Mitral Valve Regurgitation Murmurs—Insights from Hemoacoustic Computational Modeling
Abstract
:1. Introduction
2. Methods
2.1. Flow Simulation
2.2. Murmur Propagation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation 2018, 137, E67–E492. [Google Scholar] [CrossRef] [PubMed]
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef]
- Grigioni, F.; Tribouilloy, C.; Avierinos, J.F.; Barbieri, A.; Ferlito, M.; Trojette, F.; Tafanelli, L.; Branzi, A.; Szymanski, C.; Habib, G.; et al. Outcomes in Mitral Regurgitation Due to Flail Leaflets. JACC Cardiovasc. Imaging 2008, 1, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Enriquez-Sarano, M.; Avierinos, J.-F.; Messika-Zeitoun, D.; Detaint, D.; Capps, M.; Nkomo, V.; Scott, C.; Schaff, H.V.; Tajik, A.J. Quantitative Determinants of the Outcome of Asymptomatic Mitral Regurgitation. N. Engl. J. Med. 2005, 352, 875–883. [Google Scholar] [CrossRef]
- Mirabel, M.; Iung, B.; Baron, G.; Messika-Zeitoun, D.; Detaint, D.; Vanoverschelde, J.-L.; Butchart, E.G.; Ravaud, P.; Vahanian, A. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur. Heart J. 2007, 28, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Ling, L.H.; Enriquez-Sarano, M.; Seward, J.B.; Tajik, A.J.; Schaff, H.V.; Bailey, K.R.; Frye, R.L. Clinical Outcome of Mitral Regurgitation Due to Flail Leaflet. N. Engl. J. Med. 1996, 335, 1417–1423. [Google Scholar] [CrossRef]
- Bursi, F.; Enriquez-Sarano, M.; Nkomo, V.T.; Jacobsen, S.J.; Weston, S.A.; Meverden, R.A.; Roger, V.L. Heart Failure and Death After Myocardial Infarction in the Community. Circulation 2005, 111, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Sapsanis, C.; Welsh, N.; Pozin, M.; Garreau, G.; Tognetti, G.; Bakhshaee, H.; Pouliquen, P.O.; Mitral, R.; Thompson, W.R.; Andreou, A.G. StethoVest: A simultaneous multichannel wearable system for cardiac acoustic mapping. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; Volume 1344772, pp. 1–4. [Google Scholar]
- Vedula, V.; George, R.; Younes, L.; Mittal, R. Hemodynamics in the Left Atrium and Its Effect on Ventricular Flow Patterns. J. Biomech. Eng. 2015, 137, 111003. [Google Scholar] [CrossRef] [Green Version]
- Collia, D.; Zovatto, L.; Pedrizzetti, G. Analysis of mitral valve regurgitation by computational fluid dynamics. APL Bioeng. 2019, 3, 036105. [Google Scholar] [CrossRef]
- Desjardins, V.A.; Enriquez-Sarano, M.; Jamil Tajik, A.; Bailey, K.R.; Seward, J.B. Intensity of murmurs correlates with severity of valvular regurgitation. Am. J. Med. 1996, 100, 149–156. [Google Scholar] [CrossRef]
- Lees, R.S.; Dewey, C.F. Phonoangiography: A New Noninvasive Diagnostic Method for Studying Arterial Disease. Proc. Natl. Acad. Sci. USA 1970, 67, 935–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, J.H.; Bakhshaee, H.; Garreau, G.; Zhu, C.; Andreou, A.; Thompson, W.R.; Mittal, R. A method for the computational modeling of the physics of heart murmurs. J. Comput. Phys. 2017, 336, 546–568. [Google Scholar] [CrossRef] [Green Version]
- Enriquez-Sarano, M.; Akins, C.W.; Vahanian, A. Mitral regurgitation. Lancet 2009, 373, 1382–1394. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Seward, J.B.; Bailey, K.R.; Tajik, A.J. Effective regurgitant orifice area: A noninvasive Doppler development of an old hemodynamic concept. J. Am. Coll. Cardiol. 1994, 23, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Seo, J.H.; Vedula, V.; Abraham, T.; Mittal, R. Computational modeling and analysis of intracardiac flows in simple models of the left ventricle. Eur. J. Mech.-B/Fluids 2012, 35, 31–39. [Google Scholar] [CrossRef]
- Domenichini, F.; Querzoli, G.; Cenedese, A.; Pedrizzetti, G. Combined experimental and numerical analysis of the flow structure into the left ventricle. J. Biomech. 2007, 40, 1988–1994. [Google Scholar] [CrossRef]
- Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 2008, 227, 4825–4852. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.H.; Mittal, R. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 2011, 230, 7347–7363. [Google Scholar] [CrossRef] [Green Version]
- Vedula, V.; Fortini, S.; Seo, J.-H.; Querzoli, G.; Mittal, R. Computational modeling and validation of intraventricular flow in a simple model of the left ventricle. Theor. Comput. Fluid Dyn. 2014, 28, 589–604. [Google Scholar] [CrossRef]
- Seo, J.H.; Mittal, R. Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 2013, 25, 110801. [Google Scholar] [CrossRef]
- Tanikaga, Y.; Sakaguchi, T.; Watanabe, Y. A Study on Analysis of Intracranial Acoustic Wave Propagation by the Finite Difference Time Domain Method. 2002. Available online: http://www.conforg.fr/acoustics2008/cdrom/data/fa2002-sevilla/forumacusticum/archivos/ultgen005.pdf (accessed on 20 February 2022).
