The Advanced Role of Carbon Quantum Dots in Nano-Food Science: Applications, Bibliographic Analysis, Safety Concerns, and Perspectives
Abstract
:1. Introduction
2. Basic Sources for Fabrication of CQDs
2.1. Natural Carbon-Based Organic Precursors
2.2. Synthetic Organic Carbon Precursors
2.3. Industrial Waste Materials
2.4. Inorganic Sources
2.5. Graphitic Materials
3. Fabrication of CQDs
3.1. Fabrication of CQDs by Top-Down Approach
3.1.1. Laser Ablation
3.1.2. Arc Discharge Synthesis
3.1.3. Electrochemical Oxidation
3.1.4. Acidic Oxidation Method
3.2. Fabrication of CQDs by Bottom-Up Approach
3.2.1. Hydrothermal Method
3.2.2. Ultrasound-Assisted Approach
3.2.3. Microwave Pyrolysis Approach
3.2.4. Thermal Decomposition
4. Application in Food Analysis
4.1. Sensing Mechanism of Functionalized CQDs in Food Analysis
4.2. CQDs Detecting Functional Components in Foods
4.3. Sensing Toxic Food Additives
4.4. Detection of Toxic and Harmful Drug Residues in Food
4.5. Sensing for Toxic Heavy Metal Ions
4.6. Sensing of Mycotoxins Through CQDs
5. Safety Concerns and Challenges
- (1)
- (2)
- Currently, all approaches focus on sensing a single analyte, and few studies have been conducted on the simultaneous detection of several targets in a single sample. CQDs, compared to semiconductor QDs, have a low fluorescent quantum yield (QY), and further research is necessary to fully understand their luminescent or fluorescent mechanism. In addition, investigating their lifespan and degrading processes is necessary to potentially widen their applications in the industry [15,27].
- (3)
- For food packaging, the particle size of nanomaterials is a crucial factor that needs to be confirmed as safe and stable throughout its shelf life, sensitive to the target analyte, and non-destructive, especially when used in conjunction with packaged goods. In addition to accurately determining the quality of the packed food, the fabrication and size of CQDs must be maintained to keep the food quality high over time [7,25].
- (4)
- Materials used in nanosensors to make them multifunctional and multireactive must be made safe. Before implementing new food-sensing technologies, it is best to carefully consider how nanomaterial-based sensors affect socioeconomic and human health issues. We must be aware that the toxicity of carbon quantum dots increases due to the oxidative stress caused by the relative oxygen species leading to the poisoning of food [3].
6. Bibliometric Analysis and Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, M.M.H.; Liao, B.; Xia, I.F.; Luk, P.K.H.; Wong, K.; Kwok, K.W.H. Food emulsifiers increase toxicity of food contaminants in three human GI tract cell lines. Food Chem. Toxicol. 2024, 185, 114499. [Google Scholar] [CrossRef] [PubMed]
- Bharagava, R.N.; Saxena, G.; Mulla, S.I. Introduction to Industrial Wastes Containing Organic and Inorganic Pollutants and Bioremediation Approaches for Environmental Management. In Bioremediation of Industrial Waste for Environmental Safety; Springer: Singapore, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Bizzo, W.A.; Figueiredo, R.A.; De Andrade, V.F. Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation. Materials 2014, 7, 4555–4566. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Makkar, H.; Becker, K. The effect of ionising radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chem. 2002, 78, 187–205. [Google Scholar] [CrossRef]
- Gallardo-Ramos, J.A.; Marín-Sáez, J.; Sanchis, V.; Gámiz-Gracia, L.; García-Campaña, A.M.; Hernández-Mesa, M.; Cano-Sancho, G. Simultaneous detection of mycotoxins and pesticides in human urine samples: A 24-h diet intervention study comparing conventional and organic diets in Spain. Food Chem. Toxicol. 2024, 188, 114650. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.Y.; Zhou, Z.J.; Wu, Y.M.; Li, Y.; Li, J.C.; Bai, Y.H.; Wang, J.L. Application Progress of Fluorescent Carbon Quantum Dots in Food Analysis. Chin. J. Anal. Chem. 2020, 48, 1288–1296. [Google Scholar] [CrossRef]
- Azman, N.H.; Khairul, W.M.; Sarbon, N.M. A comprehensive review on biocompatible film sensor containing natural extract: Active/intelligent food packaging. Food Control. 2022, 141, 109189. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Shahzad, A.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Biobased materials for active food packaging: A review. Food Hydrocoll. 2022, 125, 107419. [Google Scholar] [CrossRef]
- Jeddi, M.Z.; Boon, P.E.; Cubadda, F.; Hoogenboom, R.; Mol, H.; Verhagen, H.; Sijm, D.T. A vision on the ‘foodture’ role of dietary exposure sciences in the interplay between food safety and nutrition. Trends Food Sci. Technol. 2022, 120, 288–300. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; He, L. An approach to develop binary chromatographic fingerprints of the total alkaloids from Caulophyllum robustum by high performance liquid chromatography/diode array detector and gas chromatography/mass spectrometry. J. Pharm. Biomed. Anal. 2007, 43, 1667–1672. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Li, P.; Sun, X.; Shao, Z.; Xia, J.; Liu, Q.; Shen, F.; Fang, Y. Beer-derived nitrogen, phosphorus co-doped carbon quantum dots: Highly selective on–off-on fluorescent probes for the detection of ascorbic acid in fruits. Food Chem. 2023, 409, 135243. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, S.; Cui, J.; Gao, W.; Rong, X.; Lu, Y.; Gao, C. Novel highly selective fluorescence sensing strategy for Mercury(Ⅱ) in water based on nitrogen-doped carbon quantum dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 286, 122010. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Fan, Y.; Zhao, H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta 2022, 240, 123145. [Google Scholar] [CrossRef] [PubMed]
