Numerical Study of Flow Downstream a Step with a Cylinder Part 1: Validation of the Numerical Simulations
Abstract
:1. Introduction
2. Set-Up of the Numerical Simulations
2.1. Geometry and Simulation Domain
2.2. Mesh Generation
2.3. Model Parameterization
2.4. Laminar Flow
2.4.1. Governing Equations
Mass equation | (1) | |
Momentum equation | , | (2) |
2.4.2. Initial and Boundary Conditions
2.5. Turbulent Flow
2.5.1. Governing Equations and Turbulence Modeling
Mass equation | (3) | |
Momentum equation | , | (4) |
2.5.2. Initial and Boundary Conditions
2.5.3. Numerical Methods and Numerical Schemes
3. Results
3.1. Laminar Flow
3.1.1. Recirculation Zone and Reattachment Length
3.1.2. Vertical profiles of the streamwise velocity
3.1.3. Skin Friction Distribution
3.2. Turbulent Flow
3.2.1. Recirculation Zone and Reattachment Length
3.2.2. Vertical Profiles of the Streamwise Velocity
3.2.3. Skin Friction Distribution
3.2.4. Static Pressure Coefficient
4. Discussion
- Laminar backward-facing step flow was investigated for a wide range of Reynolds numbers 75 ≤ Reh ≤ 755 and the simulated reattachment lengths, velocity profiles, and skin frictions were compared with the available literature data. The average error between the present numerical results and literature numerical and experimental data for reattachment lengths and velocity profiles was lower than 8.1% and 18%, respectively. In addition, the average error in predicting the skin friction coefficient was lower than 20%.
- In turbulent flow, the simulated reattachment lengths, velocity profiles, skin friction coefficients, and pressure coefficient from several RANS models, standard k-ε, RNG k-ε, standard k-ω, SST k-ω, were compared with the available literature data. The most accurate model for predicting reattachment lengths, skin friction coefficient, and pressure coefficients was the standard k-ε model with an average error lower than 6, 17.5, and 20.5%, respectively.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Cf | skin friction coefficient |
Cf, min | minimum peak of the skin friction coefficient |
Cp | pressure coefficient |
Cp, min | minimum pressure coefficient |
Cp, BC | Borda-Carnot pressure coefficient |
D | diameter of cylinder (m) |
ER | expansion ratio of the channel |
h | height of the step (m) |
h1 | height of the inlet (m) |
h2 | height of the outlet (m) |
k | turbulent kinetic energy (m2/s2) |
l | turbulent length scale (m) |
Lr | reattachment length (m) |
P | static pressure (kg/s·m2) |
P0 | reference static pressure (kg/s·m2) |
Rec | cylinder diameter Reynolds number |
Reh | step-height Reynolds number |
u,v | velocity components in x and y direction (m/s) |
Umax | maximum velocity (m/s) |
x | longitudinal coordinate (m) |
y | normal coordinate (m) |
µ | dynamic viscosity of the fluid (kg/m.s) |
υ | kinematic viscosity of the fluid (m2/s) |
ρ | fluid density (kg/m2) |
τw | wall shear stress (kg/m·s2) |
ε | Turbulent dissipation (m2/s3) |
ω | Specific dissipation rate (1/s) |
References
- Wang, F.-F.; Wu, S.-Q.; Zhu, S.-L. Numerical simulation of flow separation over a backward-facing step with high Reynolds number. Water Sci. Eng. 2019, 12, 145–154. [Google Scholar] [CrossRef]
- Abbott, D.E.; Kline, S.J. Experimental Investigation of Subsonic Turbulent Flow Over Single and Double Backward Facing Steps. J. Basic Eng. 1962, 84, 317–325. [Google Scholar] [CrossRef]
- Armaly, B.F.; Durst, F.; Pereira, J.C.F.; Schönung, B. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 1983, 127, 473–496. [Google Scholar] [CrossRef]
- Kuehn, D.M. Effects of Adverse Pressure Gradient on the Incompressible Reattaching Flow over a Rearward-Facing Step. AIAA J. 1980, 18, 343–344. [Google Scholar] [CrossRef]
- Ötügen, M. Expansion ratio effects on the separated shear layer and reattachment downstream of a backward-facing step. Exp. Fluids 1991, 10, 273–280. [Google Scholar] [CrossRef]
- Durst, F.; Tropea, C. Flows over two-dimensional backward—Facing steps. In Structure of Complex Turbulent Shear Flow; Springer: Berlin/Heidelberg, Germany, 1983; pp. 41–52. [Google Scholar]
- Adams, E.W.; Johnston, J.P. Effects of the separating shear layer on the reattachment flow structure Part 1: Pressure and turbulence quantities. Exp. Fluids 1988, 6, 400–408. [Google Scholar] [CrossRef]
- Adams, E.W.; Johnston, J.P. Effects of the separating shear layer on the reattachment flow structure part 2: Reattachment length and wall shear stress. Exp. Fluids 1988, 6, 493–499. [Google Scholar] [CrossRef]
