Adsorption of Precursors on Substrates in the Presence of scCO2 for the Synthesis of Supported Metallic Nanoparticles: Experiments and Modeling
Abstract
:1. Introduction
- Dissolution of the precursor in scCO2.
- Adsorption/desorption of the precursor on the surface of a substrate surface from the scCO2 mixture.
- Conversion of the precursor to its metallic form.
1.1. Fundamentals
- Mass transfer of precursor from bulk SCF phase to the surface of the substrate.
- Diffusion into the pores.
- Adsorption onto the substrate’s surface in the pores.
- Surface diffusion.
1.2. Adsorption
1.2.1. Physisorption
1.2.2. Chemisorption
1.3. Solubility of Solids in SCF
2. Adsorption Isotherms
2.1. Experimental Methods for the Determination of Adsorption Isotherms
- Batch adsorption.
- Frontal or pulse analysis chromatography.
2.2. Adsorption Isotherm Models
2.2.1. Henry
2.2.2. Freundlich
2.2.3. Langmuir
2.2.4. Toth
2.2.5. Langmuir–Freundlich
3. Systems Investigated
3.1. Adsorption of Pure SCFs
3.2. Adsorption of Solutes from Supercritical Fluids
Equation | Parameter | Unit | CA4 | CA22 |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.78177 | 1.03861 |
nF | — | 0.41135 | 0.38798 | |
R2 | — | 0.95267 | 0.94207 | |
Langmuir | qm | mol·kg−1 | 3.12599 | 5.15837 |
kL | m3·mol−1 | 0.24573 | 0.14155 | |
R2 | — | 0.99615 | 0.99759 | |
Toth | qm | mol·kg−1 | 2.75572 | 4.82953 |
kT | m3·mol−1 | 0.21820 | 0.13126 | |
nT | — | 1.47625 | 1.22547 | |
R2 | — | 0.99931 | 0.99833 | |
Langmuir- | qm | mol·kg−1 | 2.86290 | 4.85206 |
Freundlich | kLF | m3·mol−1 | 0.30515 | 0.16831 |
nLF | — | 1.19725 | 1.14528 | |
R2 | — | 0.99860 | 0.99894 |
Precursor | Substrate | p/MPa | T/K | Model | Ref. |
---|---|---|---|---|---|
AgNO3 ǂ | SBA-15 | 13.4 | 308 | Freundlich, Langmuir | [59] |
20.7 | 323 | ||||
25.6 | 333 | ||||
Co(acac)3 ǂ | MCM-41 | 12.5 | 333 | Henry, Freundlich, Langmuir | [60] |
15 | 313, 333, 353 | ||||
20 | 333 | ||||
CuDI6 | CA, RFA, SA | 10.6 | 308 | Freundlich, Langmuir | [61] |
CA | 17.8 | 328 | |||
Pd(acac)2 | BP2000 | 20 | 333 | Henry | [8] |
Pd(hfac)2 | SBA-15 | 8.5 | 313 | Freundlich, Langmuir, Toth, Langmuir-Freundlich | [9] |
Pt(cod)me2 | BP2000 | 20 | 333 | Freundlich, Langmuir | [8] |
Pt(cod)me2 | CA | 10.6 | 308 | Freundlich, Langmuir | [58] |
Pt(cod)me2 | CA4 | 27.7 | 353 | Freundlich, Langmuir, Toth, Langmuir-Freundlich | [37] |
Pt(cod)me2 | CA22 | 27.7 | 353 | Freundlich, Langmuir, Toth, Langmuir-Freundlich | [37] |
Pt(cod)me2 | RFA | 10.7, 20.7 | 308 | Freundlich | [10] |
Rh(acac)3 ǂ | MCM-41 | 15.0 | 313, 333, 353 | Henry, Freundlich, Langmuir | [62] |
MSU-H | |||||
HMS | |||||
Ru(acac)3 | SA | 18.0 | 313, 353 | Henry | [23] |
Ru(cod)(tmhd)2 | CA4, CA21 | 27.6 | 353 | Freundlich, Langmuir, Toth, Langmuir-Freundlich | [53] |
Ru(cod)(tmhd)2 | CA22 | 19.3 | 333, 343, 353 | Freundlich | [63] |
27.6 | 353 | ||||
RuCp2 | AC | 11, 14, 17 | 333 | Henry, Freundlich, Langmuir | [64] |
MCM-48 | |||||
Ni(acac)2 | CA | 30 | 333 | Henry, Freundlich, Langmuir | [65] |
3.3. Discussion
3.3.1. Effect of Pressure
3.3.2. Effect of Temperature at Constant Pressure
3.3.3. Effect of Temperature at Constant Density
3.3.4. Effect of Substrate Properties
Equation | Parameter | Unit | CA | RFA | SA |
---|---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.48303 | 0.32565 | 0.19427 |
nF | — | 0.43875 | 0.56222 | 0.35535 | |
R2 | — | 0.96593 | 0.98164 | 0.90195 | |
Langmuir | qm | mol·kg−1 | 1.32029 | 1.48445 | 0.45510 |
kL | m3·mol−1 | 0.53138 | 0.24626 | 0.69156 | |
R2 | — | 0.99033 | 0.97634 | 0.92557 |
3.3.5. Effect of Precursor Properties
3.3.6. Interim Statement
- The adsorbed amount of either Pd(acac)2 or Pt(cod)me2 is completely reduced to its metal form.
