Numerical Simulation of Carbon Dioxide–Nitrogen Mixture Dissolution in Water-Saturated Porous Media: Considering Cross-Diffusion Effects
Abstract
:Highlights
- CO2–N2 mixture dissolution in brine is examined by considering the cross-diffusion effect for CO2 sequestration in a deep storage reservoir.
- Heterogeneity lowers the average dissolved CO2 and impedes the onset of convection.
- Correlations are developed to predict the transition time between the dissolution regimes.
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rubin, E.; De Coninck, H. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005; p. 14. [Google Scholar]
- Wang, K.; Xu, T.; Wang, F.; Tian, H. Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams. Int. J. Coal Geol. 2016, 54, 265–274. [Google Scholar] [CrossRef]
- Ajayi, T.; Awolayo, A.; Gomes, J.; Parra, H.; Hu, J. Large scale modeling and assessment of the feasibility of CO2 storage onshore abu dhabi. Energy 2019, 185, 653–670. [Google Scholar] [CrossRef]
- Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 storage capacity estimation: Issues and development of standards. Int. J. Greenh. Gas Control. 2007, 1, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Talebian, M.; Al-Khoury, R.; Sluys, L. A computational model for coupled multiphysics processes of CO2 sequestration in fractured porous media. Adv. Water Resour. 2013, 59, 238–255. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Dai, Z.; Cole, D.; Moortgat, J. Critical dynamics of gravito-convective mixing in geological carbon sequestration. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Su, X.; Xu, W. Assessment of CO2 geological storage capacity in the oilfields of the Songliao Basin, North Eastern China. Geosci. J. 2016, 20, 247–257. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhuri, A.; Chu, S.; Stauffer, P.; Pawar, R. Analysis of evolving capillary transition, gravitational fingering, and dissolution trapping of CO2 in deep saline aquifers during continuous injection of supercritical CO2. Int. J. Greenh. Gas Control 2019, 82, 281–297. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhuri, A.; Stauffer, P.; Pawar, R. Simulation of gravitational instability and thermo-solutal convection during the dissolution of CO2 in deep storage reservoirs. Water Resour. Res. 2020, 56, e2019WR026126. [Google Scholar] [CrossRef]
- Amarasinghe, W.; Fjelde, I.; Rydland, J.-A.; Guo, Y. Effects of permeability on CO2 dissolution and convection at reservoir temperature and pressure conditions: A visualization study. Int. J. Greenh. Gas Control 2020, 99, 103082. [Google Scholar] [CrossRef]
- Amarasinghe, W.; Fjelde, I.; Giske, N.; Guo, Y. CO2 convective dissolution in oil-saturated unconsolidated porous media at reservoir conditions. Energies 2021, 14, 233. [Google Scholar] [CrossRef]
- Riaz, A.; Cinar, Y. Carbon dioxide sequestration in saline formations: Part 1—Review of the modeling of solubility trapping. J. Pet. Sci. Eng. 2014, 124, 367–380. [Google Scholar] [CrossRef]
- Emami-Meybodi, H.; Hassanzadeh, H.; Green, C.; Ennis-King, J. Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments. Int. J. Greenh. Gas Control 2015, 40, 238–266. [Google Scholar] [CrossRef]