- Kim, J.J. Investigation of Separation and Reattachment of a Turbulent Shear Layer: Flow over a Backward-Facing Step; Stanford University: Stanford, CA, USA, 1978. [Google Scholar]
- Biswas, G.; Breuer, M.; Durst, F. Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. J. Fluids Eng. 2004, 126, 362–374. [Google Scholar] [CrossRef]
- Singh, A.; Paul, A.; Ranjan, P. Investigation of reattachment length for a turbulent flow over a backward facing step for different step angle. Int. J. Eng. Sci. Technol. 2011, 3. [Google Scholar] [CrossRef]
- Moss, W.; Baker, S.; Bradbury, L. Measurements of mean velocity and Reynolds stresses in some regions of recirculating flow. In Turbulent Shear Flows I; Springer: Berlin/Heidelberg, Germany, 1979; pp. 198–207. [Google Scholar]
- Heenan, A.; Morrison, J. Passive control of pressure fluctuations generated by separated flow. AIAA J. 1998, 36, 1014–1022. [Google Scholar] [CrossRef]
- Lee, T.; Mateescu, D. Experimental and numerical investigation of 2-d backward-facing step flow. J. Fluids Struct. 1998, 12, 703–716. [Google Scholar] [CrossRef]
- Jovic, S.; Driver, D. Reynolds number effect on the skin friction in separated flows behind a backward-facing step. Exp. Fluids 1995, 18, 464–467. [Google Scholar] [CrossRef]
- Tihon, J.; Legrand, J.; Legentilhomme, P. Near-wall investigation of backward-facing step flows. Exp. Fluids 2001, 31, 484–493. [Google Scholar] [CrossRef]
- Furuichi, N.; Hachiga, T.; Kumada, M. An experimental investigation of a large-scale structure of a two-dimensional backward-facing step by using advanced multi-point LDV. Exp. Fluids 2004, 36, 274–281. [Google Scholar] [CrossRef]
- Bouda, N.N.; Schiestel, R.; Amielh, M.; Rey, C.; Benabid, T. Experimental approach and numerical prediction of a turbulent wall jet over a backward facing step. Int. J. Heat Fluid Flow 2008, 29, 927–944. [Google Scholar] [CrossRef]
- Tihon, J.; Pěnkavová, V.; Havlica, J.; Šimčík, M. The transitional backward-facing step flow in a water channel with variable expansion geometry. Exp. Therm. Fluid Sci. 2012, 40, 112–125. [Google Scholar] [CrossRef]
- Gautier, N.; Aider, J.-L. Feed-forward control of a perturbed backward-facing step flow. J. Fluid Mech. 2014, 759, 181–196. [Google Scholar]
- Toumey, J.; Zhang, P.; Zhao, X.; Colborn, J.; O’Connor, J.A. Assessing the wall effects of backwards-facing step flow in tightly-coupled experiments and simulations. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 29 December 2022; p. 0822. [Google Scholar] [CrossRef]
- Chen, L.; Asai, K.; Nonomura, T.; Xi, G.; Liu, T. A review of Backward-Facing Step (BFS) flow mechanisms, heat transfer and control. Therm. Sci. Eng. Prog. 2018, 6, 194–216. [Google Scholar] [CrossRef]
- Gualtieri, C. Numerical simulations of laminar backward-facing step flow with FemLab 3.1. In Proceedings of the Fluids Engineering Division Summer Meeting, Houston, TX, USA, 13 October 2005; pp. 657–662. [Google Scholar]
- Yang, X.-D.; Ma, H.-Y.; Huang, Y.-N. Prediction of homogeneous shear flow and a backward-facing step flow with some linear and non-linear K–ε turbulence models. Commun. Nonlinear Sci. Numer. Simul. 2005, 10, 315–328. [Google Scholar] [CrossRef]
- Erturk, E. Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions. Comput. Fluids 2008, 37, 633–655. [Google Scholar] [CrossRef]
- Kim, D.; Moin, P. Direct numerical study of air layer drag reduction phenomenon over a backward-facing step. Cent. Turbul. Res. Annu. Res. Briefs 2010, 351–363. [Google Scholar]
- Jehad, D.; Hashim, G.; Zarzoor, A.; Azwadi, C.N. Numerical study of turbulent flow over backward-facing step with different turbulence models. J. Adv. Res. Des. 2015, 4, 20–27. [Google Scholar]
- Al-Jelawy, H.; Kaczmarczyk, S.; AlKhafaji, D.; Mirhadizadeh, S.; Lewis, R.; Cross, M. A computational investigation of a turbulent flow over a backward facing step with OpenFOAM. In Proceedings of the 2016 9th International Conference on Developments in eSystems Engineering (DeSE), Liverpool, UK, 31 August–2 September 2016; pp. 301–307. [Google Scholar]
- Araujo, P.P.; Rezende, A.L.T. Comparison of turbulence models in the flow over a backward-facing step. Int. J. Eng. Res. Sci. 2017, 3, 88–93. [Google Scholar] [CrossRef]
- Kopera, M.A.; Kerr, R.M.; Blackburn, H.; Barkley, D. Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step. Doctoral Dissertation, University of Warwick, 2011. Available online: http://go.warwick.ac.uk/wrap/47811 (accessed on 28 December 2022).
