Oscillating Wall Jets for Active Flow Control in a Laboratory Fume Hood—Experimental Investigations
Abstract
:1. Introduction
2. Flow Control in the Fume Hood
2.1. Steady Blowing Jets
2.2. Oscillating Jets
3. Numerical Simulation
3.1. CFD Model and Boundary Conditions
3.2. Conclusions from Numerical Modeling
4. Experimental Setup
4.1. Flow Visualization
4.2. Particle Image Velocimetry (PIV)
4.3. Containment Test According EN 14175-3
5. Results and Discussion
5.1. Flow Visualization
5.2. Particle Image Velocimetry (PIV)
5.3. Containment Test According EN 14175-3
- Baseline = 410 m3/h.
- Improved nozzle = 360 m3/h.
- Fluidic oscillator = 320 m3/h.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahn, Z. Entwicklung, Bau und Überprüfung von Einrichtungen zur Simulation der Stofffreisetzungs- und Stoffausbreitungsvorgänge in Laboratorien mit Tracergastechnik. Studienarbeit, IKE 7-D-321; Universität Stuttgart: Stuttgart, Germany, 1996. [Google Scholar]
- Dittrich, E. (Ed.) Handbuch für Nachhaltige Laboratorien; Erich Schmidt Verlag GmbH & Co. KG: Berlin, Germany, 2012. [Google Scholar]
- Egnaton Cert. Available online: http://www.egnaton.com/de/CERT.aspx (accessed on 4 October 2020).
- Sterns, M. Laborabzüge–Ressourcenschonung, Kostenreduktion und Sicherheit. In GIT Labor-Fachzeitschrift; 28 July 2017; pp. 22–23. [Google Scholar]
- Liebsch, J. Laboratory Fume Hood. European Patent Specification EP 2,419,224B1, 16 April 2010. [Google Scholar]
- Smith, C.; Curd, P.; Trinh, T. Airfoil and Baffle Assemblies That Reduce Airflow Requirements for Fume Hoods and Fume Hoods Incorporating Same. U.S. Patent 9,056,339, 27 August 2010. [Google Scholar]
- Rindoks, K.; Vaughn, M. Laboratory Hood with Venturi Effect Air Intake Device for Anti-Turbulent Airflow Control. U.S. Patent 10,807,131, 2 November 2017. [Google Scholar]
- Liebsch, J. Energiesparende Abzüge—Ein Beitrag zur Nachhaltigkeit; Dechema Kolloqium: Frankfurt, Germany, 2011. [Google Scholar]
- Huang, R. Reverse Oblique Air Curtain Exhaust Cabinet. European Patent Specification EP 2,327,484B1, 26 November 2009. [Google Scholar]
- Koppenwallner, G. Frontale Absaugverfahren. Available online: http://ploland.de/pdf/froty.pdf (accessed on 28 November 2017).
- BURDINOLA S.COOP. Safer Labs. Fume Cupboards and Extraction Equipments. Available online: http://burdinola.com/pdf/technical_catalogue_fume_cupboards.pdf (accessed on 1 June 2018).
- Gärtner, U.; Liebsch, J. Fume Cupboard. European Patent Specification EP 1,444,057B1, 11 August 2004. [Google Scholar]
- Wesemann GmbH. Deltaguard Protect. Available online: https://www.wesemann.com/Produkte/System-DELTA-30/Abzugssysteme/DE_index_2009_2345.html (accessed on 5 January 2021).
- Waldner Laboreinrichtungen GmbH & Co. KG. Secuflow Fume, Cupboards; Waldner Laboreinrichtungen GmbH & Co. KG.: Wangen, Germany, 2018. [Google Scholar]
- Laborbau Systeme Hemling GmbH & Co. KG. Laborabzüge, Einhausungen und Kabinen. Available online: https://www.hemling.de/katalog/laborbau-2018/book.html#p=30 (accessed on 12 February 2021).
- Liebsch, J. Aktive Beeinflussung der Strömung in einem Laborabzug zur Erhöhung der Sicherheit und Energieeffizienz. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2021. [Google Scholar]
- ANSI/ASHRAE Standard 110-2016. In Method of Testing Performance of Laboratory Fume Hoods. American Society of Heating; Refrigerating and Air Conditioning Engineers Inc.: Atlanta, GA, USA, 2016.
