Study of Insect Impact on an Aerodynamic Body Using a Rotary Wing Simulator
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Apparatus
2.2. Sample Preparation
2.2.1. Coatings
2.2.2. Coating Characterization
2.2.3. Insects
2.3. Experimental Procedures
2.3.1. Impact Tests
2.3.2. Data Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CO2 Emissions of Airlines Worldwide 2004–2022|Statista. Available online: https://www.statista.com/statistics/1186820/co2-emissions-commercial-aviation-worldwide/ (accessed on 26 June 2022).
- Commercial Airlines: Worldwide Fuel Consumption 2005–2022|Statista. Available online: https://www.statista.com/statistics/655057/fuel-consumption-of-airlines-worldwide/ (accessed on 26 June 2022).
- Airline Industry Worldwide–Number of Flights 2004–2022|Statista. Available online: https://www.statista.com/statistics/564769/airline-industry-number-of-flights/ (accessed on 26 June 2022).
- A New Study Puts Temperature Increases Caused by CO2 Emissions on the Map. Available online: https://phys.org/news/2016-01-temperature-co2-emissions.html (accessed on 18 July 2022).
- Climate Change: Global Temperature|NOAA Climate.gov. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 18 July 2022).
- Bragg, M.; Broeren, A.; Blumenthal, L. Iced-Airfoil and Wing Aerodynamics; SAE Technical Paper 2003-01-2098; SAE International: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef]
- Antonini, C.; Innocenti, M.; Horn, T.; Marengo, M.; Amirfazli, A. Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-Icing Systems. Cold Reg. Sci. Technol. 2011, 67, 58–67. [Google Scholar] [CrossRef]
- Kok, M.; Smith, J.G., Jr.; Wohl, C.J.; Siochi, E.J.; Young, T.M. Critical considerations in the mitigation of insect residue contamination on aircraft surfaces–A review. Prog. Aerosp. Sci. 2015, 75, 1–14. [Google Scholar] [CrossRef]
- Burzynski, D.A.; Roisman, I.V.; Bansmer, S.E. On the splashing of high-speed drops impacting a dry surface. J Fluid Mech. 2020, 892, A2. [Google Scholar] [CrossRef]
- Kok, M.; Mertens, T.; Raps, D.; Young, T.M. Influence of surface characteristics on insect residue adhesion to aircraft leading edge surfaces. Prog. Org. Coat. 2013, 76, 1567–1575. [Google Scholar] [CrossRef]
- Krishnan, K.G.H.; Milionis, A.; Starr, M.; Loth, E. Fruit fly impact outcomes and residue components on an aerodynamic surface. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2015; pp. 181–192. [Google Scholar] [CrossRef]
- Krishnan, K.G.H.; Robison, R.; Tetteh, F.; Loth, E.; Farrell, T.; Crouch, J.D.; Berry, D. Characterization of insect residue on an aerodynamic leading edge. In Proceedings of the 8th AIAA Atmospheric and Space Environments Conference, Washington, DC, USA, 13–17 June 2016; p. 3445. [Google Scholar] [CrossRef]
- Krishnan, K.G.; Milionis, A.; Tetteh, F.; Loth, E. Fruit fly impact on an aerodynamic surface: Types of outcomes and residue components. Aerosp. Sci. Technol. 2017, 69, 181–192. [Google Scholar] [CrossRef]
- Withease Ceramic Coating. Available online: https://weceramiccoating.com/aircraft (accessed on 16 July 2022).