- Singh, A.; Aravind, S.; Srinadhi, K.; Kannan, B. Assessment of Turbulence Models on a Backward Facing Step Flow Using OpenFOAM®. Mater. Sci. Eng. 2020, 1274, 042060. [Google Scholar] [CrossRef]
- DeBonis, J.R. A Large-Eddy Simulation Of Turbulent Flow Over A Backward Facing Step. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 29 December 2022; p. 0337. [Google Scholar]
- Abdollahpour, M.; Gualtieri, P.; Gualtieri, C. Influence of a Rigid Cylinder on Flow Structure over a Backward-Facing Step. In Proceedings of the 39th IAHR World Congress, 19–24 June 2022; p. 24. [Google Scholar]
- Gaur, N.; Lingeshwar, R.; Kannan, B. Computational analysis of backward facing step flow using OpenFOAM®. AIP Conf. Proc. 2022, 2516, 030005. [Google Scholar]
- Abdollahpour, M.; Gualtieri, P.; Gualtieri, C. Numerical simulation of turbulent flow past a cylinder placed downstream of a step. Environ. Sci. Proc. 2022, 21, 58. [Google Scholar]
- Shu, C.; Peng, Y.; Zhou, C.F.; Chew, Y.T. Application of Taylor series expansion and Least-squares-based lattice Boltzmann method to simulate turbulent flows. J. Turbul. 2006, 7, N38. [Google Scholar] [CrossRef]
- Smirnov, E.M.; Smirnovsky, A.A.; Schur, N.A.; Zaitsev, D.K.; Smirnov, P.E. Comparison of RANS and IDDES solutions for turbulent flow and heat transfer past a backward-facing step. Heat Mass Transf. 2018, 54, 2231–2241. [Google Scholar] [CrossRef]
- Anwar-ul-Haque, F.A.; Yamada, S.; Chaudhry, S.R. Assessment of turbulence models for turbulent flow over backward facing step. In Proceedings of the Proceedings of the World Congress on Engineering, London, UK, 2–4 July 2007; pp. 2–7.