- The organic ligands are completely hydrogenated.
- The hydrogenated ligands are completely miscible with scCO2 and form a single homogeneous phase.
3.4. Summary Modeling Results
4. Knowledge Gaps and Needs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
acac | acetylacetonate |
Cp | cyclopentadienyl |
DI6 | bis(1,1,1,3,5,5,6,6,6-nonafluorohexane-2,4-diiminate) |
hfac | hexafluoroacetylacetonate |
cod | 1,5-cyclooctadiene |
me | methyl |
tmhd | 2,2,6,6-tetramethyl-3,5-heptanedionato |
AC | activated carbon |
BP | carbon black |
CA | carbon aerogel |
MCM, MSU-H, HMS, SBA | mesoporous silica |
RFA | resorcinol–formaldehyde aerogel |
SA | silica aerogel |
Appendix A. Comparison between Experimental and Calculated Data for Adsorption Isotherms: Pressure Influence
Equation | Parameter | Unit | 11 MPa | 14 MPa | 17 MPa |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | — | 0.03552 | — |
R2 | — | — | 0.97211 | — | |
Freundlich | kF | m3·kg−1 | 0.05708 | 0.03614 | 0.02193 |
nF | — | 0.28731 | 0.85081 | 0.56304 | |
R2 | — | 0.98154 | 0.97637 | 0.98778 | |
Langmuir | qm | mol·kg−1 | 0.07390 | — | 0.04400 |
kL | m3·mol−1 | 3.66984 | — | 1.03703 | |
R2 | — | 0.99487 | — | 0.98406 |
Equation | Parameter | Unit | 11 MPa | 14 MPa | 17 MPa |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | — | 0.18965 | 0.12586 |
R2 | — | — | 0.99485 | 0.95812 | |
Freundlich | kF | m3·kg−1 | 0.24499 | — | — |
nF | — | 0.68800 | — | — | |
R2 | — | 0.99773 | — | — | |
Langmuir | qm | mol·kg−1 | 0.68825 | — | — |
kL | m3·mol−1 | 0.56918 | — | — | |
R2 | — | 0.99793 | — | — |
Equation | Parameter | Unit | 19.3 MPa | 27.6 MPa |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.52354 | 0.44892 |
nF | — | 0.17569 | 0.14513 | |
R2 | — | 0.98612 | 0.96893 |
Equation | Parameter | Unit | 10.7 MPa | 20.7 MPa |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 1.01382 | 0.88633 |
nF | — | 0.23476 | 0.28767 | |
R2 | — | 0.97509 | 0.93544 |
Appendix B. Comparison between Experimental and Calculated Data for Adsorption Isotherms: Temperature Influence
Equation | Parameter | Unit | 313 K | 353 K |
---|---|---|---|---|
Henry | kH | m3·kg−1 | 0.12685 | 0.21781 |
R2 | — | 0.98414 | 0.98060 |
Equation | Parameter | Unit | 313 K | 333 K | 353 K |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | 0.28996 | 0.79877 | 1.88163 |
R2 | — | 0.96894 | 0.99160 | 0.95737 | |
Freundlich | kF | m3·kg−1 | — | — | 1.02928 |
nF | — | — | — | 0.76583 | |
R2 | — | — | — | 0.98811 | |
Langmuir | qm | mol·kg−1 | — | — | 0.48572 |
kL | m3·mol−1 | — | — | 5.56882 | |
R2 | — | — | — | 0.99382 |
Equation | Parameter | Unit | 313 K | 333 K | 353 K |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | 0.34319 | 0.85050 | 2.52470 |
R2 | — | 0.99848 | 0.99828 | 0.99854 |
Equation | Parameter | Unit | 313 K | 333 K | 353 K |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | 0.60171 | 1.56599 | 5.45912 |
R2 | — | 0.98662 | 0.98361 | 0.99420 |
Equation | Parameter | Unit | 333 K | 343 K | 353 K |
---|---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.42267 | 0.50484 | 0.52354 |
nF | — | 0.26781 | 0.25710 | 0.17569 | |
R2 | — | 0.95622 | 0.95555 | 0.98612 |
Appendix C. Comparison between Experimental and Calculated Data for Adsorption Isotherms: Substrate Influence
Equation | Parameter | Unit | MSU-H | HMS | MCM-41 |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | 0.28996 | 0.34319 | 0.60171 |
R2 | — | 0.96894 | 0.99848 | 0.98662 |
Equation | Parameter | Unit | MSU-H | HMS | MCM-41 |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | 0.79877 | 0.85050 | 1.56599 |
R2 | — | 0.99160 | 0.99828 | 0.98361 |
Equation | Parameter | Unit | MSU-H | HMS | MCM-41 |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | 1.88163 | 2.52470 | 5.45912 |
