Effects of Nozzle Pitch Adaptation in Micro-Scale Liquid Jet Impingement
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Setup
2.2. Model Setup
2.3. Derived Quantities
2.4. Model Validation
2.5. Representation of Results
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zuckerman, N.; Lior, N. Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2006; Volume 39, pp. 565–631. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Singh, P. A Modern Review on Jet Impingement Heat Transfer Methods. J. Heat Transf. 2021, 143, 064001. [Google Scholar] [CrossRef]
- Plant, R.D.; Friedman, J.; Saghir, M.Z. A review of jet impingement cooling. Int. J. Thermofluids 2023, 17, 100312. [Google Scholar] [CrossRef]
- Brunschwiler, T.; Rothuizen, H.; Fabbri, M.; Kloter, U.; Michel, B.; Bezama, R.J.; Natarajan, G. Direct Liquid Jet-Impingment Cooling with Micron-Sized Nozzle Array and Distributed Return Architecture. In Proceedings of the Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006, ITHERM 2006, San Diego, CA, USA, 30 May–2 June 2006; pp. 196–203. [Google Scholar] [CrossRef]
- Overholt, M.R.; McCandless, A.; Kelly, K.W.; Becnel, C.J.; Motakef, S. Micro-Jet Arrays for Cooling of Electronic Equipment. In ASME 3rd International Conference on Microchannels and Minichannels, Part B Cont’d; ASMEDC: Toronto, ON, Canada, 2005; pp. 249–252. [Google Scholar] [CrossRef]
- Browne, E.A.; Michna, G.J.; Jensen, M.K.; Peles, Y. Experimental Investigation of Single-Phase Microjet Array Heat Transfer. J. Heat Transf. 2010, 132, 041013. [Google Scholar] [CrossRef]
- Ndao, S.; Peles, Y.; Jensen, M.K. Effects of pin fin shape and configuration on the single-phase heat transfer characteristics of jet impingement on micro pin fins. Int. J. Heat Mass Transf. 2014, 70, 856–863. [Google Scholar] [CrossRef]
- Bhunia, A.; Chen, C.L. On the Scalability of Liquid Microjet Array Impingement Cooling for Large Area Systems. J. Heat Transf. 2011, 133, 064501. [Google Scholar] [CrossRef]
- Rattner, A.S. General Characterization of Jet Impingement Array Heat Sinks with Interspersed Fluid Extraction Ports for Uniform High-Flux Cooling. J. Heat Transf. 2017, 139, 082201. [Google Scholar] [CrossRef]
- Wei, T.-W.; Oprins, H.; Cherman, V.; Yang, Z.; Rivera, K.; Van der Plas, G.; Pawlak, B.J.; England, L.; Beyne, E.; Baelmans, M. Demonstration of Package Level 3D-printed Direct Jet Impingement Cooling applied to High power, Large Die Applications. In Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; pp. 1422–1429. [Google Scholar] [CrossRef]
- Wei, T.; Oprins, H.; Cherman, V.; Yang, Z.; Rivera, K.; Van der Plas, G.; Pawlak, B.J.; England, L.; Beyne, E.; Baelmans, M. Experimental and Numerical Study of 3-D Printed Direct Jet Impingement Cooling for High-Power, Large Die Size Applications. IEEE Trans. Compon. Packag. Manufact. Technol. 2021, 11, 415–425. [Google Scholar] [CrossRef]
- Elsinger, G.; Oprins, H.; Cherman, V.; Van der Plas, G.; Beyne, E.; De Wolf, I. Micro-Scale Jet Cooling: A Numerical Study on Improvement Options. In Proceedings of the 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Roache, P.J. Quantification of Uncertainty in Computational Fluid Dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Wei, T.; Oprins, H.; Cherman, V.; Beyne, E.; Baelmans, M. Conjugate Heat Transfer and Fluid Flow Modeling for Liquid Microjet Impingement Cooling with Alternating Feeding and Draining Channels. Fluids 2019, 4, 145. [Google Scholar] [CrossRef]
- Smith, A.H.; Bhavnani, S.H.; Knight, R.W. Improving fluid-thermal performance of impinging jet arrays with small-scale engineered surface augmentations in the fountain regions. In Proceedings of the 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Wei, T.-W.; Oprins, H.; Cherman, V.; Van der Plas, G.; De Wolf, I.; Beyne, E.; Baelmans, M. Experimental characterization and model validation of liquid jet impingement cooling using a high spatial resolution and programmable thermal test chip. Appl. Therm. Eng. 2019, 152, 308–318. [Google Scholar] [CrossRef]
- Liu, X.; Lienhard, J.H. The hydraulic jump in circular jet impingement and in other thin liquid films. Exp. Fluids 1993, 15, 108–116. [Google Scholar] [CrossRef]
- Choo, K.; Kim, S.J. The influence of nozzle diameter on the circular hydraulic jump of liquid jet impingement. Exp. Therm. Fluid Sci. 2016, 72, 12–17. [Google Scholar] [CrossRef]
Cooler | Inlet Diameter | Outlet Diameter | Nozzle Pitch | Cavity Height |
---|---|---|---|---|
I_250 | 250 µm | 800 µm | 2290 µm | 600 µm |
I_500 | 500 µm | 800 µm | 2290 µm | 600 µm |
Configuration | Inlet Diameter | Outlet Diameter | Nozzle Pitch | Cavity Height |
---|---|---|---|---|
i250-c110 | 250 µm | 250 µm | 350–3000 µm | 110 µm |
i250-c180 | 250 µm | 250 µm | 500–3500 µm | 180 µm |
i320-c180 | 320 µm | 320 µm | 450–3000 µm | 110 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsinger, G.; Oprins, H.; Cherman, V.; Van der Plas, G.; Beyne, E.; De Wolf, I. Effects of Nozzle Pitch Adaptation in Micro-Scale Liquid Jet Impingement. Fluids 2024, 9, 69. https://doi.org/10.3390/fluids9030069
Elsinger G, Oprins H, Cherman V, Van der Plas G, Beyne E, De Wolf I. Effects of Nozzle Pitch Adaptation in Micro-Scale Liquid Jet Impingement. Fluids. 2024; 9(3):69. https://doi.org/10.3390/fluids9030069
Chicago/Turabian StyleElsinger, Georg, Herman Oprins, Vladimir Cherman, Geert Van der Plas, Eric Beyne, and Ingrid De Wolf. 2024. "Effects of Nozzle Pitch Adaptation in Micro-Scale Liquid Jet Impingement" Fluids 9, no. 3: 69. https://doi.org/10.3390/fluids9030069
APA StyleElsinger, G., Oprins, H., Cherman, V., Van der Plas, G., Beyne, E., & De Wolf, I. (2024). Effects of Nozzle Pitch Adaptation in Micro-Scale Liquid Jet Impingement. Fluids, 9(3), 69. https://doi.org/10.3390/fluids9030069