- Mahmoodpour, S.; Rostami, B. Design-of-experiment-based proxy models for the estimation of the amount of dissolved CO2 in brine: A tool for screening of candidate aquifers in geo-sequestration. Int. J. Greenh. Gas Control 2017, 56, 261–277. [Google Scholar] [CrossRef]
- Soltanian, M.; Amooie, M.; Cole, D.; Darrah, T.; Graham, D.; Pfiffner, S.; Phelps, T.; Moortgat, J. Impacts of methane on carbon dioxide storage in brine formations. Groundwater 2018, 56, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.-S.; Giammar, D.; Werth, C. Impacts of Geochemical Reactions on Geologic Carbon Sequestration. Environ. Sci. Technol. 2013, 47, 3–8. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Hajirezaie, S.; Hosseini, S.A.; Dashtian, H.; Amooie, M.A.; Meyal, A.; Ershadnia, R.; Ampomah, W.; Islam, A.; Zhang, X. Multicomponent reactive transport of carbon dioxide in fluvial heterogeneous aquifers. J. Nat. Gas Sci. Eng. 2019, 65, 212–223. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, T.; Li, Y. Modeling of fate and transport of coinjection of H2S with CO2 in deep saline formations. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Davison, J.; Thambimuthu, K. An overview of technologies and costs of carbon dioxide capture in power generation. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 201–212. [Google Scholar] [CrossRef]
- Jacquemet, N.; Picot-Colbeaux, G.; Vong, C.Q.; Lions, J.; Bouc, O.; Jérémy, R. Intrusion of CO2 and impurities in a freshwater aquifer—Impact evaluation by reactive transport modelling. Energy Procedia 2011, 4, 3202–3209. [Google Scholar] [CrossRef] [Green Version]
- Bachu, S. CO2 storage in geological media: Role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 2008, 34, 254–273. [Google Scholar] [CrossRef]
- Jiang, X. A review of physical modelling and numerical simulation of long-term geological storage of CO2. Appl. Energy 2011, 88, 3557–3566. [Google Scholar] [CrossRef]
- Li, D.; Jiang, X.; Meng, Q.; Xie, Q. Numerical analyses of the effects of nitrogen on the dissolution trapping mechanism of carbon dioxide geological storage. Comput. Fluids 2015, 114, 1–11. [Google Scholar] [CrossRef]
- Wilkinson, M.; Boden, J.; Panesar, R.; Allam, R. CO2 capture via oxyfuel firing: Optimisation of a retrofit design concept for a refinery power station boiler. In Proceedings of the First National Conference on Carbon Sequestration, Washington DC, USA, 15–17 May 2001; Volume 5, pp. 15–17. [Google Scholar]
- Pipitone, G.; Bolland, O. Power generation with CO2 capture: Technology for CO2 purification. Int. J. Greenh. Gas Control 2009, 3, 528–534. [Google Scholar] [CrossRef]
- Porter, R.T.; Fairweather, M.; Pourkashanian, M.; Woolley, R. The range and level of impurities in CO2 streams from different carbon capture sources. Int. J. Greenh. Gas Control 2015, 36, 161–174. [Google Scholar] [CrossRef]
- Bachu, S.; Bennion, B. Chromatographic partitioning of impurities contained in a CO2 stream injected into a deep saline aquifer: Part 1. effects of gas composition and in situ conditions. Int. J. Greenh. Gas Control 2009, 3, 458–467. [Google Scholar] [CrossRef]
- Wei, N.; Li, X.; Wang, Y.; Wang, Y.; Kong, W. Numerical study on the field-scale aquifer storage of CO2 containing N2. Energy Procedia 2013, 37, 3952–3959. [Google Scholar] [CrossRef] [Green Version]