R2 | — | 0.95737 | 0.99854 | 0.99420 | |
Freundlich | kF | m3·kg−1 | 1.02928 | — | — |
nF | — | 0.76583 | — | — | |
R2 | — | 0.98811 | — | — | |
Langmuir | qm | mol·kg−1 | 0.48572 | — | — |
kL | m3·mol−1 | 5.56882 | — | — | |
R2 | — | 0.99382 | — | — |
Equation | Parameter | Unit | MCM-48 | AC |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.05708 | 0.24499 |
nF | — | 0.28731 | 0.68800 | |
R2 | — | 0.98154 | 0.99773 | |
Langmuir | qm | mol·kg−1 | 0.07390 | 0.68825 |
kL | m3·mol−1 | 3.66984 | 0.56918 | |
R2 | — | 0.99487 | 0.99793 |
Equation | Parameter | Unit | MCM-48 | AC |
---|---|---|---|---|
Henry | kH | m3·kg−1 | 0.03552 | 0.18965 |
R2 | — | 0.97211 | 0.99485 | |
Freundlich | kF | m3·kg−1 | 0.03614 | — |
nF | — | 0.85081 | — | |
R2 | — | 0.97637 | — |
Equation | Parameter | Unit | MCM-48 | AC |
---|---|---|---|---|
Henry | kH | m3·kg−1 | — | 0.12586 |
R2 | — | — | 0.95812 | |
Freundlich | kF | m3·kg−1 | 0.02193 | — |
nF | — | 0.56304 | — | |
R2 | — | 0.98778 | — | |
Langmuir | qm | mol·kg−1 | 0.04400 | — |
kL | m3·mol−1 | 1.03703 | — | |
R2 | — | 0.98406 | — |
Equation | Parameter | Unit | CA | RFA |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.77042 | 1.01382 |
nF | — | 0.46093 | 0.23476 | |
R2 | — | 0.97365 | 0.97509 |
Appendix D. Comparison between Experimental and Calculated Data for Adsorption Isotherms: Precursor Influence
Equation | Parameter | Unit | CuDI6 | Pt(cod)me2 |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.48267 | 0.77042 |
nF | — | 0.43626 | 0.46093 | |
R2 | — | 0.96502 | 0.97365 | |
Langmuir | qm | mol·kg−1 | 1.30948 | 2.33880 |
kL | m3·mol−1 | 0.53812 | 0.47972 | |
R2 | — | 0.99000 | 0.99965 |
Equation | Parameter | Unit | Pt(cod)me2 | Ru(cod)(tmhd)2 |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.78177 | 0.20002 |
nF | — | 0.41135 | 0.19953 | |
R2 | — | 0.95267 | 0.89313 | |
Langmuir | qm | mol·kg−1 | 3.12599 | 0.30537 |
kL | m3·mol−1 | 0.24573 | 3.00483 | |
R2 | — | 0.99615 | 0.90971 |
Equation | Parameter | Unit | Pt(cod)me2 | Ru(cod)(tmhd)2 |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 1.03861 | 0.44892 |
nF | — | 0.38798 | 0.14513 | |
R2 | — | 0.94207 | 0.96893 | |
Langmuir | qm | mol·kg−1 | 5.15837 | 0.48174 |
kL | m3·mol−1 | 0.14155 | 38.1565 | |
R2 | — | 0.99759 | 0.78785 |
Equation | Parameter | Unit | Rh(acac)3 | Co(acac)3 |
---|---|---|---|---|
313 K | ||||
Henry | kH | m3·kg−1 | 0.60171 | 0.44775 |
R2 | — | 0.98662 | 0.99542 | |
333 K | ||||
Henry | kH | m3·kg−1 | 1.56599 | — |
R2 | — | 0.98361 | — | |
Langmuir | qm | mol·kg−1 | — | 0.59637 |
kL | m3·mol−1 | — | 2.99978 | |
R2 | — | — | 0.98904 | |
353 K | ||||
Henry | kH | m3·kg−1 | 5.45912 | — |
R2 | — | 0.99420 | — | |
Langmuir | qm | mol·kg−1 | — | 1.19879 |
kL | m3·mol−1 | — | 5.41543 | |
R2 | — | — | 0.95819 |
Appendix E. Additional Comparisons between Experimental and Calculated Adsorption Data
Equation | Parameter | Unit | SBA-15 |
---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.32184 |
nF | — | 0.51804 | |
R2 | — | 0.89402 | |
Langmuir | qm | mol·kg−1 | 0.85664 |
kL | m3·mol−1 | 0.63207 | |
R2 | — | 0.93867 | |
Toth | qm | mol·kg−1 | 0.68668 |
kT | m3·mol−1 | 0.60809 | |
nT | — | 1.59947 | |
R2 | — | 0.94700 | |
Langmuir- | qm | mol·kg−1 | 0.58856 |
Freundlich | kLF | m3·mol−1 | 1.17876 |
nLF | — | 2.04974 | |
R2 | — | 0.96225 |
Equation | Parameter | Unit | CA |
---|---|---|---|
Henry | kH | m3·kg−1 | 1.06241 |
R2 | — | 0.90933 | |
Freundlich | kF | m3·kg−1 | 1.01768 |
nF | — | 0.68425 | |
R2 | — | 0.94171 | |
Langmuir | qm | mol·kg−1 | 2.47546 |
kL | m3·mol−1 | 0.70278 | |
R2 | — | 0.93949 |
References