- Clancy, A.J.; Bayazit, M.K.; Hodge, S.A.; Skipper, N.T.; Howard, C.A.; Shaffer, M.S.P. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem. Rev. 2018, 118, 7363–7408. [Google Scholar] [CrossRef]
- Rao, R.; Pint, C.L.; Islam, A.E.; Weatherup, R.S.; Hofmann, S.; Meshot, E.R.; Wu, F.; Zhou, C.; Dee, N.; Amama, P.B.; et al. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12, 11756–11784. [Google Scholar] [CrossRef] [PubMed]
- Tohamy HA, S.; El-Sakhawy, M.; Kamel, S. Microwave-assisted synthesis of amphoteric fluorescence carbon quantum dots and their chromium adsorption from aqueous solution. Sci. Rep. 2023, 13, 11306. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.A.S. Fluorescence ‘Turn-on’ Probe for Chromium Reduction, Adsorption and Detection Based on Cellulosic Nitrogen-Doped Carbon Quantum Dots Hydrogels. Gels 2024, 10, 296. [Google Scholar] [CrossRef]
- Pan, M.; Xie, X.; Liu, K.; Yang, J.; Hong, L.; Wang, S. Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials 2020, 10, 930. [Google Scholar] [CrossRef]
- Ni, P.; Chen, C.; Jiang, Y.; Zhang, C.; Wang, B.; Lu, Y.; Wang, H. A fluorescent assay for alkaline phosphatase activity based on inner filter effect by in-situ formation of fluorescent azamonardine. Sens. Actuators B Chem. 2020, 302, 127145. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Bhandari, B.; Yang, C. Recent Development of Carbon Quantum Dots: Biological Toxicity, Antibacterial Properties and Application in Foods. Food Rev. Int. 2022, 38, 1513–1532. [Google Scholar] [CrossRef]
- Cao, N.; Zhao, F.; Zeng, B. A novel self-enhanced electrochemiluminescence sensor based on PEI-CdS/Au@SiO2@RuDS and molecularly imprinted polymer for the highly sensitive detection of creatinine. Sens. Actuators B Chem. 2020, 306, 127591. [Google Scholar] [CrossRef]
- Sendão, R.M.S.; Esteves da Silva, J.C.G.; Pinto da Silva, L. Applications of Fluorescent Carbon Dots as Photocatalysts: A Review. Catalysts 2023, 13, 179. [Google Scholar] [CrossRef]
- Ahmad, K.; Khan, S.; Yasin, M.T.; Hussain, S.; Ahmad, R.; Ahmad, N.; Ahmed, M.; Ghani, A.; Faheem, M.; Ullah, H.; et al. Enhanced starch hydrolysis by α-amylase using copper oxide nanowires. Appl. Nanosci. 2021, 11, 2059–2071. [Google Scholar] [CrossRef]
- Yadav, R.; Vikas Lahariya, V.; Tanwar, M.; Kumar, R.; Das, A.; Sadhana, K. A study on the photophysical properties of strong green-fluorescent N-doped carbon dots and application for pH sensing. Diam. Relat. Mater. 2023, 139, 110411. [Google Scholar] [CrossRef]
- Mantashloo, R.; Bahar, S. Synthesis of magnetic graphene quantum dots based molecularly imprinted polymers for fluorescent determination of quercetin. Microchem. J. 2023, 185, 108233. [Google Scholar] [CrossRef]
- Gao, R.; Kodaimati, M.S.; Yan, D. Recent advances in persistent luminescence based on molecular hybrid materials. Chem. Soc. Rev. 2021, 50, 5564–5589. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ghosh, A.; Ghosh, G.; Marjit, K.; Patra, A. Deciphering the Relaxation Mechanism of Red-Emitting Carbon Dots Using Ultrafast Spectroscopy and Global Target Analysis. J. Phys. Chem. Lett. 2021, 12, 8080–8087. [Google Scholar] [CrossRef]
- Shilpi, S.; Thakur, A. A Review of the Application of Carbon Quantum Dots. AIP Conf. Proc. 2023, 2535, 030006. [Google Scholar]
- Myint, A.A.; Rhim, W.K.; Nam, J.M.; Kim, J.; Lee, Y.W. Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. J. Ind. Eng. Chem. 2018, 66, 387–395. [Google Scholar] [CrossRef]
- Devi, P.; Kaur, G.; Thakur, A.; Kaur, N.; Grewal, A.; Kumar, P. Waste derivitized blue luminescent carbon quantum dots for selenite sensing in water. Talanta 2017, 170, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Le, P.A.; Phung, V.B.T. Facile green synthesis of carbon quantum dots and biomass-derived activated carbon from banana peels: Synthesis and investigation. Biomass Convers. Biorefinery 2022, 12, 2407–2416. [Google Scholar] [CrossRef]
- Ding, H.; Wei, J.S.; Zhang, P.; Zhou, Z.Y.; Gao, Q.Y.; Xiong, H.M. Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small 2018, 14, 1800612. [Google Scholar] [CrossRef]
- Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A.; et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249. [Google Scholar] [CrossRef]
- Thambiraj, S.; Shankaran, D.R. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci. 2016, 390, 435–443. [Google Scholar] [CrossRef]
- Kasinathan, K.; Samayanan, S.; Marimuthu, K.; Yim, J.H. Green synthesis of multicolour fluorescence carbon quantum dots from sugarcane waste: Investigation of mercury (II) ion sensing, and bio-imaging applications. Appl. Surf. Sci. 2022, 601, 154266. [Google Scholar] [CrossRef]