- Peterson, J.B., Jr.; Fisher, D.F. Flight investigation of insect contamination and its alleviation. In Proceedings of the CTOL Transport Technology Conference, Hampton, VA, USA, 28 February–3 March 1978; pp. 357–373. [Google Scholar]
- Maddalon, D.V.; Braslow, A.L. Simulated-Airline-Service Flight Tests of Laminar-Flow Control with Perforated-Surface Suction System; NASA/TP 2966; NASA: Hampton, VA, USA, 1990. [Google Scholar]
- Marsden, D.; Toogood, R. Wind tunnel tests of a slotted flapped wing section. Technol. Soar. 1978, 12, 4–9. [Google Scholar]
- Elsenaar, A.; Haasnoot, H.N. A survey on Schiphol airport of the contamination of wing leading edges of three different aircraft types under operating conditions. In Proceeding of the First European Forum on Laminar Flow Technology, Hamburg, Germany, 16–18 March 1992; pp. 256–261. [Google Scholar]
- O’Donoghue, D.; Young, T.M.; Pembroke, J.T.; O’Dwyer, T.F. An investigation of surfactant and enzyme formulations for the alleviation of insect contamination on hybrid laminar flow control surfaces. Aerosp. Sci. Technol. 2002, 6, 19–29. [Google Scholar] [CrossRef]
- Coleman, W.S. Roughness due to insects. In Boundary Layer and Flow Control; Lachmann, G.V., Ed.; Pergamon Press: Oxford, UK, 1961; Volume II, pp. 682–747. [Google Scholar] [CrossRef]
- Bayer, I.S.; Krishnan, K.G.; Robison, R.; Loth, E.; Berry, D.H.; Farrell, T.E.; Crouch, J.D. Thermal Alternating Polymer Nanocomposite (TAPNC) Coating Designed to Prevent Aerodynamic Insect Fouling. Sci. Rep. 2016, 6, 38459. [Google Scholar] [CrossRef] [PubMed]
- Wohl, C.J.; Smith, J.G., Jr.; Penner, R.K.; Lorenzi, T.M.; Lovell, C.S.; Siochi, E.J. Evaluation of commercially available materials to mitigate insect residue adhesion on wing leading edge surfaces. Prog. Org. Coat. 2013, 76, 42–50. [Google Scholar] [CrossRef]
- Wohl, C.J.; Smith, J.; Connell, J.; Siochi, E.; Penner, R.; Gardner, J. Engineered surfaces for mitigation of insect residue adhesion. In Proceedings of the 51st AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 7–10 January 2013; p. 413. [Google Scholar] [CrossRef]
- Kok, M.; Young, T.M. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces. Appl. Surf. Sci. 2014, 314, 1053–1062. [Google Scholar] [CrossRef]
- Kok, M.; Tobin, E.F.; Zikmund, P.; Raps, D.; Young, T.M. Laboratory investigation into anti-contamination coatings for mitigating insect contamination with application to laminar flow technologies. In Contamination Mitigating Polymeric Coatings for Extreme Environments; Springer: Berlin/Heidelberg, Germany, 2019; pp. 291–313. [Google Scholar] [CrossRef]
- Wohl, C.J.; Shanahan, M.H.; Bosh, A.J.; Smith, J.G., Jr.; Penner, R.K.; Connell, J.W.; Siochi, E.J. Contamination-mitigating epoxy coatings for aircraft leading edges. In Proceedings of the Annual Meeting of the Adhesion Society, San Antonio, TX, USA, 21–25 February 2016. [Google Scholar]
- Wohl, C.J.; Doss, J.R.; Shanahan, M.H.; Smith, J.G., Jr.; Penner, R.K.; Connell, J.W.; Siochi, E.J. Influence of surface properties and impact conditions on adhesion of insect residues. In Proceedings of the 38th Annual Meeting of the Adhesion Society, Savannah, GA, USA, 20–25 February 2015; pp. 20–25. [Google Scholar]