- Müller, S.A.; Degler, D.; Feldmann, C.; Türk, M.; Moos, R.; Fink, K.; Studt, F.; Gerthsen, D.; Barsan, N.; Grunwaldt, J.-D. Exploiting synergies in catalysis and gas sensing using noble metal-loaded oxide composites. ChemCatChem 2018, 10, 864–880. [Google Scholar] [CrossRef]
- Siril, P.F.; Türk, M. Synthesis of metal nanostructures using supercritical carbon dioxide: A green and upscalable process. Small 2020, 16, 2001972. [Google Scholar] [CrossRef] [PubMed]
- Darr, J.A.; Poliakoff, M. New directions in inorganic and metal–organic coordination chemistry in supercritical fluids. Chem. Rev. 1999, 99, 495–541. [Google Scholar] [CrossRef] [PubMed]
- Erkey, C. Supercritical Fluids and Organometallic Compounds, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Bozbag, S.E.; Erkey, C. Supercritical deposition: Current status and perspectives for the preparation of supported metal nanostructures. J. Supercrit. Fluid. 2015, 96, 298–312. [Google Scholar] [CrossRef]
- Türk, M.; Erkey, C. Synthesis of supported nanoparticles in supercritical fluids by supercritical fluid reactive deposition: Current state, further perspectives and needs. J. Supercrit. Fluid. 2018, 134, 176–183. [Google Scholar] [CrossRef]
- Erkey, C.; Türk, M. Synthesis of Nanostructured Materials in Near and/or Supercritical Fluids, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Cangül, B.; Zhang, L.C.; Aindow, M.; Erkey, C. Preparation of carbon black supported Pd, Pt and Pd–Pt nanoparticles using supercritical CO2 deposition. J. Supercrit. Fluid. 2009, 50, 82–90. [Google Scholar] [CrossRef]
- Tenorio, M.J.; Pando, C.; Renuncio, J.A.R.; Stevens, J.G.; Bourne, R.A.; Poliakoff, M.; Cabanas, A. Adsorption of Pd(hfac)2 on mesoporous silica SBA-15 using supercritical CO2 and its role in the performance of Pd–SiO2 catalyst. J. Supercrit. Fluid. 2012, 69, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Bozbag, S.E.; Yazar, N.S.; Zhang, L.C.; Aindow, M.; Erkey, C. Adsorption of Pt(cod)me2 onto organic aerogels from supercritical solutions for the synthesis of supported platinum nanoparticles. J. Supercrit. Fluid. 2011, 56, 105–113. [Google Scholar] [CrossRef]
- Brunner, G.; Johannsen, M. New aspects on adsorption from supercritical fluid phases. J. Supercrit. Fluid. 2006, 38, 181–200. [Google Scholar] [CrossRef]
- Türk, M. Particle synthesis by rapid expansion of supercritical solutions (RESS): Current state, further perspectives and needs. J. Aerosol Sci. 2022, 161, 105950. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Ertl, G. Thermodynamics of gas-surface interactions. Pure Appl. Chem. 1989, 61, 1001–1007. [Google Scholar] [CrossRef]
- Laintz, K.E.; Wai, C.M.; Yonker, C.R.; Smith, R.D. Solubility of fluorinated metal diethyldithiocarbamates in supercritical carbon dioxide. J. Supercrit. Fluid. 1991, 4, 194–198. [Google Scholar] [CrossRef]
- Türk, M. Particle Formation with Supercritical Fluids: Challenges and Limitations, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Stahl, E.; Schilz, W.; Schütz, E.; Willing, E. A quick method for the microanalytical evaluation of the dissolving power of supercritical gases. Angew. Chem. Int. Ed. 1978, 17, 731–738. [Google Scholar] [CrossRef]
- Kumar, S.K.; Johnston, K.P. Modelling the solubility of solids in supercritical fluids with density as the independent variable. J. Supercrit. Fluid. 1988, 1, 15–22. [Google Scholar] [CrossRef]
- Türk, M.; Crone, M.; Upper, G. Effect of gas pressure on the phase behaviour of organometallic compounds. J. Supercrit. Fluid. 2011, 58, 1–6. [Google Scholar] [CrossRef]
- Crone, M.; Türk, M. Solubility of Pd(acac)2 in scCO2. J. Supercrit. Fluid. 2023. in preparation. [Google Scholar]
