Hybrid Models for Solving the Colebrook–White Equation Using Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Hybrid Formula
2.2. Existing Equation Considered
2.3. Statistical Measure
- The coefficient of determination, R2, of the linear regression line between represents the predicted friction factor by the hybrid model Equation (18) and the desired output friction factor obtained from iteration Equation (12).
- The mean absolute relative error, MRE, is defined by:
- The maximum absolute relative error, MAXRE, is defined by:
2.4. Data Generation
3. Results and Discussion
- a.
- The formula hybrid model 1 of Chen [29]
- b.
- The formula for hybrid model 1 of Schorle et al. [30],
- c.
- The formula for hybrid model of Bar and White [31],
- d.
- The formula for hybrid model 1 of 4 Sousa et al. [32],
- e.
- The formula for hybrid model 1 of Offor and Alabi [33],
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Hybrid Model | Coefficients | ||||
---|---|---|---|---|---|
k | ak | bk | ck | Ek & F | |
Schorle et al. [30] + ANN (2-5-1), Equation (28) | 1 | −2.26933 | −0.05760 | 0.74884 | 28.288 |
2 | 0.93914 | −0.66953 | 2.51097 | 25,423.641 | |
3 | −1.04822 | 0.70094 | −2.18636 | 11,387.088 | |
4 | 4.90973 | 0.04289 | 5.39717 | −1765.822 | |
5 | 2.66153 | 1.81116 | 0.83719 | 69.487 | |
6 | F = −12,307.506 | ||||
Barr and White [31] + ANN (2-5-1), Equation (29) | 1 | 0.83941 | −2.98641 | 3.79362 | 3239.372 |
2 | 1.94701 | −3.08646 | 5.81603 | 9137.427 | |
3 | −0.37782 | −5.25154 | 1.95626 | 12.447 | |
4 | 0.90315 | −2.76715 | 4.22969 | −11,058.386 | |
5 | −4.51262 | 0.18143 | −5.95373 | 4272.718 | |
6 | F = 2942.393 | ||||
Sousa et al. [32] + ANN (2-5-1), Equation (30) | 1 | −4.14477 | 3.26576 | −7.56141 | −203.631 |
2 | 0.13488 | 2.04836 | −3.88041 | −1598.224 | |
3 | 7.34543 | 6.94243 | 2.03779 | −5.643 | |
4 | −1.49063 | −0.02376 | −1.41946 | −77.800 | |
5 | 4.69215 | −0.00526 | 5.80950 | −1382.211 | |
6 | F = −494.097 | ||||
Offor and Alabi [33] + ANN (2-5-1), Equation (31) | 1 | −6.74589 | −3.60800 | 1.99030 | 1.199 |
2 | −2.66078 | −0.61588 | −2.73123 | −457.489 | |
3 | 12.23306 | −3.42486 | 15.28631 | −134.388 | |
4 | 3.09142 | 0.68423 | 2.97875 | −415.722 | |
5 | 12.38692 | −0.21233 | 12.52520 | 192.577 | |
6 | F = −98.881 |
References
- Subramanya, K. Flow in Open Channels, 3rd ed.; Tata McGraw-Hill Publishing Company Ltd.: New Delhi, India, 2009; pp. 86–91. [Google Scholar]
- Osman, A.A. Ópen Channel Hydraulics; Elsevier: Amsterdam, The Netherlands, 2006; pp. 67–74. [Google Scholar]
- Knight, D.W.; Hazlewood, C.; Lamb, R.; Samuels, P.G.; Shiono, K. Practical Channel Hydraulics Roughness, Conveyance and Afflux, 2nd ed.; CRC Press: Balkema, Leiden, 2018; pp. 29–33. [Google Scholar]
- White, F.M. Fluid Mechanics, 7th ed.; McGraw-Hill: New York, NY, USA, 2011; pp. 365–390. [Google Scholar]
- Çengel, Y.A.; Cimbala, J.M. Fluid Mechanics Fundamentals and Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 2014; pp. 367–374. [Google Scholar]
- Henderson, F.M. Open Channel Flow; The Macmillan Company: New York, NY, USA, 1966; pp. 90–101. [Google Scholar]
- Sturm, T.W. Open Channel Hydraulics, 2nd ed.; McGaw-Hill: New York, NY, USA, 2010; pp. 114–128. [Google Scholar]
- French, R.H. Open-Channel Hydrauics; McGraw-Hill Book Co.: Singapore, 1985; pp. 111–119. [Google Scholar]
- Chadwick, A.; Morfett, J.; Borthwick, M. Hydraulics in Civil and Environmental Engineering, 5th ed.; CRC Press: Abingdon, UK; Boca Raton, FL, USA, 2013; pp. 126–130. [Google Scholar]