- Ziabakhsh-Ganji, Z.; Kooi, H. Sensitivity of joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs. Appl. Energy 2014, 113, 434–451. [Google Scholar] [CrossRef]
- Wu, B.; Jiang, L.; Liu, Y.; Yang, M.; Wang, D.; Lv, P.; Song, Y. Experimental study of two-phase flow properties of CO2 containing N2 in porous media. RSC Adv. 2016, 6, 59360–59369. [Google Scholar] [CrossRef]
- Li, D.; Jiang, X. Numerical investigation of the partitioning phenomenon of carbon dioxide and multiple impurities in deep saline aquifers. Appl. Energy 2017, 185, 1411–1423. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Jiang, L.; Liu, Y.; Lyu, P.; Wang, D.; Li, X.; Song, Y. An experimental study on the influence of co2 containing N2 on CO2 sequestration by x-ray CT scanning. Energy Procedia 2017, 114, 4119–4128. [Google Scholar] [CrossRef]
- Mahmoodpour, S.; Rostami, B.; Emami-Meybodi, H. Onset of convection controlled by N2 impurity during CO2 storage in saline aquifers. Int. J. Greenh. Gas Control 2018, 79, 234–247. [Google Scholar] [CrossRef]
- Mahmoodpour, S.; Amooie, M.A.; Rostami, B.; Bahrami, F. Effect of gas impurity on the convective dissolution of CO2 in porous media. Energy 2020, 199, 117397. [Google Scholar] [CrossRef]
- Lei, H.; Li, J.; Li, X.; Jiang, Z. Numerical modeling of co-injection of N2 and O2 with CO2 into aquifers at the tongliao ccs site. Int. J. Greenh. Gas Control 2016, 54, 228–241. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Li, Y.; Xu, W.; Jiang, X. Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation—A sensitivity study. Appl. Energy 2018, 229, 482–492. [Google Scholar] [CrossRef]
- Talman, S. Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer: What is known. Int. J. Greenh. Gas Control 2015, 40, 267–291. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Ryan, D.; Lan, C. A study of the effect of impurities on CO2 storage capacity in geological formations. Int. J. Greenh. Gas Control 2015, 42, 132–137. [Google Scholar] [CrossRef]
- Ershadnia, R.; Hajirezaei, S.; Gershenzon, N.; Ritzi, R., Jr.; Soltanian, M.R. Impact of methane on carbon dioxide sequestration within multiscale and hierarchical fluvial architecture. In Proceedings of the 2019 AAPG Eastern Section Meeting: Energy from the Heartland, Columbus, OH, USA, 12–16 October 2019. [Google Scholar]
- Neufeld, J.; Hesse, M.; Riaz, A.; Hallworth, M.; Tchelepi, H.; Huppert, H. Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Taheri, A.; Torsaeter, O.; Wessel-Berg, D.; Soroush, M. Experimental and simulation studies of density-driven-convection mixing in a Hele-Shaw geometry with application for CO2 sequestration in brine aquifers. In Proceedings of the SPE Europec/EAGE Annual Conference, Copenhagen, Denmark, 4–7 June 2012; Society of Petroleum Engineers: Richardson, TX, USA, 2012. [Google Scholar]