- Haruki, M.; Kobayashi, F.; Kishimoto, K.; Kihara, S.; Takishima, S. Measurement of the solubility of metal complexes in supercritical carbon dioxide using a UV–vis spectrometer. Fluid Phase Equilib. 2009, 280, 49–55. [Google Scholar] [CrossRef]
- Yoda, S.; Mizuno, Y.; Furuya, T.; Takebayashi, Y.; Otake, K.; Tsuji, T.; Hiaki, T. Solubility measurements of noble metal acetylacetonates in supercritical carbon dioxide by high performance liquid chromatography (HPLC). J. Supercrit. Fluid. 2008, 44, 139–147. [Google Scholar] [CrossRef]
- Caputo, G.; De Marco, I.; Reverchon, E. Silica aerogel–metal composites produced by supercritical adsorption. J. Supercrit. Fluid. 2010, 54, 243–249. [Google Scholar] [CrossRef]
- Kurnik, R.T.; Reid, R.C. Solubility extrema in solid-fluid equilibria. AIChE J. 1981, 27, 861–863. [Google Scholar] [CrossRef]
- Eckert, C.A.; Knutson, B.L.; Debenedetti, P.G. Supercritical fluids as solvents for chemical and materials processing. Nature 1996, 383, 313–318. [Google Scholar] [CrossRef]
- Mendez-Santiago, J.; Teja, A.S. The solubility of solids in supercritical fluids. Fluid Phase Equilib. 1999, 158–160, 501–510. [Google Scholar] [CrossRef]
- Lucien, F.P.; Foster, N.R. Solubilities of solid mixtures in supercritical carbon dioxide: A review. J. Supercrit. Fluid. 2000, 17, 111–134. [Google Scholar] [CrossRef]
- Burgos-Solorzano, G.I.; Brennecke, J.F.; Stadtherr, M.A. Solubility measurements and modeling of molecules of biological and pharmaceutical interest with supercritical CO2. Fluid Phase Equilib. 2004, 220, 57–69. [Google Scholar] [CrossRef]
- Coimbra, P.; Duarte, C.M.M.; de Sousa, H.C. Cubic equation-of-state correlation of the solubility of some anti-inflammatory drugs in supercritical carbon dioxide. Fluid Phase Equilib. 2006, 239, 188–199. [Google Scholar] [CrossRef]
- Gupta, R.B.; Shim, J.-J. Solubility in Supercritical Carbon Dioxide; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Skerget, M.; Knez, Z.; Knez-Hrncic, M. Solubility of solids in sub- and supercritical fluids: A review. J. Chem. Eng. Data 2011, 56, 694–719. [Google Scholar] [CrossRef]
- Teoh, W.H.; Mammucari, R.; Foster, N.R. Solubility of organometallic complexes in supercritical carbon dioxide: A review. J. Organomet. Chem. 2013, 724, 102–116. [Google Scholar] [CrossRef]
- Knez, Z.; Cör, D.; Knez-Hrncic, M. Solubility of solids in sub- and supercritical fluids: A review 2010−2017. J. Chem. Eng. Data 2018, 63, 860–884. [Google Scholar] [CrossRef]
- Crone, M.; Türk, M. Thermodynamics of adsorption of carbon dioxide on different metal oxides at temperatures from 313 to 353 K and pressures up to 25 MPa. J. Supercrit. Fluid. 2022, 182, 105461. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über die Adsorption in Lösungen. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Saquing, C.D.; Kang, D.; Aindow, M.; Erkey, C. Investigation of the supercritical deposition of platinum nanoparticles into carbon aerogels. Microporous Mesoporous Mater. 2005, 80, 11–23. [Google Scholar] [CrossRef]
- Toth, J. State equations of the solid-gas interface layers. Acta Chim. Hung. 1971, 69, 311–328. [Google Scholar]
- Toth, J. Adsorption, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 971–983. [Google Scholar] [CrossRef]
- Yun, J.-H.; Düren, T.; Keil, F.J.; Seaton, N.A. Adsorption of methane, ethane, and their binary mixtures on MCM-41: Experimental evaluation of methods for the prediction of adsorption equilibrium. Langmuir 2002, 18, 2693–2701. [Google Scholar] [CrossRef]
- Koble, R.A.; Corrigan, T.E. Adsorption isotherms for pure hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387. [Google Scholar] [CrossRef]
- Himeno, S.; Komatsu, T.; Fujita, S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 2005, 50, 369–376. [Google Scholar] [CrossRef]