- Colebrook, C.F. Turbulent Flow in Pipes with Particular Reference to the Transition Between the Smooth and Rough Pipe Laws. J. Inst. Civ. Eng. Lond. 1939, 11, 133–156. [Google Scholar] [CrossRef]
- Chapra, S.C.; Canale, R.P. Numerical Method for Engineer; McGraw Hill Education: New York, NY, USA, 2010; pp. 151–161. [Google Scholar]
- Larock, B.E.; Jeppson, R.W.; Watters, G.Z. Hydraulics of Pipeline Systems; CRC Press LLC.: Boca Raton, FL, USA, 2002; pp. 17–22, 148–151. [Google Scholar]
- Moody, L.F. Friction Factors for Pipe Flow. Transactions of the American Society of Mechanical Engineers. J. Mater. Sci. Chem. Eng. 1944, 66, 671–681. [Google Scholar]
- Brkić, D. Review of Explicit Approximations to the Colebrook Relation for Flow Friction. J. Pet. Sci. Eng. 2011, 77, 34–48. [Google Scholar] [CrossRef]
- Zeghadnia, L.; Robert, J.L.; Achour, B. Explicit solutions for turbulent flow friction factor: A review, assessment and approaches classification. Ain Shams Eng. J. 2019, 10, 243–252. [Google Scholar] [CrossRef]
- Plascencia, G.; Díaz–Damacillo, L.; Robles-Agudo, M. On the estimation of the friction factor: A review of recent approaches. SN Appl. Sci. 2020, 2, 163. [Google Scholar] [CrossRef]
- Pérez Pupo, J.R.; Navarro-Ojeda, M.N.; Pérez-Guerrero, J.N.; Batista-Zaldívar, M.A. On the Explicit Expressions for the Determination of the Friction Factor in Turbulent Regime. Rev. Mex. Ing. Química 2020, 19, 313–334. [Google Scholar] [CrossRef]
- Qiu, M.; Ostfeld, A. A Head Formulation for the Steady-State Analysis of Water Distribution Systems Using an Explicit and Exact Expression of the Colebrook–White Equation. Water 2021, 13, 1163. [Google Scholar] [CrossRef]
- Choe, Y.W.; Sim, S.B.; Choo, Y.M. New Equation for Predicting Pipe Friction Coefficients Using the Statistical Based Entropy Concepts. Entropy 2021, 23, 611. [Google Scholar] [CrossRef]
- Brkić, D.; Pavel Praks, P. Colebrook’s Flow Friction Explicit Approximations Based on Fixed-Point Iterative Cycles and Symbolic Regression. Computation 2019, 7, 48. [Google Scholar] [CrossRef]
- Pavel Praks, P.; Brkić, D. Review of new flow friction equations: Constructing Colebrook’s explicit correlations accurately. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2020, 36, 41. [Google Scholar] [CrossRef]
- Brkić, D.; Praks, P. What Can Students Learn While Solving Colebrook’s Flow Friction Equation? Fluids 2019, 4, 114. [Google Scholar] [CrossRef]
- Brkić, D.; Ćojbašić, Ž. Evolutionary Optimization of Colebrook’s Turbulent Flow Friction Approximations. Fluids 2017, 2, 15. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Srinivasulu, S.; Jain, A.A. Comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl. Soft Comput. 2006, 6, 295–306. [Google Scholar] [CrossRef]
- Huo, Z.; Feng, S.; Kang, S.; Huang, G.; Wang, F.; Guo, P. Integrated neural networks for monthly river flow estimation in arid inland basin of Northwest China. J. Hydrol. 2012, 420, 159–170. [Google Scholar] [CrossRef]
- Cahyono, M. The Development of Explicit Equations for Estimating Settling Velocity Based on Artificial Neural Networks Procedure. Hydrology 2022, 9, 98. [Google Scholar] [CrossRef]
- Sablani, S.S.; Shayya, W.H.; Kacimov, A. Explicit calculation of the friction factor in pipeline flow of Bingham plastic fluids: A neural network approach. Chem. Eng. Sci. 2003, 58, 99–106. [Google Scholar] [CrossRef]