- Kim, J.; Kline, S.J.; Johnston, J.P. Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step. J. Fluids Eng. 1980, 102, 302–308. [Google Scholar] [CrossRef]
- Cruz, D.O.d.A.; Batista, F.; Bortolus, M. A law of the wall formulation for recirculating flows. J. Braz. Soc. Mech. Sci. 2000, 22, 43–51. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Ma, G.; Zhou, Y.-m. Numerical analysis of flow noises in the square cavity vortex based on computational fluid dynamics. J. Vibroengineering 2016, 18, 2656–2666. [Google Scholar] [CrossRef]
- Roache, P.J. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Roache, P.J. Perspective: Validation—What does it mean? ASME 2009, 131, 34503. [Google Scholar] [CrossRef]
- Blocken, B.; Gualtieri, C. Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environ. Model. Softw. 2012, 33, 1–22. [Google Scholar] [CrossRef]
- Biswas, R.; Strawn, R.C. Tetrahedral and hexahedral mesh adaptation for CFD problems. Appl. Numer. Math. 1998, 26, 135–151. [Google Scholar] [CrossRef]
- Keyes, D.; Ecer, A.; Satofuka, N.; Fox, P.; Periaux, J. Parallel Computational Fluid Dynamics’ 99: Towards Teraflops, Optimization and Novel Formulations; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Nguyen, T.H.T.; Ahn, J.; Park, S.W. Numerical and physical investigation of the performance of turbulence modeling schemes around a scour hole downstream of a fixed bed protection. Water 2018, 10, 103. [Google Scholar] [CrossRef]
- Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water 2018, 11, 28. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. Lectures in mathematical models of turbulence. AGRIS 1972. [Google Scholar]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998; Volume 2. [Google Scholar]
- Cherdron, W.; Durst, F.; Whitelaw, J.H. Asymmetric flows and instabilities in symmetric ducts with sudden expansions. J. Fluid Mech. 1978, 84, 13–31. [Google Scholar] [CrossRef]
- Sparrow, E.; Kalejs, J. Local convective transfer coefficients in a channel downstream of a partially constricted inlet. Int. J. Heat Mass Transf. 1977, 20, 1241–1249. [Google Scholar] [CrossRef]
- Yao, S. Two Dimensional Backward Facing Single Step Flow Preceding an Automotive Air-Filter; Oklahoma State University: Stillwater, OK, USA, 2000. [Google Scholar]
- Jovic, S.; Driver, D.M. Backward-Facing Step Measurements at Low Reynolds Number, Re (sub h)= 5000; No. NASA-TM-108807; NASA: Washington, DC, USA, 1994. [Google Scholar]
- Chandrsuda, C.; Bradshaw, P. Turbulence structure of a reattaching mixing layer. J. Fluid Mech. 1981, 110, 171–194. [Google Scholar] [CrossRef]
- Barri, M.; El Khoury, G.K.; Andersson, H.I.; Pettersen, B. DNS of backward-facing step flow with fully turbulent inflow. Int. J. Numer. Methods Fluids 2010, 64, 777–792. [Google Scholar] [CrossRef]
- Dange, A. Modeling of Turbulent Particulate Flow in the Recirculation Zone Downstream of a Backward Facing Step Preceding a Porous Medium; Oklahoma State University: Stillwater, OK, USA, 2010. [Google Scholar]
- Togun, H.; Safaei, M.R.; Sadri, R.; Kazi, S.N.; Badarudin, A.; Hooman, K.; Sadeghinezhad, E. Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl. Math. Comput. 2014, 239, 153–170. [Google Scholar] [CrossRef]
- Ratha, D.; Sarkar, A. Analysis of flow over backward facing step with transition. Front. Struct. Civil Eng. 2015, 9, 71–81. [Google Scholar] [CrossRef]
- Krishnamoorthy, C. Numerical Analysis of Backward-Facing Step Flow Preceeding a Porous Medium Using FLUENT; Oklahoma State University: Stillwater, OK, USA, 2007. [Google Scholar]
- Jongebloed, L. Numerical Study Using FLUENT of the Separation and Reattachment Points for Backwards-Facing Step Flow. Master’s Thesis, Mechanical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA, 2008. [Google Scholar]
- Darmawan, S.; Tanujaya, H. CFD Investigation of Flow Over a Backward-facing Step using an RNG k-? Turbulence Model. Int. J. Technol. 2019, 10, 280. [Google Scholar] [CrossRef]
- LE, H.; Moin, P.; Kim, J. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 1997, 330, 349–374. [Google Scholar] [CrossRef]
- Spazzini, P.G.; Iuso, G.; Onorato, M.; Zurlo, N.; Di Cicca, G.M. Unsteady behavior of back-facing step flow. Exp. Fluids 2001, 30, 551–561. [Google Scholar] [CrossRef]
- Driver, D.M.; Seegmiller, H.L. Features of a reattaching turbulent shear layer in divergent channelflow. AIAA J. 1985, 23, 163–171. [Google Scholar] [CrossRef]
- Westphal, R.V.; Johnston, J.; Eaton, J. Experimental Study of Flow Reattachment in a Single-Sided Sudden Expansion; NASA: Washington, DC, USA, 1984.