- Dreisbach, F.; Staudt, R.; Keller, J.U. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption 1999, 5, 215–227. [Google Scholar] [CrossRef]
- Bazan, R.E.; Bastos-Neto, M.; Staudt, R.; Papp, H.; Azevedo, D.C.S.; Cavalcante, C.L., Jr. Adsorption equilibria of natural gas components on activated carbon: Pure and mixed gas isotherms. Adsorpt. Sci. Technol. 2008, 26, 323–332. [Google Scholar] [CrossRef]
- Reiser, S.; Türk, M. Influence of temperature and high-pressure on the adsorption behavior of scCO2 on MCM-41 and SBA-15. J. Supercrit. Fluid. 2019, 144, 122–133. [Google Scholar] [CrossRef]
- Menon, P.G. Adsorption at high pressures. Chem. Rev. 1968, 68, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Do, D.D.; Do, H.D. Adsorption of supercritical fluids in non-porous and porous carbons: Analysis of adsorbed phase volume and density. Carbon 2003, 41, 1777–1791. [Google Scholar] [CrossRef]
- Myers, A.L.; Monson, P.A. Physical adsorption of gases: The case for absolute adsorption as the basis for thermodynamic analysis. Adsorption 2014, 20, 591–622. [Google Scholar] [CrossRef]
- Pini, R. Interpretation of net and excess adsorption isotherms in microporous adsorbents. Microporous Mesoporous Mater. 2014, 187, 40–52. [Google Scholar] [CrossRef]
- Ansari, H.; Joss, L.; Hwang, J.; Trusler, J.P.M.; Maitland, G.; Pini, R. Supercritical adsorption in micro- and meso-porous carbons and its utilisation for textural characterization. Microporous Mesoporous Mater. 2020, 308, 110537. [Google Scholar] [CrossRef]
- Gurikov, P.; Smirnova, I. Amorphization of drugs by adsorptive precipitation from supercritical solutions: A review. J. Supercrit. Fluid. 2018, 132, 105–125. [Google Scholar] [CrossRef]
- Morere, J.; Tenorio, M.J.; Pando, C.; Renuncio, J.A.R.; Cabanas, A. Solubility of two metal-organic ruthenium precursors in supercritical CO2 and their application in supercritical fluid technology. J. Chem. Thermodyn. 2013, 58, 55–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, D.; Aindow, M.; Erkey, C. Preparation and characterization of ruthenium/carbon aerogel nanocomposites via a supercritical fluid route. J. Phys. Chem. B 2005, 109, 2617–2624. [Google Scholar] [CrossRef]
- Hall, K.R.; Eagleton, L.C.; Acrivos, A.; Vermeulen, T. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fund. 1966, 5, 212–223. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AlChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant adsorption isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef] [PubMed]
- Bozbag, S.E.; Unal, U.; Kurykin, M.A.; Ayala, C.J.; Aindow, M.; Erkey, C. Thermodynamic control of metal loading and composition of carbon aerogel supported Pt−Cu alloy nanoparticles by supercritical deposition. J. Phys. Chem. C 2013, 117, 6777–6787. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.; Wang, A.; Yin, J.; Liu, Y. Systematical study of depositing nanoparticles and nanowires in mesoporous silica using supercritical carbon dioxide and co-solvents: Morphology control, thermodynamics and kinetics of adsorption. Nanotechnology 2012, 23, 285602. [Google Scholar] [CrossRef]
- Ushiki, I.; Koike, M.; Shimizu, T.; Sato, Y.; Takishima, S.; Inomata, H. Measurement and modeling of adsorption equilibria of cobalt (III) acetylacetonate on MCM-41 mesoporous silica in the presence of supercritical carbon dioxide with methanol co-solvent. J. Supercrit. Fluid. 2018, 140, 329–335. [Google Scholar] [CrossRef]
- Bozbag, S.E.; Kostenko, S.O.; Kurykin, M.A.; Khrustalev, V.N.; Khokhlov, A.R.; Zhang, L.; Aindow, M.; Erkey, C. Aerogel–copper nanocomposites prepared using the adsorption of a polyfluorinated complex from supercritical CO2. J. Nanopart. Res. 2012, 14, 973. [Google Scholar] [CrossRef]