- Chen, N.H. An explicit equation for friction factor in pipe. Ind. Eng. Chem. Fundam. 1979, 18, 296–297. [Google Scholar] [CrossRef]
- Schorle, B.J.; Churchill, S.W.; Shacham, M. Comments on: “An Explicit Equation for Friction Factor in Pipe”. Ind. Eng. Chem. Fundam. 1980, 19, 228–230. [Google Scholar] [CrossRef]
- Barr, D.; White, C. Technical note. solutions of the colebrook-white function for resistance to uniform turbulent flow. Proc. Inst. Civ. Eng. 1981, 71, 529–535. [Google Scholar] [CrossRef]
- Sousa, J.; Da Conceição, M.; Marques, A.S. An explicit solution of the Colebrook-White equation through simulated annealing. Water Ind. Syst. Model. Optim. Appl. 1999, 2, 347–355. [Google Scholar]
- Offor, U.H.; Alabi, S.B. An accurate and computationally efficient explicit friction factor model. Adv. Chem. Eng. Sci. 2016, 6, 237–245. [Google Scholar] [CrossRef]
Explicit Equation | Hybrid Model | MRE | MAXRE | |
---|---|---|---|---|
(%) | (%) | |||
Equation (26) (Chen [29]) | Original | 0.117 | 0.689 | |
Hybrid | Model 1 | 0.014 | 0.090 | |
Model 2 | 0.010 | 0.082 | ||
Model 3 | 0.004 | 0.060 | ||
Equation (27) (Schorle et al. [30]) | Original | 0.283 | 1.889 | |
Hybrid | Model 1 | 0.055 | 0.156 | |
Model 2 | 0.017 | 0.050 | ||
Model 3 | 0.012 | 0.045 | ||
Equation (28) (Barr and White [31]) | Original | 0.098 | 0.942 | |
Hybrid | Model 1 | 0.039 | 0.117 | |
Model 2 | 0.026 | 0.100 | ||
Model 3 | 0.011 | 0.067 | ||
Equation (29) (Sousa et al. [32]) | Original | 0.088 | 0.394 | |
Hybrid | Model 1 | 0.010 | 0.035 | |
Model 2 | 0.005 | 0.026 | ||
Model 3 | 0.002 | 0.020 | ||
Equation (30) (Offor and Alabi [33]) | Original | 0.017 | 0.278 | |
Hybrid | Model 1 | 0.007 | 0.043 | |
Model 2 | 0.005 | 0.035 | ||
Model 3 | 0.003 | 0.033 |
Coefficients of Equation (32) | Coefficients of Equation (33) | |||||||
---|---|---|---|---|---|---|---|---|
k | ak | bk | ck | Ek & F | ak | bk | ck | Ek & F |
1 | −4.18046 | 3.32259 | −7.37097 | −141.907 | −4.06502 | 3.38230 | −7.47230 | −56.828 |
2 | 0.13511 | 2.13256 | −3.64888 | −1122.593 | 0.12831 | 1.71004 | −2.75631 | −560.767 |
3 | −1.81466 | −0.02359 | −1.70540 | –52.697 | 11.44103 | −0.00528 | 12.13929 | −503.155 |
4 | 4.88475 | −0.00526 | 5.87472 | −976.426 | F = −116.987 | |||
5 | F = −340.704 |
Coefficients of Equation (34) | Coefficients of Equation (35) | |||||||
---|---|---|---|---|---|---|---|---|
k | ak | bk | ck | Ek & F | ak | bk | ck | Ek & F |
1 | −2.80211 | −0.62177 | −2.94729 | −836.494 | −10.32700 | −1.82460 | −8.70690 | 16.457 |
2 | 10.73230 | −2.83803 | 13.28526 | −155.146 | 12.01430 | −3.42070 | 15.08060 | −112.035 |
3 | 3.08238 | 0.66715 | 3.10158 | −769.969 | −13.07130 | 0.08710 | −13.08580 | −164.880 |
4 | 10.06938 | −0.20182 | 10.72137 | 400.633 | F =−37.108 | |||
5 | F = −310.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cahyono, M. Hybrid Models for Solving the Colebrook–White Equation Using Artificial Neural Networks. Fluids 2022, 7, 211. https://doi.org/10.3390/fluids7070211
Cahyono M. Hybrid Models for Solving the Colebrook–White Equation Using Artificial Neural Networks. Fluids. 2022; 7(7):211. https://doi.org/10.3390/fluids7070211
Chicago/Turabian StyleCahyono, Muhammad. 2022. "Hybrid Models for Solving the Colebrook–White Equation Using Artificial Neural Networks" Fluids 7, no. 7: 211. https://doi.org/10.3390/fluids7070211
APA StyleCahyono, M. (2022). Hybrid Models for Solving the Colebrook–White Equation Using Artificial Neural Networks. Fluids, 7(7), 211. https://doi.org/10.3390/fluids7070211