Grid No. | Number of Cells | Lr/h | Differences with Experimental Data |
---|---|---|---|
Mesh 1 | 86,000 | 10.77 | 22.95% |
Mesh 2 | 95,200 | 11.2 | 19.9% |
Mesh 3 | 104,000 | 11.5 | 17.76% |
Mesh 4 | 129,200 | 11.81 | 15.56% |
Mesh 5 | 132,000 | 11.82 | 15.49% |
Reh (Step Height) | 75 | 158 | 336 | 420 | 544 | 672 | 755 |
---|---|---|---|---|---|---|---|
Run | BFSF 1–L1 | BFSF 1–L2 | BFSF 1–L3 | BFSF 1–L4 | BFSF 1–L5 | BFSF 1–L6 | BFSF 1–L7 |
Boundary Type Description | Inlet | Outlet | Wall (Upper Wall, Bottom Wall) |
---|---|---|---|
Pressure (p) | zeroGradient | fixedValue | zeroGradient |
Velocity (u) | fixedValue | zeroGradient | noSlip |
C1 | C2 | Cµ | σk | σɛ |
---|---|---|---|---|
1.44 | 1.92 | 1.3 | 1 | 1.3 |
Run | Reh (Step Height) | Turbulence Model |
---|---|---|
BFSF 1–T1 | 9000 | Standard k-ε |
BFSF 1–T2 | 9000 | RNG k-ε |
BFSF 1–T3 | 9000 | Standard k-ω |
BFSF 1–T4 | 9000 | SST k-ω |
Boundary Type Description | Inlet | Outlet | Upper Wall/Bottom Wall | |
---|---|---|---|---|
Pressure | P (kg/s·m2) | zeroGradient | fixedValue | zeroGradient |
Velocity | u (m/s) | fixedValue | inletOutlet | noSlip |
Turbulence qantities | k (m2/s2) | fixedValue | zeroGradient | kqRWallFunction |
ε (m2/s3) | fixedValue | zeroGradient | epsilonWallFunction | |
ω (1/s) | fixedValue | zeroGradient | omegaWallFunction |
Run | BFSF 1–L1 | BFSF 1–L2 | BFSF 1–L3 | BFSF 1–L4 | BFSF 1–L5 | BFSF 1–L6 | BFSF 1–L7 |
---|---|---|---|---|---|---|---|
X1/h | 2.88 | 5.25 | 9.15 | 10.4 | 11.5 | 12.5 | 13.37 |
X2/h | - | - | 7.8 | 8.65 | 8.9 | 10.2 | 10.62 |
X3/h | - | - | 10.65 | 14.15 | 18.6 | 21.5 | 23.1 |
References | Armaly et al. [3] | Lee and Mateescu [14] | Tihon et al. [19] | Gualtieri [23] | Erturk [25] |
---|---|---|---|---|---|
Average error | <18% | <13% | <13% | <5% | <3% |
Case | Reh | ER | Lr1/h | Remarks * |
---|---|---|---|---|
This study (BFSF 1–T1) | 9000 | 2 | 6.75 | Num, 2D |
This study (BFSF 1–T2) | 9000 | 2 | 7.65 | Num, 2D |
This study (BFSF 1–T2) | 9000 | 2 | 8 | Num, 2D |
This study (BFSF 1–T2) | 9000 | 2 | 8.8 | Num, 2D |
Kopera et al. [30] | 9000 | 2 | 8.62 | Num, 3D |
Araujo and Rezende [29] | 9000 | 2 | 6.34 | Num, 2D |
Wang et al. [1] | 9000 | 2 | 6.9 | Exp, 3D |
Wang et al. [1] | 9000 | 2 | 6.7 | Num, 2D |
Turbulence Models | Standard k-ε | RNG k-ε | Standard k-ω | SST k-ω |
---|---|---|---|---|
Average error | <9.88% | <10.05% | <9.31% | <8.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdollahpour, M.; Gualtieri, P.; Vetsch, D.F.; Gualtieri, C. Numerical Study of Flow Downstream a Step with a Cylinder Part 1: Validation of the Numerical Simulations. Fluids 2023, 8, 55. https://doi.org/10.3390/fluids8020055
Abdollahpour M, Gualtieri P, Vetsch DF, Gualtieri C. Numerical Study of Flow Downstream a Step with a Cylinder Part 1: Validation of the Numerical Simulations. Fluids. 2023; 8(2):55. https://doi.org/10.3390/fluids8020055
Chicago/Turabian StyleAbdollahpour, Milad, Paola Gualtieri, David F. Vetsch, and Carlo Gualtieri. 2023. "Numerical Study of Flow Downstream a Step with a Cylinder Part 1: Validation of the Numerical Simulations" Fluids 8, no. 2: 55. https://doi.org/10.3390/fluids8020055
APA StyleAbdollahpour, M., Gualtieri, P., Vetsch, D. F., & Gualtieri, C. (2023). Numerical Study of Flow Downstream a Step with a Cylinder Part 1: Validation of the Numerical Simulations. Fluids, 8(2), 55. https://doi.org/10.3390/fluids8020055