- Smith, J.; Lorenzi, T.; Wohl, C.; Penner, R.; Siochi, E. Influence of surface energy on insect residue adhesion. In Proceedings of the 35th Annual Meeting of the Adhesion Society, New Orleans, LA, USA, 26 February 2012; pp. 26–29. [Google Scholar]
- Mangini, D.; Antonini, C.; Marengo, M.; Amirfazli, A. Runback ice formation mechanism on hydrophilic and superhydrophobic surfaces. Cold Reg. Sci. Technol. 2015, 109, 53–60. [Google Scholar] [CrossRef]
- Lachmann, I.G.C. Aspects of Insect Contamination in Relation to Laminar Flow Aircraft; Technical Report C.P. No., 484; Ministry of Aviation Aeronautical Research Council, A.R.C: Atlantic, NJ, USA, 1960. [Google Scholar]
- Coleman, W.S. The characteristics of roughness from insects as observed for two-dimensional, incompressible flow past airfoils. J. Aerosp. Sci. 1959, 26, 264–280. [Google Scholar] [CrossRef]
- Maresh, J.; Bragg, M. The role of airfoil geometry in minimizing the effect of insect contamination of laminar flow sections. In Proceedings of the 2nd Applied Aerodynamics Conference, Seattle, WA, USA, 21–23 August 1984; p. 2170. [Google Scholar] [CrossRef]
- Croom, C.C.; Holmes, B.J. Flight Evaluation of an Insect Contamination Protection System for Laminar Flow Wings; SAE Transactions: Warrendale, PA, USA, 1985; pp. 486–494. [Google Scholar]
- Joslin, R.D. Overview of Laminar Flow Control; NASA/TP 208705; NASA: Hampton, VA, USA, 1998. [Google Scholar]
- Ghasemzadeh, M. Design of and Experimentation with an Insect Impact Simulator Setup. Master’s Thesis, York University, Toronto, ON, Canada, 2022. [Google Scholar]
- Kok, M.; Raps, D.; Young, T.M. Effects of surface roughness and energy on insect residue adhesion to aircraft leading edge surfaces. In Proceedings of the 36th Annual Meeting of the Adhesion Society, Daytona Beach, FL, USA, 9–10 February 2013; pp. 3–6. [Google Scholar]
- Kok, M.; Tobin, E.F.; Zikmund, P.; Raps, D.; Young, T.M. Laboratory testing of insect contamination with application to laminar flow technologies, Part I: Variables affecting insect impact dynamics. Aerosp. Sci. Technol. 2014, 39, 605–613. [Google Scholar] [CrossRef]
Contact Angle Average (Degree) | Error | Roughness Average (µm) | Error | |
---|---|---|---|---|
Aluminum | 96.1 | 4.0 | 595.4 | 47.6 |
Acrylic | 91.0 | 3.0 | 902.8 | 132.2 |
PU | 78.4 | 5.8 | 765.7 | 26.8 |
NeverWet | 151.3 | 0.5 | 1738.9 | 109.2 |
UltraEverDry | 165.7 | 1.7 | 960.9 | 117.1 |
Area (mm2) | ||
---|---|---|
20 s | 10 min | |
Aluminum | 38 ± 1 | 38 ± 1 |
PU | 24 ± 1 | 23 ± 1 |
Acrylic | 13 ± 1 | 12 ± 1 |
NeverWet | 4 ± 1 | 4 ± 1 |
UltraEverDry | 2 ± 1 | 2 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemzadeh, M.; Amirfazli, A. Study of Insect Impact on an Aerodynamic Body Using a Rotary Wing Simulator. Fluids 2024, 9, 8. https://doi.org/10.3390/fluids9010008
Ghasemzadeh M, Amirfazli A. Study of Insect Impact on an Aerodynamic Body Using a Rotary Wing Simulator. Fluids. 2024; 9(1):8. https://doi.org/10.3390/fluids9010008
Chicago/Turabian StyleGhasemzadeh, Mohammadamin, and Alidad Amirfazli. 2024. "Study of Insect Impact on an Aerodynamic Body Using a Rotary Wing Simulator" Fluids 9, no. 1: 8. https://doi.org/10.3390/fluids9010008
APA StyleGhasemzadeh, M., & Amirfazli, A. (2024). Study of Insect Impact on an Aerodynamic Body Using a Rotary Wing Simulator. Fluids, 9(1), 8. https://doi.org/10.3390/fluids9010008