- MacMinn, C.; Neufeld, J.; Hesse, M.; Huppert, H. Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Mahmoodpour, S.; Rostami, B.; Soltanian, M.R.; Amooie, M.A. Convective dissolution of carbon dioxide in deep saline aquifers: Insights from engineering a high-pressure porous visual cell. Phys. Rev. Appl. 2019, 12, 034016. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodpour, S.; Rostami, B.; Soltanian, M.R.; Amooie, M.A. Effect of brine composition on the onset of convection during co2 dissolution in brine. Comput. Geosci. 2019, 124, 1–13. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Z.; Wang, R.; Cui, M.; Wang, X.; Lun, Z.; Lu, Y. Experimental study on the density-driven carbon dioxide convective diffusion in formation water at reservoir conditions. ACS Omega 2019, 4, 11082–11092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.; Zhang, R.; Liu, J.; Cui, L.; Zhu, X.; Hao, D. Simulation of CO2 rayleigh convection in aqueous solutions of NaCl, KCl, MgCl2 and CaCl2 using lattice boltzmann method. Int. J. Greenh. Gas Control 2020, 98, 103066. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Gershenzon, N.; Dai, Z.; Ritzi, R.; Xiong, F.; Cole, D.; Moortgat, J. Dissolution trapping of carbon dioxide in heterogeneous aquifers. Environ. Sci. Technol. 2017, 51, 7732–7741. [Google Scholar] [CrossRef] [PubMed]
- Raad, S.M.J.; Hassanzadeh, H. Does impure CO2 impede or accelerate the onset of convective mixing in geological storage? Int. J. Greenh. Gas Control 2016, 54, 250–257. [Google Scholar] [CrossRef]
- Kim, M.C.; Song, K.H. Effect of impurities on the onset and growth of gravitational instabilities in a geological CO2 storage process: Linear and nonlinear analyses. Chem. Eng. Sci. 2017, 174, 426–444. [Google Scholar] [CrossRef]
- Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 storage capacity estimation: Methodology and gaps. Int. J. Greenh. Gas Control. 2007, 1, 430–443. [Google Scholar] [CrossRef] [Green Version]
- Raad, S.M.J.; Hassanzadeh, H. Prospect for storage of impure carbon dioxide streams in deep saline aquifers—A convective dissolution perspective. Int. J. Greenh. Gas Control 2017, 63, 350–355. [Google Scholar] [CrossRef]
- Omrani, S.; Mahmoodpour, S.; Rostami, B.; Sedeh, M.S.; Sass, I. Diffusion coefficients of CO2–SO2–water and CO2–N2–water systems and their impact on the CO2 sequestration process: Molecular dynamics and dissolution process simulations. Greenh. Gases: Sci. Technol. 2021, 11, 764–779. [Google Scholar] [CrossRef]
- Rives, R.; Mialdun, A.; Yasnou, V.; Shevtsova, V.; Coronas, A. Experimental determination and predictive modelling of the mutual diffusion coefficients of water and ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. J. Mol. Liq. 2019, 296, 111931. [Google Scholar] [CrossRef]
- Mialdun, A.; Bataller, H.; Bou-Ali, M.M.; Braibanti, M.; Croccolo, F.; Errarte, A.; Ezquerro, J.M.; Fernández, J.J.; Gaponenko, Y.; García-Fernández, L.; et al. Preliminary analysis of diffusion coefficient measurements in ternary mixtures 4 (dcmix4) experiment on board the international space station. Eur. Phys. J. E 2019, 42, 1–9. [Google Scholar] [CrossRef]
- Mialdun, A.; Bou-Ali, M.M.; Braibanti, M.; Croccolo, F.; Errarte, A.; Ezquerro, J.M.; Fernandez, J.J.; García-Fernández, L.; Galand, Q.; Gaponenko, Y.; et al. Data quality assessment of diffusion coefficient measurements in ternary mixtures 4 (dcmix4) experiment. Acta Astronaut. 2020, 176, 204–215. [Google Scholar] [CrossRef]
- Lengler, U.; De Lucia, M.; Kühn, M. The impact of heterogeneity on the distribution of CO2: Numerical simulation of CO2 storage at Ketzin. Int. J. Greenh. Gas Control 2010, 4, 1016–1025. [Google Scholar] [CrossRef]