- Sadegh Hassani, S.; Daraee, M.; Navazani, S.h.; Rahimi, F. Carbon-based Quantum Dots from Food Waste: Synthesis to Application in Food Safety. Quantum Dots Bioanal. Chem. Med. 2023, 22, 275–306. [Google Scholar] [CrossRef]
- Tolou-Shikhzadeh-Yazdi, S.; Shakibapour, N.; Hosseini, S.; Mokaberi, P.; Malaekeh-Nikouei, B.; Chamani, J. High-efficient synthesis of carbon quantum dots from orange pericarp as fluorescence turn-on probes for Ca2+ and Zn2+ ion detection and their application in trypsin activity characterization. Iran. J. Basic Med. Sci. 2023, 26, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Moya, P.M.; Velazquez-Martinez, S.; Pineda-Arellano, C.; Rangel-Mendez, J.R.; Chazaro-Ruiz, L.F. High added value functionalized carbon quantum dots synthetized from orange peels by assisted microwave solvothermal method and their performance as photosensitizer of mesoporous TiO2 photoelectrodes. Carbon 2022, 187, 216–229. [Google Scholar] [CrossRef]
- Vandarkuzhali, S.A.A.; Natarajan, S.; Jeyabalan, S.; Sivaraman, G.; Singaravadivel, S.; Muthusubramanian, S.; Viswanathan, B. Pineapple Peel-Derived Carbon Dots: Applications as Sensor, Molecular Keypad Lock, and Memory Device. ACS Omega 2018, 3, 12584–12592. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Verma, R.; Bhardwaj, P.; Sharma, S.; Kumar, D. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules 2020, 25, 2812. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, T.; Gao, Z.; Li, M.; Zhou, Q.; Zhao, W. Sensitive and smartphone-assisted visual detection of oxytetracycline by a ratiometric fluorescence sensor based on nitrogen-doped carbon quantum dots from banana peel cooperating with europium. Microchem. J. 2023, 194, 109283. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, Y.; Ning, J.; Hu, G.; Zhang, Q.; Hou, Y.; Zhou, Y. Prepared carbon dots from wheat straw for detection of Cu2+ in cells and zebrafish and room temperature phosphorescent anti-counterfeiting. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 281, 121597. [Google Scholar] [CrossRef]
- Šafranko, S.; Goman, D.; Stanković, A.; Medvidović-Kosanović, M.; Moslavac, T.; Jerković, I.; Jokić, S. An Overview of the Recent Developments in Carbon Quantum Dots—Promising Nanomaterials for Metal Ion Detection and (Bio)Molecule Sensing. Chemosensors 2021, 9, 138. [Google Scholar] [CrossRef]
- Ezati, P.; Priyadarshi, R.; Rhim, J.W. Prospects of sustainable and renewable source-based carbon quantum dots for food packaging applications. Sustain. Mater. Technol. 2022, 33, e00494. [Google Scholar] [CrossRef]
- Jorn-Am, T.; Supchocksoonthorn, P.; Pholauyphon, W.; Manyam, J.; Chanthad, C.; Paoprasert, P. Quasi-Solid, Bio-Renewable Supercapacitors Based on Cassava Peel and Cassava Starch and the Use of Carbon Dots as Performance Enhancers. Energy Fuels 2022, 36, 7865–7877. [Google Scholar] [CrossRef]
- Kumar, J.V.; Rhim, J.W. Fluorescent carbon quantum dots for food contaminants detection applications. J. Environ. Chem. Eng. 2024, 12, 111999. [Google Scholar] [CrossRef]
- Al Kiey, S.A.; Tohamy, H.A.S. Sustainable energy harvesting: Manganese oxide-decorated carbon quantum dots derived from agriculture for high-performance supercapacitors. J. Energy Storage 2024, 101, 113758. [Google Scholar] [CrossRef]
- de Oliveira, B.P.; da Silva Abreu, F.O.M. Carbon quantum dots synthesis from waste and by-products: Perspectives and challenges. Mater. Lett. 2021, 282, 128764. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; Yu, L.; Li, Z.; Sun, S. Preparation of high-quality biocompatible carbon dots by extraction, with new thoughts on the luminescence mechanisms. Nanotechnology 2013, 24, 225601. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Dong, H.; Su, Y.; Wu, Y.; Narron, R.; Yong, Q. Synthesis of Carbon Quantum Dot Nanoparticles Derived from Byproducts in Bio-Refinery Process for Cell Imaging and In Vivo Bioimaging. Nanomaterials 2019, 9, 387. [Google Scholar] [CrossRef]
- Omran, B.A.; Whitehead, K.A.; Baek, K.H. One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity. Colloids Surf. B Biointerfaces 2021, 200, 111578. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.; Chen, Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yu, J.; Liu, G. Fabrication of carbon quantum dots and their application for efficient detecting Ru(bpy)32+ in the solution. Sens. Actuators B Chem. 2013, 181, 209–214. [Google Scholar] [CrossRef]
- Hu, S.; Wei, Z.; Chang, Q.; Trinchi, A.; Yang, J. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl. Surf. Sci. 2016, 378, 402–407. [Google Scholar] [CrossRef]
- Liu, H.; Ye, T.; Mao, C. Fluorescent Carbon Nanoparticles Derived from Candle Soot. Angew. Chem. 2007, 119, 6593–6595. [Google Scholar] [CrossRef]
- Calabro, R.L.; Yang, D.S.; Kim, D.Y. Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: Comparison with chemical oxidation. J. Colloid Interface Sci. 2018, 527, 132–140. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Yatom, S.; Bak, J.; Khrabryi, A.; Raitses, Y. Detection of nanoparticles in carbon arc discharge with laser-induced incandescence. Carbon 2017, 117, 154–162. [Google Scholar] [CrossRef]
