Suppression of Vortex-Induced Vibration and Phase-Averaged Analysis of the Wake Generated by a Circular Cylinder Covered with Helical Grooves
Abstract
:1. Introduction
2. Experimental Setup
3. Phase and Structural Averaging
4. Results and Discussion
4.1. Vortex-Induced Vibration for the Bare and Grooved Cylinders
4.2. Vortex Shedding Frequency
4.3. Cross-Correlations and Drag Coefficients of the Stationary Cylinder Wakes
4.4. Phase-Averaged Vorticity Field and Sectional Streamlines
4.5. Phase-Averaged Velocity Fluctuations and Reynolds Shear Stress
4.6. Coherent and Incoherent Contributions to Reynolds Stresses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sumer, B.M.; Fredsøe, J. Hydrodynamics around Cylindrical Structures; World Scientific: Singapore, 1997. [Google Scholar]
- Zdravkovich, M.M. Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. J. Wind Eng. Ind. Aerodyn. 1981, 7, 145–189. [Google Scholar] [CrossRef]
- Rabiee, A.; Esmaeili, M. Simultaneous vortex- and wake-induced vibration suppression of tandem-arranged circular cylinders using active feedback control system. J. Sound Vib. 2019, 469, 115131. [Google Scholar] [CrossRef]
- Wang, J.; Lin, D.K.; Lin, K. A review on flow-induced vibration of offshore circular cylinders. J. Hydrodyn. 2020, 32, 415–440. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, W.; Ai, H.; Wang, Y.; Jia, K. The effect of time-varying axial tension on VIV suppression for a flexible cylinder attached with helical strakes. Ocean. Eng. 2021, 241, 109981. [Google Scholar] [CrossRef]
- Zhou, T.; Mohd Razal, S.F.; Hao, Z.; Cheng, L. On the study of vortex-induced vibration of a cylinder with helical strakes. J. Fluids Struct. 2011, 27, 903–917. [Google Scholar] [CrossRef]
- Huang, S. VIV suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves. J. Fluids Struct. 2011, 27, 1124–1133. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, T.; Li, T. Numerical study on suppression of vortex-induced vibration of circular cylinder by helical wires. J. Wind Eng. Ind. Aerodyn. 2020, 197, 104081. [Google Scholar] [CrossRef]
- Law, Y.Z.; Jaiman, R.K. Passive control of vortex-induced vibration by spanwise grooves. J. Fluids Struct. 2018, 83, 1–26. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, X.; Guo, W.; Zheng, J.; Tan, S.K. Experimental measurements of the drag force and the near-wake flow patterns of a longitudinally grooved cylinder. J. Wind Eng. Ind. Aerodyn. 2015, 145, 30–41. [Google Scholar] [CrossRef]
- Sun, C.; Azmi, A.M.; Hao, Z.; Zhu, H.; Zhou, T. Suppression of vortex shedding and vortex-induced vibration of a circular cylinder using screen shrouds. Appl. Ocean. Res. 2022, 122, 103146. [Google Scholar] [CrossRef]
- Hussain, A.F. Coherent structures and turbulence. J. Fluid Mech. 1986, 173, 303–356. [Google Scholar] [CrossRef]
- Kiya, M.; Matsumura, M. Incoherent turbulence in the near wake of a normal plate. J. Fluid Mech. 1988, 190, 343–356. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Yiu, M. The turbulent wake of two side-by-side circular cylinders. J. Fluid Mech. 2002, 458, 303–332. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, M.; Antonia, R.A. Momentum and heat-transport in the turbulent intermediate wake of a circular-cylinder. J. Fluid Mech. 1993, 250, 651–668. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Y.; Chua, L.P.; Yiu, M.W. Three-dimensional vorticity in turbulent cylinder wake. Exp. Fluids 2003, 35, 459–471. [Google Scholar] [CrossRef]
- Hussain, A.K.M.F.; Reynolds, W.C. The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 1970, 41, 241–258. [Google Scholar] [CrossRef]
- Franzini, G.R.; Fujarra, A.L.C.; Meneghini, J.R.; Korkischko, I.; Franciss, R. Experimental investigation of vortex-induced vibration on rigid, smooth and inclined cylinders. J. Fluids Struct. 2009, 25, 742–750. [Google Scholar] [CrossRef]