- Ushiki, I.; Takahashi, N.; Shimizu, T.; Sato, Y.; Ota, M.; Smith, R.L., Jr.; Inomata, H. Adsorption equilibria of rhodium acetylacetonate with MCM-41, MSU-H, and HMS silica substrates in supercritical carbon dioxide for preparing catalytic mesoporous materials. J. Supercrit. Fluid. 2017, 120, 240–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Cangul, B.; Garrabos, Y.; Erkey, C. Thermodynamics and kinetics of adsorption of bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium (II) on carbon aerogel from supercritical CO2 solution. J. Supercrit. Fluid. 2008, 44, 71–77. [Google Scholar] [CrossRef]
- Sastre, A.; Martin, A.; Alonso, E. Adsorption of nickelocene and ruthenocene on mesoporous silica MCM-48 and activated carbon supports in supercritical carbon dioxide. J. Supercrit. Fluid. 2016, 117, 138–146. [Google Scholar] [CrossRef]
- Bozbag, S.E.; Zhang, L.C.; Aindow, M.; Erkey, C. Carbon aerogel supported nickel nanoparticles and nanorods using supercritical deposition. J. Supercrit. Fluid. 2012, 66, 265–273. [Google Scholar] [CrossRef]
- Humayun, R.; Tomasko, D.L. High-resolution adsorption isotherms of supercritical carbon dioxide on activated carbon. AIChE J. 2000, 46, 2065–2075. [Google Scholar] [CrossRef]
- Casapu, M.; Fischer, A.; Gänzler, A.M.; Popescu, R.; Crone, M.; Gerthsen, D.; Türk, M.; Grunwaldt, J.D. Origin of the normal and inverse hysteresis behavior during CO oxidation over Pt/Al2O3. ACS Catal. 2017, 7, 343–355. [Google Scholar] [CrossRef]
- Ogel, E.; Casapu, M.; Doronkin, D.E.; Popescu, R.; Störmer, H.; Mechler, C.; Marzun, G.; Barcikowski, S.; Türk, M.; Grunwaldt, J.-D. Impact of preparation method and hydrothermal aging on particle size distribution of Pt/γ-Al2O3 and its performance in CO and NO oxidation. J. Phys. Chem. C 2019, 123, 5433–5446. [Google Scholar] [CrossRef]
- Shimizu, T.; Ushiki, I.; Ota, M.; Sato, Y.; Koizumi, N.; Inomata, H. Preparation of mesoporous silica supported cobalt catalysts using supercritical fluids for Fischer-Tropsch synthesis. Chem. Eng. Res. Des. 2015, 95, 64–68. [Google Scholar] [CrossRef]
- Yen, C.H.; Shimizu, K.; Lin, Y.-Y.; Bailey, F.; Cheng, I.F.; Wai, C.M. Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application. Energy Fuels 2007, 21, 2268–2271. [Google Scholar] [CrossRef]
- Lin, Y.; Cui, X.; Yen, C.H.; Wai, C.M. PtRu/Carbon nanotube nanocomposite synthesized in supercritical fluid: A novel electrocatalyst for direct methanol fuel cells. Langmuir 2005, 21, 11474–11479. [Google Scholar] [CrossRef] [PubMed]
- Barim, S.B.; Bozbag, S.E.; Deljoo, B.; Aindow, M.; Erkey, C. Highly active carbon supported PtCu electrocatalysts for PEMFCs by in situ supercritical deposition. Fuel Cells 2020, 20, 285–299. [Google Scholar] [CrossRef]
- Wolff, S.; Crone, M.; Muller, T.; Enders, M.; Bräse, S.; Türk, M. Preparation of supported Pt nanoparticles by supercritical fluid reactive deposition: Influence of precursor, substrate and pressure on product properties. J. Supercrit. Fluid. 2014, 95, 588–596. [Google Scholar] [CrossRef]
Pt(cod)me2 | Ru(cod)(tmhd)2 | |||
---|---|---|---|---|
Equation | CA4 | CA22 | CA4 | CA21 |
Freundlich | 0.95267 | 0.94207 | 0.89313 | 0.93329 |
Langmuir | 0.99615 | 0.99759 | 0.90971 | 0.97685 |
Toth | 0.99931 | 0.99833 | 0.88873 | 0.99103 |
Langmuir–Freundlich | 0.99860 | 0.99894 | 0.88804 | 0.99172 |
Equation | Parameter | Unit | CA4 | CA21 |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.20002 | 0.54173 |
nF | — | 0.19953 | 0.19289 | |
R2 | — | 0.89313 | 0.93329 | |
Langmuir | qm | mol·kg−1 | 0.30537 | 0.86836 |
kL | m3·mol−1 | 3.00483 | 1.63627 | |
R2 | — | 0.90971 | 0.97685 | |
Toth | qm | mol·kg−1 | 0.32379 | 0.78776 |
kT | m3·mol−1 | 4.41044 | 0.83914 | |
nT | — | 0.74939 | 2.62523 | |
R2 | — | 0.88873 | 0.99103 | |