- Nair, R.V.; Thomas, R.T.; Sankar, V.; Muhammad, H.; Dong, M.; Pillai, S. Rapid, Acid-Free Synthesis of High-Quality Graphene Quantum Dots for Aggregation Induced Sensing of Metal Ions and Bioimaging. ACS Omega 2017, 2, 8051–8061. [Google Scholar] [CrossRef]
- Wang, N.; Fan, H.; Sun, J.; Han, Z.; Dong, J.; Ai, S. Fluorine-doped carbon nitride quantum dots: Ethylene glycol-assisted synthesis, fluorescent properties, and their application for bacterial imaging. Carbon 2016, 109, 141–148. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 34, 5118–5120. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shao, F.Q.; Huang, H.; Feng, J.J.; Wang, A.J. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens. Actuators B Chem. 2016, 226, 506–511. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y.; Zhang, C.Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Commun. 2013, 49, 8605–8607. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Feng, Y.; Su, Y.; Zhang, L.; Lv, Y. A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Adv. 2015, 5, 55158–55164. [Google Scholar] [CrossRef]
- Doñate-Buendia, C.; Torres-Mendieta, R.; Pyatenko, A.; Falomir, E.; Fernández-Alonso, M.; Mínguez-Vega, G. Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging. ACS Omega 2018, 3, 2735–2742. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Chen, L.; Wang, H.; Shang, L.; He, P.; Dong, H.; Wang, G.; Ding, G. Fabrication of Carbon-Based Quantum Dots via a “Bottom-Up” Approach: Topology, Chirality, and Free Radical Processes in “Building Blocks”. Small 2023, 19, 2205957. [Google Scholar] [CrossRef] [PubMed]
- Kagdada, H.L.; Bhojani, A.K.; Singh, D.K. An Overview of Nanomaterials: History, Fundamentals, and Applications. In Nanomaterials: Advances and Applications; Springer: Singapore, 2023; pp. 1–26. [Google Scholar] [CrossRef]
- Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009, 19, 484–488. [Google Scholar] [CrossRef]
- Russo, P.; Liang, R.; Jabari, E.; Marzbanrad, E.; Toyserkani, E.; Zhou, Y.N. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions. Nanoscale 2016, 8, 8863–8877. [Google Scholar] [CrossRef] [PubMed]
- Chao-Mujica, F.J.; Garcia-Hernández, L.; Camacho-López, S.; Camacho-López, M.A.; Contreras, D.R.; Pérez-Rodríguez, A.; Peña-Caravaca, J.P.; Darias-Gonzalez, J.G.; Hernandez-Tabares, L.; de Fuentes, O.A.; et al. Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation. J. Appl. Phys. 2021, 129, 163301. [Google Scholar] [CrossRef]
- Yang, S.; Sun, J.; Li, X.; Zhou, W.; Wang, Z.; He, P.; Ding, G.; Xie, X.; Kang, Z.; Jiang, M. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014, 2, 8660–8667. [Google Scholar] [CrossRef]
- Shabbir, H.; Tokarski, T.; Ungor, D.; Wojnicki, M. Eco Friendly Synthesis of Carbon Dot by Hydrothermal Method for Metal Ions Salt Identification. Materials 2021, 14, 7604. [Google Scholar] [CrossRef]
- Du, F.; Cheng, Z.; Wang, G.; Li, M.; Lu, W.; Shuang, S.; Dong, C. Carbon Nanodots as a Multifunctional Fluorescent Sensing Platform for Ratiometric Determination of Vitamin B2and “turn-Off” Detection of pH. J. Agric. Food Chem. 2021, 69, 2836–2844. [Google Scholar] [CrossRef] [PubMed]
- Magdy, G.; Belal, F.; Elmansi, H. Rapid microwave-assisted synthesis of nitrogen-doped carbon quantum dots as fluorescent nanosensors for the spectrofluorimetric determination of palbociclib: Application for cellular imaging and selective probing in living cancer cells. RSC Adv. 2023, 13, 4156–4167. [Google Scholar] [CrossRef]
- Nazari, Z.; Hadi Nematollahi, M.; Zareh, F.; Pouramiri, B.; Mehrabani, M. An Electrochemical Sensor Based on Carbon Quantum Dots and Ionic Liquids for Selective Detection of Dopamine. ChemistrySelect 2023, 8, e202203630. [Google Scholar] [CrossRef]
- Shorgar, N.; Bhati, I.; Jhalora, P. Laser ablation synthesis of quantum dots. Quantum Dots Fundam. Synth. Appl. 2023, 53–75. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 2010, 47, 932–934. [Google Scholar] [CrossRef] [PubMed]
- Latha, B.D.; Soumya, K.; More, N.; Mounika, C.; Guduru, A.T.; Singh, G.; Kapusetti, G. Fluorescent carbon quantum dots for effective tumor diagnosis: A comprehensive review. Biomed. Eng. Adv. 2023, 5, 100072. [Google Scholar] [CrossRef]
- Sikiru, S.; Oladosu, T.L.; Kolawole, S.Y.; Mubarak, L.A.; Soleimani, H.; Afolabi, L.O.; Oluwafunke Toyin, A.O. Advance and prospect of carbon quantum dots synthesis for energy conversion and storage application: A comprehensive review. J. Energy Storage 2023, 60, 106556. [Google Scholar] [CrossRef]
- Niu, C.; Yao, Z.; Jiang, S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. Sci. Total Environ. 2023, 882, 163565. [Google Scholar] [CrossRef]
- Deng, J.; Lu, Q.; Li, H.; Zhang, Y.; Yao, S. Large scale preparation of graphene quantum dots from graphite oxide in pure water via one-step electrochemical tailoring. RSC Advances 2015, 5, 29704–29707. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Y.; Niu, F.; Gooding, J.J.; Liu, J. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 2016, 141, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Li, Y.; Li, X.; Zhou, S.; Fan, L.; Yang, S. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem. Commun. 2015, 51, 2544–2546. [Google Scholar] [CrossRef]