- Delbari, M.; Afrasiab, P.; Loiskandl, W. Using sequential gaussian simulation to assess the field-scale spatial uncertainty of soil water content. Catena 2009, 79, 163–169. [Google Scholar] [CrossRef]
- Safikhani, M.; Asghari, O.; Emery, X. Assessing the accuracy of sequential gaussian simulation through statistical testing. Stoch. Environ. Res. Risk Assess. 2017, 31, 523–533. [Google Scholar] [CrossRef]
- Jia, W.; McPherson, B.; Pan, F.; Dai, Z.; Moodie, N.; Xiao, T. Impact of three-phase relative permeability and hysteresis models on forecasts of storage associated with CO2-EOR. Water Resour. Res. 2018, 54, 1109–1126. [Google Scholar] [CrossRef]
- Bachu, S.; Nordbotten, J.; Celia, M. Evaluation of the spread of acid-gas plumes injected in deep saline aquifers in western canada as an analogue for CO2 injection into continental sedimentary basins. In Greenhouse Gas Control Technologies 7; Elsevier: Amsterdam, The Netherlands, 2005; pp. 479–487. [Google Scholar]
- Ennis-King, J.; Preston, I.; Paterson, L. Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 2005, 17, 084107. [Google Scholar] [CrossRef]
- Islam, A.; Lashgari, H.R.; Sephernoori, K. Double diffusive natural convection of CO2 in a brine saturated geothermal reservoir: Study of non-modal growth of perturbations and heterogeneity effects. Geothermics 2014, 51, 325–336. [Google Scholar] [CrossRef]
- Lapwood, E. Convection of a fluid in a porous medium. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1948; Volume 44, pp. 508–521. [Google Scholar]
- Raad, S.M.J.; Hassanzadeh, H. Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile. Phys. Rev. E 2015, 92, 053023. [Google Scholar] [CrossRef]
Pressure (bar) | Temperature (K) | Porosity (-) | Permeability (mD) |
---|---|---|---|
100 | 323.15 | 0.25 | 250 |
200 | 373.15 | ||
300 | 423.15 |
Temperature (K) | Pressure (bar) | CO2 Mole Fraction | D11 (×10−9 m2/s) | D12 (×10−9 m2/s) | D21 (×10−9 m2/s) | D22 (×10−9 m2/s) |
---|---|---|---|---|---|---|
323 | 100 | 1 | 3.453 | - | - | - |
323 | 100 | 0.9 | 2.3119 | 0.2616 | 0.0495 | 39.715 |
323 | 100 | 0.8 | 1.8604 | −0.4292 | −0.0033 | 26.108 |
373 | 100 | 1 | 6.983 | - | - | - |
373 | 100 | 0.9 | 4.3614 | -1.0323 | 0.0061 | 89.2921 |
373 | 100 | 0.8 | 6.5221 | −0.5939 | −0.0024 | 55.8109 |
423 | 100 | 1 | 10.716 | - | - | - |
423 | 100 | 0.9 | 8.976 | -1.3035 | 0.0133 | 130.0136 |
423 | 100 | 0.8 | 10.0413 | −0.1552 | 0.0578 | 54.9741 |
323 | 200 | 1 | 3.7 | - | - | - |
323 | 200 | 0.9 | 1.4821 | −0.146 | 0.0149 | 13.15855 |
323 | 200 | 0.8 | 1.946 | −0.3165 | −0.0368 | 9.3242 |
373 | 200 | 1 | 6.73 | - | - | - |
373 | 200 | 0.9 | 3.3163 | −0.8697 | −0.019 | 39.4697 |
373 | 200 | 0.8 | 3.76365 | −0.84585 | −0.0085 | 49.32485 |
423 | 200 | 1 | 11.033 | - | - | - |
423 | 200 | 0.9 | 5.7988 | −0.9622 | 0.1099 | 76.7250 |
423 | 200 | 0.8 | 5.52505 | −0.24735 | 0.0503 | 33.1235 |
323 | 300 | 1 | 3.683 | - | - | - |
323 | 300 | 0.9 | 1.3997 | −0.4567 | −0.0383 | 9.9591 |
323 | 300 | 0.8 | 1.6961 | −0.3346 | −0.0718 | 6.1526 |
373 | 300 | 1 | 6.633 | - | - | - |
373 | 300 | 0.9 | 2.7572 | −0.1616 | 0.0411 | 24.0971 |
373 | 300 | 0.8 | 2.8922 | −0.2709 | −0.0625 | 14.6273 |
423 | 300 | 1 | 11.1 | - | - | - |