- Oshima, E.K.; Gharib, M.; Reichert, R.; Wygnanski, I.J. On Parameters Defining Active Flow Control. In Proceedings of the 2021 AIAA AVIATION Forum, virtual, 2–6 August 2021. [Google Scholar]
- Rietschel, H.; Esdorn, H. Raumklimatechnik Band 1: Grundlagen. Lehrbuch; Springer Verlag: Berlin Heidelberg, Germany, 2008. [Google Scholar]
- Nasr, A.; Lai, J. The Effects of Wall Inclination on an Inclined Offset Jet; Iran University of Science & Technology: Teheran, Iran; The University of New South Wales: Canberra, Australia, 2000. [Google Scholar]
- Waldner Laboreinrichtungen GmbH & Co. KG. Scala Laboratory System, Technical Catalogue; Waldner Laboreinrichtungen GmbH & Co. KG.: Wangen, Germany, 2019. [Google Scholar]
- Goodfellow, S.D.; Yarusevych, S.; Sullivan, P. Momentum Coefficient as a Parameter for Aerodynamic Flow Control with Synthetic Jets. AIAA J. 2013, 51, 623–631. [Google Scholar] [CrossRef]
- Guyot, D.; Bobusch, B.; Paschereit, C.O.; Raghu, S. Active Combustion Control Using a Fluidic Oscillator for Asymmetric Fuel Flow Modulation. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, USA, 21–23 July 2008. [Google Scholar]
- Lacarelle, A. Modeling, Control and Optimization of Fuel/Air Mixing in a Lean Premixed Swirl Combustor Using Fuel Staging to Reduce Pressure Pulsations and NOx Emissions. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2011. [Google Scholar]
- Lacarelle, A.; Paschereit, C.O. Increasing the Passive Scalar Mixing Quality of Jets in Crossflow with Fluidics Actuators. J. Eng. Gas Turbines Power 2011, 134, 021503. [Google Scholar] [CrossRef]
- Seele, R.; Tewes, P.; Woszidlo, R.; McVeigh, M.A.; Lucas, N.J.; Wygnanski, I.J. Discrete Sweeping Jets as Tools for Improving the Performance of the V-22. J. Aircr. 2009, 46, 2098–2106. [Google Scholar] [CrossRef]
- Cerretelli, C.; Kirtley, K. Boundary layer separation control with fluidic oscillators. J. Turbomach. 2009, 131, 1–9. [Google Scholar] [CrossRef]
- Culley, D.E.; Bright, M.M.; Prahst, P.S.; Strazisar, A.J. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment. J. Turbomach. 2003, 126, 24–34. [Google Scholar] [CrossRef]
- Seifert, A.; Stalnov, O.; Sperber, D.; Arwatz, G.; Palei, V.; David, S.; Dayan, I.; Fono, I. Large Trucks Drag Reduction Using Active Flow Control. In The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Raman, G.; Raghu, S. Cavity Resonance Suppression Using Miniature Fluidic Oscillators. AIAA J. 2004, 42, 2608–2612. [Google Scholar] [CrossRef]
- Ostermann, F.; Woszidlo, R.; Nayeri, C.N.; Paschereit, C.O. Properties of a sweeping jet emitted from a fluidic oscillator. J. Fluid Mech. 2018, 857, 216–238. [Google Scholar] [CrossRef] [Green Version]
- Gregory, J.; Tomac, M. A Review of Fluidic Oscillator Development and Application for Flow Control. In Proceedings of the 43rd AIAA Fluid Dynamics Conference 2013, San Diego, CA, USA, 24–27 June 2013. [Google Scholar]
- Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.; Paschereit, C.O. Experimental study of the internal flow structures inside a fluidic oscillator. Exp. Fluids 2013, 54, 1–12. [Google Scholar] [CrossRef]
- Ostermann, F. Fundamental Properties of a Spatially Oscillating Jet Emitted by a Fluidic Oscillator. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2018. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Krüger, O.; Bobusch., B.C.; Woszidlo, R.; Paschereit, C.O. Numerical Modeling and Validation of the Flow in a Fluidic Oscillator. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013. [Google Scholar]
- Dol, S.S.; Nor, M.A.; Kamaruzaman, M.K. An Improved Smoke-Wire Flow Visualization Technique. In Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, 21–23 August 2006. [Google Scholar]
- EN 14175-3:2019. Fume Cupboards, Part 3: Type Test Methods; German Version: DIN EN 14175-3:2019; Beuth Verlag GmbH: Berlin, Germany, 2019. [Google Scholar]
- Caplan, K.J.; Knudson, G.W. Laboratory fume hoods: A performance test. ASHRAE Trans. 1978, 84, 511–521. [Google Scholar] [CrossRef]
- DIN EN ISO 5167-1. In Durchflussmessung von Fluiden mit Drosselgeräten in voll Durchströmten Leitungen mit Kreisquerschnitt—Teil 1: Allgemeine Grundlagen und Anforderungen (ISO 5167-1:2003); Beuth Verlag GmbH: Berlin, Germany, 2003.
- BG Fachausschuss Chemie. Spürgas-Höchstwerte (SF6) für Abzüge Nach DIN EN 14175. Available online: http://www.bgrci.de/fachwissen-portal/themenspektrum/laboratorien/abzuege/abzuege-nach-din-en-14175/ (accessed on 13 March 2019).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liebsch, J.; Paschereit, C.O. Oscillating Wall Jets for Active Flow Control in a Laboratory Fume Hood—Experimental Investigations. Fluids 2021, 6, 279. https://doi.org/10.3390/fluids6080279
Liebsch J, Paschereit CO. Oscillating Wall Jets for Active Flow Control in a Laboratory Fume Hood—Experimental Investigations. Fluids. 2021; 6(8):279. https://doi.org/10.3390/fluids6080279
Chicago/Turabian StyleLiebsch, Juergen, and Christian Oliver Paschereit. 2021. "Oscillating Wall Jets for Active Flow Control in a Laboratory Fume Hood—Experimental Investigations" Fluids 6, no. 8: 279. https://doi.org/10.3390/fluids6080279
APA StyleLiebsch, J., & Paschereit, C. O. (2021). Oscillating Wall Jets for Active Flow Control in a Laboratory Fume Hood—Experimental Investigations. Fluids, 6(8), 279. https://doi.org/10.3390/fluids6080279