- Borna, S.; Sabzi, R.E.; Pirsa, S. Synthesis of carbon quantum dots from apple juice and graphite: Investigation of fluorescence and structural properties and use as an electrochemical sensor for measuring Letrozole. J. Mater. Sci. Mater. Electron. 2021, 32, 10866–10879. [Google Scholar] [CrossRef]
- Shen, P.; Xia, Y. Synthesis-modification integration: One-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem. 2014, 86, 5323–5329. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 2009, 21, 5563–5565. [Google Scholar] [CrossRef]
- Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551. [Google Scholar] [CrossRef]
- Anwar, S.; Ding, H.; Xu, M.; Hu, X.; Li, Z.; Wang, J.; Liu, L.; Jiang, L.; Wang, D.; Dong, C.; et al. Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots. ACS Appl. Bio Mater. 2019, 2, 2317–2338. [Google Scholar] [CrossRef] [PubMed]
- Theerthagiri, J.; Madhavan, J.; Lee, S.J.; Choi, M.Y.; Ashokkumar, M.; Pollet, B.G. Sonoelectrochemistry for energy and environmental applications. Ultrason. Sonochemistry 2020, 63, 104960. [Google Scholar] [CrossRef]
- Wang, R.; Lu, K.Q.; Tang, Z.R.; Xu, Y.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, H.U.; Park, E.S.; Lee, S.C.; Lee, J.W.; Jeong, S.W.; Kim, C.H.; Lee, Y.-C.; Huh, Y.S.; Lee, J. Photoluminescent green carbon nanodots from food-waste-derived sources: Large-scale synthesis, properties, and biomedical applications. ACS Appl. Mater. Interfaces 2014, 6, 3365–3370. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Liu, Y.; Yu, H.; Kang, Z.; Lee, S.T. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater. Res. Bull. 2011, 46, 147–151. [Google Scholar] [CrossRef]
- Jhonsi, M.A. Carbon Quantum Dots for Bioimaging. In State of the Art in Nano-Bioimaging; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Otoni, C.G.; Azeredo, H.M.C.; Mattos, B.D.; Beaumont, M.; Correa, D.S.; Rojas, O.J. The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. Adv. Mater. 2021, 33, 2102520. [Google Scholar] [CrossRef] [PubMed]
- Suriapparao, D.V.; Tejasvi, R. A review on role of process parameters on pyrolysis of biomass and plastics: Present scope and future opportunities in conventional and microwave-assisted pyrolysis technologies. Process Saf. Environ. Prot. 2022, 162, 435–462. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, S.; Zhang, J.; Xiang, G.; Jiang, S.; Li, L.; Wang, Y.; Li, Y.; Jing, C.; Yao, L.; et al. FA+ and Mn2+ codoped CsPbCl3 perovskite quantum dots with super thermal stability. Ceram. Int. 2023, 49, 1002–1008. [Google Scholar] [CrossRef]
- Ludmerczki, R.; Mura, S.; Carbonaro, C.M.; Mandity, I.M.; Carraro, M.; Senes, N.; Garroni, S.; Granozzi, G.; Calvillo, L.; Marras, S.; et al. Carbon Dots from Citric Acid and its Intermediates Formed by Thermal Decomposition. Chem. —A Eur. J. 2019, 25, 11963–11974. [Google Scholar] [CrossRef]
- Desai, M.L.; Ravani, A.G. Carbon dots in food analysis. Carbon Dots Anal. Chem. Detect. Imaging 2023, 293–303. [Google Scholar] [CrossRef]
- Manzoor, S.; Dar, A.H.; Dash, K.K.; Pandey, V.K.; Srivastava, S.; Bashir, I.; Khan, S.A. Carbon dots applications for development of sustainable technologies for food safety: A comprehensive review. Appl. Food Res. 2023, 3, 100263. [Google Scholar] [CrossRef]
- Nagarajan, D.; Gangadharan, D.; Venkatanarasimhan, S. Synthetic strategies toward developing carbon dots via top-down approach. Carbon Dots Anal. Chem. Detect. Imaging 2023, 1–13. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Carbon dots for electrochemical analytical methods. Carbon Dots Anal. Chem. Detect. Imaging 2023, 77–86. [Google Scholar] [CrossRef]
- Yang, X.; Feng, M.; Zhang, X.; Huang, Y. Co,N,S co-doped hollow carbon with efficient oxidase-like activity for the detection of Hg2+ and Fe3+ ions. Microchem. J. 2023, 187, 108383. [Google Scholar] [CrossRef]
- Fu, W.-J.; Peng, Z.-X.; Dai, Y.; Yang, Y.-F.; Song, J.-Y.; Sun, W.; Ding, B.; Gu, H.-W.; Yin, X.-L. Highly fluorescent N doped C-dots as sensor for selective detection of Hg2+ in beverages. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120392. [Google Scholar] [CrossRef]
- Mir, T.G.; Shukla, S.; Malik, A.Q.; Singh, J.; Kumar, D. Microwave-assisted synthesis of N-doped carbon quantum dots for detection of methyl orange in saffron. Chem. Pap. 2023, 77, 3641–3649. [Google Scholar] [CrossRef]
- Yu, C.; Zhuang, Q.; Cui, H.; Li, L.; Ding, Y.; Lin, J.; Duan, Y. A Fluorescent “Turn-off” Probe for the Determination of Curcumin Using Upconvert Luminescent Carbon Dots. J. Fluoresc. 2020, 30, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, C.; Vijayaraghavan, R.; Zhou, F.; Zhang, X.; MacFarlane, D.R. Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon 2016, 104, 33–39. [Google Scholar] [CrossRef]
- Chandra, S.; Bano, D.; Sahoo, K.; Kumar, D.; Kumar, V.; Kumar Yadav, P.; Hadi Hasan, S. Synthesis of fluorescent carbon quantum dots from Jatropha fruits and their application in fluorometric sensor for the detection of chlorpyrifos. Microchem. J. 2022, 172, 106953. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Zhang, Y.; Pang, G.; Guo, S. Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Anal. Chem. 2017, 89, 1704–1709. [Google Scholar] [CrossRef]
