Optical Transitions Dominated by Orbital Interactions in Two-Dimensional Fullerene Networks
Abstract
:1. Introduction
2. Calculation Method
3. Result and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wada, Y.; Nakagawa, H.; Matsumoto, S.; Wakisaka, Y.; Kaji, H. Organic light emitters exhibiting very fast reverse intersystem crossing. Nat. Photonics 2020, 14, 643–649. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F.T.; Vlachopoulos, N.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Hydroxamic acid preadsorption raises efficiency of cosensitized solar cells. Nature 2022, 613, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, R.; Li, Y.; Li, Y.; Liu, H.; Shi, J.; Zhang, H.; Wu, H.; Luo, Y.; Li, D. Graphdiyne-based bulk heterojunction for efficient and moisture-stable planar perovskite solar cells. Adv. Energy Mater. 2018, 8, 1802012. [Google Scholar] [CrossRef]
- Liu, L.; Kan, Y.; Gao, K.; Wang, J.; Zhao, M.; Chen, H.; Zhao, C.; Jiu, T.; Jen, A.K.Y.; Li, Y. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity. Adv. Mater. 2020, 32, 1907604. [Google Scholar] [CrossRef]
- Tress, W.; Domanski, K.; Carlsen, B.; Agarwalla, A.; Alharbi, E.A.; Graetzel, M.; Hagfeldt, A. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 2019, 4, 568–574. [Google Scholar] [CrossRef]
- He, Z.; Shen, H.; Ye, D.; Xiang, L.; Zhao, W.; Ding, J.; Zhang, F.; Di, C.-a.; Zhu, D. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 2021, 4, 522–529. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.; Dubonos, S.; Firsov, A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Synthesis and properties of 2d carbon graphdiyne. Acc. Chem. Res. 2017, 50, 2470–2478. [Google Scholar] [CrossRef]
- Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, L.; Liu, H.; Li, Y. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.L.; Xie, S.Y.; Gao, F. Fullerene-based materials for photovoltaic applications: Toward efficient, hysteresis-free, and stable perovskite solar cells. Adv. Electron. Mater. 2018, 4, 1700435. [Google Scholar] [CrossRef]
- Li, J.; Hou, S.; Yao, Y.-R.; Zhang, C.; Wu, Q.; Wang, H.-C.; Zhang, H.; Liu, X.; Tang, C.; Wei, M. Room-temperature logic-in-memory operations in single-metallofullerene devices. Nat. Mater. 2022, 21, 917–923. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Hebard, A.; Rosseinsky, M.; Haddon, R.; Glarum, S.; Palstra, T.; Ramirez, A.; Kortan, A. Superconductivity at 18 K in potassium-doped C60. Nature 1991, 350, 600–601. [Google Scholar] [CrossRef]
- Guan, R.; Chen, M.; Xin, J.; Xie, X.-M.; Jin, F.; Zhang, Q.; Xie, S.-Y.; Yang, S. Capturing the missing carbon cage isomer of c84 via mutual stabilization of a triangular monometallic cyanide cluster. J. Am. Chem. Soc. 2021, 143, 8078–8085. [Google Scholar] [CrossRef]
- Zhong, Y.Y.; Chen, Z.C.; Du, P.; Cui, C.H.; Tian, H.R.; Shi, X.M.; Deng, S.L.; Gao, F.; Zhang, Q.; Gao, C.L. Double negatively curved c70 growth through a heptagon-involving pathway. Angew. Chem. Int. Ed. 2019, 58, 14095–14099. [Google Scholar] [CrossRef]
- Hou, L.; Cui, X.; Guan, B.; Wang, S.; Li, R.; Liu, Y.; Zhu, D.; Zheng, J. Synthesis of a monolayer fullerene network. Nature 2022, 606, 507–510. [Google Scholar] [CrossRef]
- Peng, B. Monolayer fullerene networks as photocatalysts for overall water splitting. J. Am. Chem. Soc. 2022, 144, 19921–19931. [Google Scholar] [CrossRef] [PubMed]
- Tromer, R.M.; Junior, L.A.R.; Galvão, D.S. A dft study of the electronic, optical, and mechanical properties of a recently synthesized monolayer fullerene network. Chem. Phys. Lett. 2022, 804, 139925. [Google Scholar] [CrossRef]
- Chakravarty, C.; Aksu, H.; Maiti, B.; Dunietz, B.D. Electronic spectra of c60 films using screened range separated hybrid functionals. J. Phys. Chem. A 2021, 125, 7625–7632. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hattori, S.; Shirasawa, R.; Tomiya, S. Wannier-like delocalized exciton generation in C60 fullerene clusters: A density functional theory study. J. Phys. Chem. C 2020, 124, 2379–2387. [Google Scholar] [CrossRef]