Langmuir- | qm | mol·kg−1 | 0.31714 | 0.79360 |
Freundlich | kLF | m3·mol−1 | 2.77017 | 1.52832 |
nLF | — | 0.84358 | 1.98939 | |
R2 | — | 0.88804 | 0.99172 |
Equation | Parameter | Unit | 12.5 MPa | 15 MPa | 20 MPa |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | 2.41939 | — | 0.63194 |
R2 | — | 0.99855 | — | 0.94918 | |
Freundlich | kF | m3·kg−1 | — | 0.77036 | 0.45176 |
nF | — | — | 0.76170 | 0.81590 | |
R2 | — | — | 0.98369 | 0.96022 | |
Langmuir | qm | mol·kg−1 | — | 0.62679 | 0.38906 |
kL | m3·mol−1 | — | 2.78627 | 2.24373 | |
R2 | — | — | 0.98892 | 0.96139 |
Equation | Parameter | Unit | 313 K | 333 K | 353 K |
---|---|---|---|---|---|
Henry | kH | m3·kg−1 | 0.44775 | — | — |
R2 | — | 0.99542 | — | — | |
Freundlich | kF | m3·kg−1 | — | 0.75154 | 2.07497 |
nF | — | — | 0.74805 | 0.69932 | |
R2 | — | — | 0.98362 | 0.94558 | |
Langmuir | qm | mol·kg−1 | — | 0.59637 | 1.19879 |
kL | m3·mol−1 | — | 2.99978 | 5.41543 | |
R2 | — | — | 0.98904 | 0.95819 |
Equation | Parameter | Unit | 308 K | 323 K | 333 K |
---|---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.61342 | 0.49584 | 0.38998 |
nF | — | 0.65261 | 0.66389 | 0.67140 | |
R2 | — | 0.99826 | 0.99065 | 0.99678 | |
Langmuir | qm | mol·kg−1 | 7.07507 | 5.74749 | 5.70760 |
kL | m3·mol−1 | 0.06762 | 0.06808 | 0.04990 | |
R2 | — | 0.99906 | 0.98254 | 0.99985 |
Equation | Parameter | Unit | 313 K |
---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.32184 |
nF | — | 0.51804 | |
R2 | — | 0.89402 | |
Langmuir | qm | mol·kg−1 | 0.85664 |
kL | m3·mol−1 | 0.63207 | |
R2 | — | 0.93867 |
Equation | Parameter | Unit | 308 K | 328 K |
---|---|---|---|---|
Freundlich | kF | m3·kg−1 | 0.48303 | 0.56630 |
nF | — | 0.43875 | 0.44128 | |
R2 | — | 0.96593 | 0.93484 | |
Langmuir | qm | mol·kg−1 | 1.32029 | 1.44524 |
kL | m3·mol−1 | 0.53138 | 0.61992 | |
R2 | — | 0.99033 | 0.97218 |
Equation | Parameter | Unit | Pd(acac)2 | Pt(cod)me2 |
---|---|---|---|---|
Henry | kH | m3·kg−1 | 3.17744 | — |
R2 | — | 0.98506 | — | |
Freundlich | kF | m3·kg−1 | — | 0.78061 |
nF | — | — | 0.51423 | |
R2 | — | — | 0.97939 | |
Langmuir | qm | mol·kg−1 | — | 4.45266 |
kL | m3·mol−1 | — | 0.15976 | |
R2 | — | — | 0.99722 |
Metal | Ligand | RFA/SA | CA, −4, −21, −22 | Mesoporous Silica | BP2000/AC |
---|---|---|---|---|---|
Ag | NO3 | — | — | 17–25 wt% | — |
Co | (acac)3 | — | — | ≤0.5 wt% | — |
Cu | DI6 | ≤0.7 wt% | 0.7 wt% | — | — |
Ni | (acac)2 | — | 1.5 wt% | — | — |
Pd | (acac)2 | — | — | — | 5 wt% |
(hfac)2 | — | — | 1.2 wt% | — | |
Rh | (acac)3 | — | — | ≤1.2 wt% | — |
Pt | (cod)me2 | 15 wt% | 20–50 wt% | — | 37 wt% |
Ru | (acac)3 | 0.5 wt% | — | — | — |
(cod)(tmhd)2 | — | 0.5–1.5 wt% | — | — | |
Cp2 | — | — | <0.5 wt% | ≤1.5 wt% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crone, M.; Türk, M. Adsorption of Precursors on Substrates in the Presence of scCO2 for the Synthesis of Supported Metallic Nanoparticles: Experiments and Modeling. Fluids 2023, 8, 121. https://doi.org/10.3390/fluids8040121
Crone M, Türk M. Adsorption of Precursors on Substrates in the Presence of scCO2 for the Synthesis of Supported Metallic Nanoparticles: Experiments and Modeling. Fluids. 2023; 8(4):121. https://doi.org/10.3390/fluids8040121
Chicago/Turabian StyleCrone, Marlene, and Michael Türk. 2023. "Adsorption of Precursors on Substrates in the Presence of scCO2 for the Synthesis of Supported Metallic Nanoparticles: Experiments and Modeling" Fluids 8, no. 4: 121. https://doi.org/10.3390/fluids8040121
APA StyleCrone, M., & Türk, M. (2023). Adsorption of Precursors on Substrates in the Presence of scCO2 for the Synthesis of Supported Metallic Nanoparticles: Experiments and Modeling. Fluids, 8(4), 121. https://doi.org/10.3390/fluids8040121