423 | 300 | 0.9 | 4.1235 | −1.0655 | −0.0414 | 34.9856 |
423 | 300 | 0.8 | 5.0785 | −0.0885 | 0.0638 | 20.1737 |
Case Name | Temperature (K) | Pressure (bar) | |||||
---|---|---|---|---|---|---|---|
1-p | 323 | 100 | 0.00015 | 0.00091 | 4.0329 | 0.00443 | 2555 |
2-p | 373 | 100 | 0.00066 | 0.00284 | 2.7641 | 0.00839 | 1691 |
3-p | 423 | 100 | 0.00071 | 0.00392 | 1.9180 | 0.00135 | 1527 |
4-p | 323 | 200 | 0.00007 | 0.00098 | 5.3417 | 0.00383 | 2790 |
5-p | 373 | 200 | 0.00028 | 0.00168 | 5.1562 | 0.00558 | 2522 |
6-p | 423 | 200 | 0.00038 | 0.00253 | 3.4526 | 0.01040 | 2325 |
7-p | 323 | 300 | 0.00017 | 0.00108 | 6.6560 | 0.00301 | 3058 |
8-p | 373 | 300 | 0.00015 | 0.00128 | 5.7127 | 0.00497 | 3029 |
9-p | 423 | 300 | 0.00025 | 0.00157 | 5.4777 | 0.00535 | 2906 |
Case Name | Temperature (K) | Pressure (bar) | CO2 Mole Fraction (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|---|
1-i | 323 | 100 | 0.9 | 0.00022 | 0.00064 | 2.19 | 0.00446 | 3215 |
2-i | 323 | 100 | 0.8 | 0.0001 | 0.00087 | 1.88 | 0.00255 | 5384 |
3-i | 373 | 100 | 0.9 | 0.00019 | 0.00161 | 2.13 | 0.00383 | 3341 |
4-i | 373 | 100 | 0.8 | 0.00043 | 0.00264 | 1.45 | 0.0095 | 1765 |
5-i | 423 | 100 | 0.9 | 0.00024 | 0.00184 | 2.31 | 0.0075 | 2005 |
6-i | 423 | 100 | 0.8 | 0.00053 | 0.00365 | 1.61 | 0.01553 | 1458 |
7-i | 323 | 200 | 0.9 | 0.00009 | 0.00043 | 2.74 | 0.00221 | 7903 |
8-i | 323 | 200 | 0.8 | 0.00012 | 0.00048 | 2.14 | 0.00251 | 6100 |
9-i | 373 | 200 | 0.9 | 0.00014 | 0.00074 | 3.08 | 0.00334 | 6672 |
10-i | 373 | 200 | 0.8 | 0.00021 | 0.00072 | 3.00 | 0.00287 | 5284 |
11-i | 426 | 200 | 0.9 | 0.00018 | 0.00103 | 5.37 | 0.00311 | 5263 |
12-i | 426 | 200 | 0.8 | 0.00013 | 0.00103 | 4.47 | 0.00341 | 4451 |
13-i | 323 | 300 | 0.9 | 0.00007 | 0.00034 | 3.05 | 0.00125 | 12,664 |
14-i | 323 | 300 | 0.8 | 0.000099 | 0.000717 | 2.67 | 0.00198 | 8169 |
15-i | 373 | 300 | 0.9 | 0.00022 | 0.0009 | 4.68 | 0.0023 | 7521 |
16-i | 373 | 300 | 0.8 | 0.00011 | 0.0007 | 4.01 | 0.0022 | 7184 |
17-i | 423 | 300 | 0.9 | 0.00008 | 0.00043 | 7.13 | 0.00155 | 10,628 |
18-i | 423 | 300 | 0.8 | 0.00011 | 0.00071 | 4.90 | 0.00324 | 6064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoodpour, S.; Singh, M.; Mahyapour, R.; Omrani, S.; Sass, I. Numerical Simulation of Carbon Dioxide–Nitrogen Mixture Dissolution in Water-Saturated Porous Media: Considering Cross-Diffusion Effects. Fluids 2023, 8, 22. https://doi.org/10.3390/fluids8010022
Mahmoodpour S, Singh M, Mahyapour R, Omrani S, Sass I. Numerical Simulation of Carbon Dioxide–Nitrogen Mixture Dissolution in Water-Saturated Porous Media: Considering Cross-Diffusion Effects. Fluids. 2023; 8(1):22. https://doi.org/10.3390/fluids8010022
Chicago/Turabian StyleMahmoodpour, Saeed, Mrityunjay Singh, Ramin Mahyapour, Sina Omrani, and Ingo Sass. 2023. "Numerical Simulation of Carbon Dioxide–Nitrogen Mixture Dissolution in Water-Saturated Porous Media: Considering Cross-Diffusion Effects" Fluids 8, no. 1: 22. https://doi.org/10.3390/fluids8010022
APA StyleMahmoodpour, S., Singh, M., Mahyapour, R., Omrani, S., & Sass, I. (2023). Numerical Simulation of Carbon Dioxide–Nitrogen Mixture Dissolution in Water-Saturated Porous Media: Considering Cross-Diffusion Effects. Fluids, 8(1), 22. https://doi.org/10.3390/fluids8010022