 0.390849829 | 0.406702435 | 0.015852606 |
0.14 | 0.627973249 | 0.628230636 | 0.000257388 | 0.4 | 0.377944239 | 0.395500089 | 0.01755585 |
0.15 | 0.62233316 | 0.622672585 | 0.000339425 | 0.41 | 0.36484462 | 0.384237382 | 0.019392762 |
0.16 | 0.616327971 | 0.616767693 | 0.000439722 | 0.42 | 0.351559131 | 0.372929146 | 0.021370015 |
0.17 | 0.609962313 | 0.610523141 | 0.000560827 | 0.43 | 0.33809594 | 0.361590344 | 0.023494403 |
0.18 | 0.603241075 | 0.603946535 | 0.00070546 | 0.44 | 0.324463218 | 0.35023605 | 0.025772832 |
0.19 | 0.596169391 | 0.597045905 | 0.000876514 | 0.45 | 0.310669125 | 0.338881435 | 0.02821231 |
0.2 | 0.588752633 | 0.589829689 | 0.001077056 | 0.46 | 0.296721809 | 0.327541748 | 0.03081994 |
0.21 | 0.580996403 | 0.582306733 | 0.00131033 | 0.47 | 0.282629388 | 0.316232296 | 0.033602908 |
0.22 | 0.572906525 | 0.574486278 | 0.001579754 | 0.48 | 0.268399947 | 0.304968423 | 0.036568476 |
0.23 | 0.564489035 | 0.566377955 | 0.00188892 | 0.49 | 0.254041531 | 0.293765499 | 0.039723967 |
0.24 | 0.555750171 | 0.557991772 | 0.002241601 | 0.5 | 0.239562133 | 0.282638889 | 0.043076756 |
0.25 | 0.546696364 | 0.549338108 | 0.002641743 | 0.51 | 0.224969687 | 0.271603943 | 0.046634256 |
Value of | Absolute Error | Value of | Absolute Error | ||||
---|---|---|---|---|---|---|---|
0 | 0.603474 | 0.603474 | 0 | 0.26 | 0.591331 | 0.591583 | 0.000252 |
0.01 | 0.603456 | 0.603456 | 5.49 × 10 | 0.27 | 0.590392 | 0.590686 | 0.000294 |
0.02 | 0.603402 | 0.603402 | 8.79 × 10 | 0.28 | 0.589421 | 0.589761 | 0.00034 |
0.03 | 0.603311 | 0.603311 | 4.45 × 10 | 0.29 | 0.588416 | 0.588807 | 0.000391 |
0.04 | 0.603183 | 0.603183 | 1.41 × 10 | 0.3 | 0.587379 | 0.587827 | 0.000448 |
0.05 | 0.603019 | 0.60302 | 3.43 × 10 | 0.31 | 0.586308 | 0.58682 | 0.000511 |
0.06 | 0.602819 | 0.60282 | 7.12 × 10 | 0.32 | 0.585206 | 0.585787 | 0.000581 |
0.07 | 0.602583 | 0.602584 | 1.32 × 10 | 0.33 | 0.584071 | 0.584728 | 0.000657 |
0.08 | 0.602311 | 0.602313 | 2.25 × 10 | 0.34 | 0.582905 | 0.583646 | 0.000741 |
0.09 | 0.602002 | 0.602006 | 3.61 × 10 | 0.35 | 0.581707 | 0.582539 | 0.000832 |
0.1 | 0.601657 | 0.601663 | 5.5 × 10 | 0.36 | 0.580477 | 0.58141 | 0.000932 |
0.11 | 0.601277 | 0.601285 | 8.05 × 10 | 0.37 | 0.579217 | 0.580258 | 0.001041 |
0.12 | 0.60086 | 0.600871 | 1.14 × 10 | 0.38 | 0.577926 | 0.579084 | 0.001159 |
0.13 | 0.600408 | 0.600423 | 1.57 × 10 | 0.39 | 0.576604 | 0.57789 | 0.001286 |
0.14 | 0.59992 | 0.599941 | 2.11 × 10 | 0.4 | 0.575253 | 0.576677 | 0.001424 |
0.15 | 0.599396 | 0.599424 | 2.79 × 10 | 0.41 | 0.573871 | 0.575444 | 0.001573 |
0.16 | 0.598837 | 0.598873 | 3.61 × 10 | 0.42 | 0.57246 | 0.574193 | 0.001733 |
0.17 | 0.598243 | 0.598288 | 4.6 × 10 | 0.43 | 0.57102 | 0.572925 | 0.001905 |
0.25 | 0.592235 | 0.592451 | 0.000216 | 0.51 | 0.558485 | 0.562275 | 0.00379 |
0.18 | 0.597613 | 0.597671 | 5.78 × 10 | 0.44 | 0.569551 | 0.571641 | 0.00209 |
0.19 | 0.596948 | 0.59702 | 7.18 × 10 | 0.45 | 0.568053 | 0.570341 | 0.002288 |
0.2 | 0.596249 | 0.596337 | 8.82 × 10 | 0.46 | 0.566527 | 0.569027 | 0.0025 |
0.21 | 0.595515 | 0.595622 | 0.000107 | 0.47 | 0.564973 | 0.567699 | 0.002726 |
0.22 | 0.594746 | 0.594876 | 0.000129 | 0.48 | 0.563391 | 0.566359 | 0.002968 |
0.23 | 0.593943 | 0.594098 | 0.000154 | 0.49 | 0.561783 | 0.565008 | 0.003225 |
0.24 | 0.593106 | 0.59329 | 0.000183 | 0.5 | 0.560147 | 0.563646 | 0.003499 |
0.25 | 0.592235 | 0.592451 | 0.000216 | 0.51 | 0.558485 | 0.562275 | 0.00379 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, C.; Lu, D.; Khater, M.M.A. Abundant Wave Accurate Analytical Solutions of the Fractional Nonlinear Hirota–Satsuma–Shallow Water Wave Equation. Fluids 2021, 6, 235. https://doi.org/10.3390/fluids6070235
Yue C, Lu D, Khater MMA. Abundant Wave Accurate Analytical Solutions of the Fractional Nonlinear Hirota–Satsuma–Shallow Water Wave Equation. Fluids. 2021; 6(7):235. https://doi.org/10.3390/fluids6070235
Chicago/Turabian StyleYue, Chen, Dianchen Lu, and Mostafa M. A. Khater. 2021. "Abundant Wave Accurate Analytical Solutions of the Fractional Nonlinear Hirota–Satsuma–Shallow Water Wave Equation" Fluids 6, no. 7: 235. https://doi.org/10.3390/fluids6070235
APA StyleYue, C., Lu, D., & Khater, M. M. A. (2021). Abundant Wave Accurate Analytical Solutions of the Fractional Nonlinear Hirota–Satsuma–Shallow Water Wave Equation. Fluids, 6(7), 235. https://doi.org/10.3390/fluids6070235