- Li, Q.; Du, H.; Li, J.; Deng, J.; Wang, R.; Chen, Y. Sulfur-rich carbon quantum dots based on Alternanthera philoxeroides and thiourea for the detection of tartrazine. J. Mater. Sci. Mater. Electron. 2022, 33, 12808–12818. [Google Scholar] [CrossRef]
- Dai, H.; Shi, Y.; Wang, Y.; Sun, Y.; Hu, J.; Ni, P.; Li, Z. A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sens. Actuators B Chem. 2014, 202, 201–208. [Google Scholar] [CrossRef]
- Sistani, S.; Shekarchizadeh, H. Fabrication of fluorescence sensor based on molecularly imprinted polymer on amine-modified carbon quantum dots for fast and highly sensitive and selective detection of tannic acid in food samples. Anal. Chim. Acta 2021, 1186, 339122. [Google Scholar] [CrossRef]
- Carneiro, S.; Holanda, M.; Cunha, H.; Oliveira, J.; Pontes, S.; Cruz, A.; Fechine, L.; Moura, T.; Paschoal, A.; Zambelli, R.; et al. Highly sensitive sensing of food additives based on fluorescent carbon quantum dots. J. Photochem. Photobiol. A Chem. 2021, 411, 113198. [Google Scholar] [CrossRef]
- Han, Z.; Long, Y.; Pan, S.; Liu, H.; Yang, J.; Hu, X. Efficient one-pot synthesis of carbon dots as a fluorescent probe for the selective and sensitive detection of rifampicin based on the inner filter effect. Anal. Methods 2018, 10, 4085–4093. [Google Scholar] [CrossRef]
- Peng, H.L.; Callender, R. Mechanism for Fluorescence Quenching of Tryptophan by Oxamate and Pyruvate: Conjugation and Solvation-Induced Photoinduced Electron Transfer. J. Phys. Chem. B 2018, 122, 6483–6490. [Google Scholar] [CrossRef]
- Pal, C.A.; Lingamdinne, L.P.; Chang, Y.Y.; Koduru, J.R. Carbon dots as adsorbents for removal of toxic chemicals. Carbon Dots Anal. Chem. Detect. Imaging 2023, 161–180. [Google Scholar] [CrossRef]
- Borges, L.P.S.L.; de Carvalho, K.M.B.; da Costa, T.H.M. Usual dietary intake, physical activity, weight loss, and body composition after five years of Roux-en-Y gastric bypass. Int. J. Obes. 2023, 47, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Kainth, S.; Maity, B.; Shetti, N.P.; Basu, S.; Kakarla, R.R. Dual emissive carbon dots: Synthesis strategies, properties and its ratiometric sensing applications. Nano-Struct. Nano-Objects 2023, 33, 100931. [Google Scholar] [CrossRef]
- Bellanco, A.; Celcar, Š.; Martínez-Cuesta, M.C.; Requena, T. The food additive xylitol enhances the butyrate formation by the child gut microbiota developed in a dynamic colonic simulator. Food Chem. Toxicol. 2024, 187, 114605. [Google Scholar] [CrossRef]
- Li, H.; Zhao, L.; Xu, Y.; Zhou, T.; Liu, H.; Huang, N.; Ding, J.; Li, Y.; Ding, L. Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta 2018, 185, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Lu, D.; Tang, Y.; Gao, J.; Wang, Q. Smart choice of carbon dots as a dual-mode onsite nanoplatform for the trace level detection of Cr2O72-. Dye. Pigment. 2019, 163, 102–110. [Google Scholar] [CrossRef]
- Wang, C.; Tan, R.; Chen, D. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles. Talanta 2018, 182, 363–370. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, J. Small Carbon Quantum Dots, Large Photosynthesis Enhancement. J. Agric. Food Chem. 2018, 66, 9159–9161. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Umar, A.; Sood, S.; Mehta, S.K.; Kansal, S.K. Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. J. Alloys Compd. 2018, 748, 818–853. [Google Scholar] [CrossRef]
- Yang, M.; de Albuquerque, J.C.; Silva, E.D.; Silva, M.L. On the critical cases of linearly coupled Choquard systems. Appl. Math. Lett. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Han, Y.; Yang, W.; Luo, X.; He, X.; Yu, Y.; Li, C.; Tang, W.; Yue, T.; Li, Z. Cu2+-Triggered Carbon Dots with Synchronous Response of Dual Emission for Ultrasensitive Ratiometric Fluorescence Determination of Thiophanate-Methyl Residues. J. Agric. Food Chem. 2019, 67, 12576–12583. [Google Scholar] [CrossRef]
- Lang, Y.; Zhang, B.; Cai, D.; Tu, W.; Zhang, J.; Shentu, X.; Ye, Z.; Yu, X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. Biosensors 2022, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhang, L.; Long, H.; Meng, M.; Liu, T.; Yin, Y.; Xi, R. A multianalyte fluorescent carbon dots sensing system constructed based on specific recognition of Fe(III) ions. RSC Adv. 2017, 7, 28637–28646. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Li, Y.; He, Z.; Xu, Q.; Chen, Y.; Street, J.; Guo, H.; Nelles, M. Multicolor carbon nanodots from food waste and their heavy metal ion detection application. RSC Adv. 2018, 8, 23657–23662. [Google Scholar] [CrossRef] [PubMed]
- Gedda, G.; Lee, C.Y.; Lin, Y.C.; Wu, H.F. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sens. Actuators B Chem. 2016, 224, 396–403. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, Y.; Zhang, L.; Wang, Q.; Fu, H.; She, Y. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 220, 117109. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Liu, Z.; Wang, X.; Liu, H.; Yang, M.; Huo, D.; Hou, C. A paper-based visualization chip based on nitrogen-doped carbon quantum dots nanoprobe for Hg(Ⅱ) detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120346. [Google Scholar] [CrossRef]
- Pozdnyakova, N.; Krisanova, N.; Pastukhov, A.; Dudarenko, M.; Tarasenko, A.; Borysov, A.; Kalynovska, L.; Paliienko, K.; Borisova, T. Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food Chem. Toxicol. 2024, 185, 114449. [Google Scholar] [CrossRef]