- Hosford, W.F. Mechanical Behavior of Materials, 2nd ed.; Cambridge University Press: New York, NY, USA, 2010; ISBN 9780521195690/0521195691. [Google Scholar]
- Zheng, Y.; Chen, X.; Yao, A.; Lin, H.; Shen, Y.; Zhu, Y.; Lu, M.; Wang, T.; Che, S. Shear Wave Propagation in Soft Tissue with Ultrasound Vibrometry. In Wave Propagation Theories and Applications; InTech: London, UK, 2013; Available online: https://repository.stcloudstate.edu/ece_facpubs/1/ (accessed on 20 February 2022).
- The National Library of Medicine’s Visible Human Project. U.S. National Library of Medicine. National Institutes of Health. Available online: https://www.nlm.nih.gov/research/visible/visible_human.html (accessed on 26 February 2022).
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Jameson, A. Numerical Solution of the Euler Equations for Compressible Inviscid Fluids. NTRS. 1983. Available online: http://aero-comlab.stanford.edu/Papers/jameson_mae_1643_1983.pdf (accessed on 20 February 2022).
- Al-Mayah, A.; Moseley, J.; Velec, M.; Brock, K.K. Sliding characteristic and material compressibility of human lung: Parametric study and verification. Med. Phys. 2009, 36, 4625–4633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, R.C.; Lee, G.C. Isotropy and homogeneity of lung tissue deformation. J. Biomech. 1981, 14, 243–252. [Google Scholar] [CrossRef]
- Kalinauskienė, E.; Razvadauskas, H.; Morse, D.J.; Maxey, G.E.; Naudžiūnas, A. A Comparison of Electronic and Traditional Stethoscopes in the Heart Auscultation of Obese Patients. Medicina 2019, 55, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sh-Hussain; Salleh; Kamarulafizam, I.; Noor, A.M.; Harris, A.A.; Oemar, H.; Yusoff, K. Classification of heart sound based on multipoint auscultation system. In Proceedings of the 2013 8th International Workshop on Systems, Signal Processing and Their Applications (WoSSPA), 12–15 May 2013; Algiers, Algeria; pp. 174–179. [Google Scholar]
- Attenhofer Jost, C.H.; Turina, J.; Mayer, K.; Seifert, B.; Amann, F.W.; Buechi, M.; Facchini, M.; Brunner-La Rocca, H.P.; Jenni, R. Echocardiography in the evaluation of systolic murmurs of unknown cause. Am. J. Med. 2000, 108, 614–620. [Google Scholar] [CrossRef]
- Spiers, C. Advanced auscultation: Aortic stenosis and mitral regurgitation. Br. J. Card. Nurs. 2012, 7, 415–418. [Google Scholar] [CrossRef]
- Greene, D.G.; DeForest Baldwin, E.; Baldwin, J.S.; Himmelstein, A.; Roh, C.E.; Cournand, A. Pure congenital pulmonary stenosis and idiopathic congenital dilatation of the pulmonary artery. Am. J. Med. 1949, 6, 24–40. [Google Scholar] [CrossRef]
- Chizner, M.A. Cardiac Auscultation: Rediscovering the Lost Art. Curr. Probl. Cardiol. 2008, 33, 326–408. [Google Scholar] [CrossRef]
- Duncan, G.W.; Gruber, J.O.; Dewey, C.F.; Myers, G.S.; Lees, R.S. Evaluation of Carotid Stenosis by Phonoangiography. N. Engl. J. Med. 1975, 293, 1124–1128. [Google Scholar] [CrossRef]
- Feng, L.; Gao, H.; Griffith, B.; Niederer, S.; Luo, X. Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
RF (%) | EROA | (m/s) | (m/s) | |||
---|---|---|---|---|---|---|
Mild* | 6.8 | 0.412 | 4.4 | 7.692 | 1.768 | 1918 |
Mild | 20 | 0.556 | 9.0 | 11.193 | 2.747 | 4016 |
Moderate | 40 | 0.999 | 26.1 | 7.706 | 1.793 | 4713 |
Severe | 60 | 1.702 | 75.8 | 3.980 | 0.927 | 4152 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Seo, J.H.; Mittal, R. Mitral Valve Regurgitation Murmurs—Insights from Hemoacoustic Computational Modeling. Fluids 2022, 7, 164. https://doi.org/10.3390/fluids7050164
Wang Z, Seo JH, Mittal R. Mitral Valve Regurgitation Murmurs—Insights from Hemoacoustic Computational Modeling. Fluids. 2022; 7(5):164. https://doi.org/10.3390/fluids7050164
Chicago/Turabian StyleWang, Ziyu, Jung Hee Seo, and Rajat Mittal. 2022. "Mitral Valve Regurgitation Murmurs—Insights from Hemoacoustic Computational Modeling" Fluids 7, no. 5: 164. https://doi.org/10.3390/fluids7050164
APA StyleWang, Z., Seo, J. H., & Mittal, R. (2022). Mitral Valve Regurgitation Murmurs—Insights from Hemoacoustic Computational Modeling. Fluids, 7(5), 164. https://doi.org/10.3390/fluids7050164