- Hover, F.S.; Tvedt, H.; Triantafyllou, M.S. Vortex-induced vibrations of a cylinder with tripping wires. J. Fluid Mech. 2001, 448, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.C. The Measurement of Vortex Induced Effects in Flow Past Stationary and Oscillating Circular and D-Section Cylinders. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 1968. [Google Scholar]
- Norberg, C. Fluctuating lift on a circular cylinder: Review and new measurements. J. Fluids Struct. 2003, 17, 57–96. [Google Scholar] [CrossRef]
- Bearman, P.; Brankovic, M. Experimental studies of passive control of vortex-induced vibration. Eur. J. Mech. Fluids 2004, 23, 9–15. [Google Scholar] [CrossRef]
- Blevins, R.D. Flow Induced Vibrations, 2nd ed.; Krieger: Malabar, FL, USA, 1990. [Google Scholar]
- Antonia, R.A.; Rajagopalan, S. Determination of drag of a circular cylinder. AIAA J. 1990, 28, 1833–1834. [Google Scholar] [CrossRef]
- Wang, H.F.; Razali, S.F.M.; Zhou, T.M.; Zhou, Y.; Cheng, L. Streamwise evolution of an inclined cylinder wake. Exp. Fluids 2011, 51, 553–570. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, H.; Razali, F.M.; Zhou, Y.; Cheng, L. Three-dimensional vorticity measurements in the wake of a yawed circular cylinder. Phys. Fluids 2010, 22, 015108. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Azmi, A.M.; Leontini, J.; Zhu, H.; Zhou, T. Experimental study on the development of wake vortices behind screen cylinders. Phys. Fluids 2021, 33, 085133. [Google Scholar] [CrossRef]
Main Particulars | VIV Tests | Fixed Cylinder Tests |
---|---|---|
Wind tunnel type | closed-circuit | open-circuit |
Cylinder diameter (mm) | 60 | 12 |
Cylinder aspect ratio (L/d) | 20 | 32 |
Groove dimensions (length × width × depth, mm) | 7.5d × 0.19d × 0.12d | 7.5d × 0.2d × 0.12d |
Reynolds number (U∞d/ν) | 1 × 104 < Re < 4 × 104 | 3500 |
X-wire probes locations (x/d) | 10 | 10, 20, 40 |
Bare Cylinder | Grooved Cylinder | ||||||
---|---|---|---|---|---|---|---|
x* | I1 | I2 | Cd | x* | I1 | I2 | Cd |
10 | 0.88 | 0.122 | 1.002 | 10 | 0.76 | 0.176 | 0.936 |
20 | 0.96 | 0.043 | 1.003 | 20 | 0.88 | 0.055 | 0.935 |
40 | 1.07 | 0.0001 | 1.07 | 40 | 1 | 0.0036 | 1.0036 |
Averaged Cd | 1.025 | Averaged Cd | 0.9582 |
Bare Cylinder | |||
x* | 10 | 20 | 40 |
0.027 | 0.015 | 0.005 | |
0.008 | 0.025 | 0.005 | |
0.005 | 0.003 | 0.001 | |
(%) | 25 | 5 | 0.2 |
(%) | 44 | 16 | 0.9 |
(%) | 27 | 7 | 0.3 |
0.33 | 0.05 | 0.002 | |
0.79 | 0.19 | 0.009 | |
0.37 | 0.08 | 0.003 | |
Grooved Cylinder | |||
x* | 10 | 20 | 40 |
0.025 | 0.014 | 0.006 | |
0.007 | 0.026 | 0.006 | |
0.004 | 0.003 | 0.002 | |
(%) | 22 | 7 | 0.3 |
(%) | 41 | 21 | 1.2 |
(%) | 23 | 9 | 0.5 |
0.28 | 0.08 | 0.003 | |
0.69 | 0.27 | 0.012 | |
0.30 | 0.10 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Z.; Sun, C.; Lu, Y.; Bi, K.; Zhou, T. Suppression of Vortex-Induced Vibration and Phase-Averaged Analysis of the Wake Generated by a Circular Cylinder Covered with Helical Grooves. Fluids 2022, 7, 194. https://doi.org/10.3390/fluids7060194
Hao Z, Sun C, Lu Y, Bi K, Zhou T. Suppression of Vortex-Induced Vibration and Phase-Averaged Analysis of the Wake Generated by a Circular Cylinder Covered with Helical Grooves. Fluids. 2022; 7(6):194. https://doi.org/10.3390/fluids7060194
Chicago/Turabian StyleHao, Zhiyong, Chenlin Sun, Yucen Lu, Kaiming Bi, and Tongming Zhou. 2022. "Suppression of Vortex-Induced Vibration and Phase-Averaged Analysis of the Wake Generated by a Circular Cylinder Covered with Helical Grooves" Fluids 7, no. 6: 194. https://doi.org/10.3390/fluids7060194
APA StyleHao, Z., Sun, C., Lu, Y., Bi, K., & Zhou, T. (2022). Suppression of Vortex-Induced Vibration and Phase-Averaged Analysis of the Wake Generated by a Circular Cylinder Covered with Helical Grooves. Fluids, 7(6), 194. https://doi.org/10.3390/fluids7060194