- Pizarro, J.; Segura, R.; Tapia, D.; Navarro, F.; Fuenzalida, F.; Jesús Aguirre, M. Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chem. 2020, 321, 126682. [Google Scholar] [CrossRef] [PubMed]
- Ghataty, D.S.; Amer, R.I.; Amer, M.A.; Abdel Rahman, M.F.; Shamma, R.N. Green Synthesis of Highly Fluorescent Carbon Dots from Bovine Serum Albumin for Linezolid Drug Delivery as Potential Wound Healing Biomaterial: Bio-Synergistic Approach, Antibacterial Activity, and In Vitro and Ex Vivo Evaluation. Pharmaceutics 2023, 15, 234. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhan, X.; Liu, L.; Ruan, X.; Wu, Y. Ratiometric Fluorescent Paper-Based Sensor Based on CdTe Quantum Dots and Graphite Carbon Nitride Hybrid for Visual and Rapid Determination of Cu2+ in Drinks. Photochem. Photobiol. 2020, 96, 1154–1160. [Google Scholar] [CrossRef]
- Mitchell, C.T.; Bridgeman, L.; Moyano-López, C.; Penalva-Olcina, R.; Juan, C.; Juan-García, A. Study of cytotoxicity in neuroblastoma cell line exposed to patulin and citrinin. Food Chem. Toxicol. 2024, 186, 114556. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Mi, Z.; Hu, Q.; Li, C.; Li, X.; Feng, F. Green synthesis of fluorescent carbon dots as an effective fluorescence probe for morin detection. Anal. Methods 2019, 11, 353–358. [Google Scholar] [CrossRef]
- John, V.L.; Nair, Y.; Vinod, T.P. Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications. Part. Part. Syst. Charact. 2021, 38, 2100170. [Google Scholar] [CrossRef]
- Luo, X.; Han, Y.; Chen, X.; Tang, W.; Yue, T.; Li, Z. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci. Technol. 2020, 95, 149–161. [Google Scholar] [CrossRef]
- Shaik, S.A.; Sengupta, S.; Varma, R.S.; Gawande, M.B.; Goswami, A. Syntheses of N-Doped Carbon Quantum Dots (NCQDs) from Bioderived Precursors: A Timely Update. ACS Sustain. Chem. Eng. 2021, 9, 3–49. [Google Scholar] [CrossRef]
- Mandal, S. Elucidating carbon dot research coupled with bibliometric analysis. Next Res. 2024, 1, 100051. [Google Scholar] [CrossRef]
- Umar, E.; Ikram, M.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G. A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustain. Mater. Technol. 2023, 35, e00529. [Google Scholar] [CrossRef]
Organic Source | Advantage | Disadvantage | Safety Concern | References |
---|---|---|---|---|
Sugarcane bagasse | Abundant and sustainable source Potential for energy applications | Lower quantum yield compared to some CQDs Potential risks from residual pesticides/herbicides | Potential cytotoxicity under specific conditions | [34,35] |
Orange pericarp | High oxygen content, potential for catalysis Good photoluminescence quantum yield | Low nitrogen content compared to palm shells Potential for heavy metal contamination | Potential heavy metal contamination and cytotoxicity | [36,37] |
Orange waste peels | Cost-effective; upcycles waste Tunable properties; potential antibacterial activity High oxygen content, potential for catalysis | Variability in properties based on orange variety Potential for heavy metal contamination | Potential heavy metal contamination and cytotoxicity trace elements and contaminants | [36,38] |
Pineapple peel | Abundant and sustainable source Good photoluminescence quantum yield Cost-effective; upcycles waste | Lower stability compared to some CQDs Potential for heavy metal contamination | Potential cytotoxicity under specific conditions | [39,40] |
Banana peel | Excellent biocompatibility and biodegradability Tunable properties; potential antibacterial activity Tunable properties; potential antibacterial activity | Lower stability compared to some CQDs | Potential cytotoxicity under specific conditions | [31,41] |
Wheat straw | Abundant and sustainable source Potential for energy applications Cost-effective; | Limited control over size and morphology Lower biocompatibility | Potential cytotoxicity under specific conditions | [36,42] |
Citrus fruit peels | Diverse potential applications (sensing, catalysis, etc.) Wide variety of available citrus fruits Potential for energy applications. | Variability in properties based on citrus variety Potential for bitterness from limonene | Potential cytotoxicity under specific conditions; trace elements and contaminants | [43,44] |
Cassava peels | Abundant and sustainable source Good biocompatibility and biodegradability Tunable properties; good antibacterial activity. | Lower stability compared to some CQDs Potential for heavy metal contamination | Potential cytotoxicity at specific conditions; trace elements and contaminants | [40,45] |
Grapefruit peel | Good photoluminescence quantum yield, Upcycles waste Potential for sensing applications. | Limited research compared to some options Potential for heavy metal contamination | Potential cytotoxicity under specific conditions; trace elements and contaminants | [36,40] |
Inorganic Source | Advantage | Disadvantage | Safety Concern | References |
---|---|---|---|---|
Crude soot | -Tunable photoluminescence (color emission) -Good biocompatibility and biodegradability, -Good water solubility | -Lower photoluminescence efficiency than some inorganic quantum dots QDs -Low yield, large particle size, low specific surface area, limited active reaction sites. | Harmful substances Polycyclic aromatic hydrocarbons(PAHs) toxic byproducts | [57] |
Graphite electrodes, Graphite powder and cement | -High chemical stability -Wide range of potential applications -Narrow size distribution, excellent water solubility with fluorescence properties. | -Limited control over size and morphology Complicated operations and high-cost. | -May require special handling due to dust | [58,59] |
Graphene oxide, Bulk F-C3N4 powder | -Tunable properties -High thermal stability -Easy operation | -Potential cytotoxicity under specific conditions -Sophisticated equipment, high energy cost | -Limited safety data; may require further research | [60,61] |
Citric acid and thiourea, Poly(ethylene glycol) and saccharide | -Homogeneous, simultaneous, and rapid heating, resulting in uniform size distribution. | -High production cost -High energy cost | -Toxic in high doses | [62,63] |
Urea and sodium citrate, Melamine and EDTA | High quantum yield, with tunable PL characteristic | -Purification treatment is complicated and time-consuming | -May be harmful if inhaled | [64,65] |
Carbon glassy, polyethylene glycol 200, Nanodiamond-derived carbon Nano onions | Narrow size distribution, excellent water solubility with fluorescence properties | Complicated operations and high-cost | -May be harmful if inhaled | [56,66] |
Route | Synthetic Method | Precursor | Size of CQDs | Quantum Yield (%) | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|---|
Top-Down Approach | Laser Ablation | Graphite powders | 1–8 nm | 0.54 | Controllable morphology | Low yield and difficult to scale up | [69] |
Graphene | 2–5 nm | 2 | [70] | ||||
Arc Discharge | SADW | 1–5 nm | 16 | Small particle size and high oxygen content | Impurities are difficult to separate and purify, yield is very low | [71] | |
Ni/Co carbon composite rod | 0.016 | [57] | |||||
Acidic Oxidation | Lignin | 2.4 nm | 13 | High yield, controllable size, and low cost | Easy to corrode | [29] | |
Chinese ink | 1–6 nm | [72] | |||||
Bottom-Up Approach | Hydrothermal Synthesis | Ascorbic acid | 2–6 nm | High efficiency, Controllable size, and low cost | High temperature and time-consuming | [73] | |
Dry carnation petals | 2.69 | 13 | [74] | ||||
Microwave Pyrolysis | Orange juice | 2–5 nm | 29.30 | Simple, short-time, and low cost | Not easy to control | [75] |
Food Contaminant | Types of Food Compounds | Detection Mechanism | Perimeter of Detecting | Emission Wave-Length | References |
---|---|---|---|---|---|
Bacteria | Tap water, eggplant | Fluorescence recovery | 50 nM | 442 nm | [20] |
Chemical | Juice samples/cabbages | Fluorescence quenching | 3.4 nM | - | [101] |
Phytic acid | Food | Fluorescence recovery | 0.36 µmol/L | 450 nm | [102] |
Lemon yellow | Ice sugar, honey, and bread | Fluorescence quenching | 73 nM | 593 nm | [103] |
Heavy metal ion | Food | Fluorescence recovery | 4.2 nM | 410 nm | [20] |
Vitamin | Fresh fruits & vegetables | Fluorescence recovery | 42 nM | 441 nm | [103] |
Hg2+ | Food (beverage) | Fluorescence quenching (Static quenching) | 0.24 μM | 445 nm | [104] |
Methyl orange | Saffron | Fluorescence quenching (FRET) | 0.77 μM | 425 nm | [105] |
Curcumin | Curry powder | Fluorescence quenching (IFE) | 0.133 µM | 445 nm | [106] |
Pesticide residues | Apple | Fluorescence quenching (Electron transfer) | 5 ppb | 520 nm | [107] |
Chlorpyrifos | Apple juice | Fluorescence | 2.7 ng/mL | 462 nm | [108] |
Ochratoxin A | Red wine | Fluorescence recovery (Tuning aggregation/disaggregation) | 13 pg/mL | - | [109] |
Aflatoxin B1 | Food (Peanuts & soybeans) | Fluorescence/immunoasssay | 0.05 ng/mL | 525 nm | [12] |
Tartrazine | Food samples | Fluorescence quenching (FRET) | 0.45 μmol/L | 462 nm | [110] |
Melamine | Milk | Fluorescence quenching(FRET) | 36 nM | 438 nm | [111] |
Tannic acid | Food Samples | Fluorescence quenching(Electron transfer) | 0.6 nmol/L | 440 nm | [112] |
Food additives | Pickled olives | Fluorescence quenching | 252 ng/mL | 435 nm | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majid, A.; Ahmad, K.; Tan, L.; Niaz, W.; Na, W.; Huiru, L.; Wang, J. The Advanced Role of Carbon Quantum Dots in Nano-Food Science: Applications, Bibliographic Analysis, Safety Concerns, and Perspectives. C 2025, 11, 1. https://doi.org/10.3390/c11010001
Majid A, Ahmad K, Tan L, Niaz W, Na W, Huiru L, Wang J. The Advanced Role of Carbon Quantum Dots in Nano-Food Science: Applications, Bibliographic Analysis, Safety Concerns, and Perspectives. C. 2025; 11(1):1. https://doi.org/10.3390/c11010001
Chicago/Turabian StyleMajid, Abdul, Khurshid Ahmad, Liju Tan, Waqas Niaz, Wang Na, Li Huiru, and Jiangtao Wang. 2025. "The Advanced Role of Carbon Quantum Dots in Nano-Food Science: Applications, Bibliographic Analysis, Safety Concerns, and Perspectives" C 11, no. 1: 1. https://doi.org/10.3390/c11010001
APA StyleMajid, A., Ahmad, K., Tan, L., Niaz, W., Na, W., Huiru, L., & Wang, J. (2025). The Advanced Role of Carbon Quantum Dots in Nano-Food Science: Applications, Bibliographic Analysis, Safety Concerns, and Perspectives. C, 11(1), 1. https://doi.org/10.3390/c11010001