- Fravventura, M.C.; Hwang, J.; Suijkerbuijk, J.W.; Erk, P.; Siebbeles, L.D.; Savenije, T.J. Determination of singlet exciton diffusion length in thin evaporated C60 films for photovoltaics. J. Phys. Chem. Lett. 2012, 3, 2367–2373. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, G.F.; Hoke, E.T.; Beiley, Z.M.; McGehee, M.D. Free carrier generation in fullerene acceptors and its effect on polymer photovoltaics. J. Phys. Chem. C 2012, 116, 26674–26678. [Google Scholar] [CrossRef]
- Pan, F.; Ni, K.; Xu, T.; Chen, H.; Wang, Y.; Gong, K.; Liu, C.; Li, X.; Lin, M.L.; Li, S.; et al. Long-range ordered porous carbons produced from C60. Nature 2023, 614, 95–101. [Google Scholar] [CrossRef]
- Blank, V.D.; Buga, S.G.; Dubitsky, G.A.; Serebryanaya, N.R.; Popov, M.Y.; Sundqvist, B. High-pressure polymerized phases of C60. Carbon 1998, 36, 319–343. [Google Scholar] [CrossRef]
- McFarland, J.; Manousakis, E. Imaginary-time time-dependent density functional theory for periodic systems. J. Phys. Condens. Matter 2020, 33, 055903. [Google Scholar] [CrossRef]
- Guerrini, M.; Calzolari, A.; Corni, S. Solid-state effects on the optical excitation of push–pull molecular j-aggregates by first-principles simulations. ACS Omega 2018, 3, 10481–10486. [Google Scholar] [CrossRef]
- Byun, Y.-M.; Sun, J.; Ullrich, C.A.J.E.S. Time-dependent density-functional theory for periodic solids: Assessment of excitonic exchange—Correlation kernels. Electron. Struct. 2020, 2, 023002. [Google Scholar] [CrossRef]
- Tanuma, Y.; Kladnik, G.; Schio, L.; van Midden Mavrič, M.; Anézo, B.; Zupanič, E.; Bavdek, G.; Bavdek, G.; Canton-Vitoria, R.; Floreano, L.; et al. Noncontact Layer Stabilization of Azafullerene Radicals: Route toward High-Spin-Density Surfaces. ACS Nano 2023, 17, 25301–25310. [Google Scholar] [CrossRef] [PubMed]
- Kühne, T.D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V.V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R.Z.; Schütt, O.; Schiffmann, F. Cp2k: An electronic structure and molecular dynamics software package-quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Sun, M. The linear and non-linear optical absorption and asymmetrical electromagnetic interaction in chiral twisted bilayer graphene with hybrid edges. Mater. Today Phys. 2020, 14, 100222. [Google Scholar] [CrossRef]
- Mu, X.; Wang, X.; Quan, J.; Sun, M. Photoinduced charge transfer in donor-bridge-acceptor in one-and two-photon absorption: Sequential and superexchange mechanisms. J. Phys. Chem. C 2020, 124, 4968–4981. [Google Scholar] [CrossRef]
- Mu, X.; Wang, J.; Sun, M. Visualization of photoinduced charge transfer and electron–hole coherence in two-photon absorption. J. Phys. Chem. C 2019, 123, 14132–14143. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. Vmd: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Bader, R.F.; Stephens, M.E. Spatial localization of the electronic pair and number distributions in molecules. J. Am. Chem. Soc. 1975, 97, 7391–7399. [Google Scholar] [CrossRef]
- Bader, R.F.; Beddall, P. Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. J. Chem. Phys. 1972, 56, 3320–3329. [Google Scholar] [CrossRef]
- Cremer, D.; Kraka, E. Chemical bonds without bonding electron density—Does the difference electron-density analysis suffice for a description of the chemical bond? Angew. Chem. Int. Ed. Engl. 1984, 23, 627–628. [Google Scholar] [CrossRef]
- Fuster, F.; Grabowski, S. Intramolecular hydrogen bonds: The qtaim and elf characteristics. J. Phys. Chem. A 2011, 115, 10078–10086. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 2008, 47, 3430–3434. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, Q. Van der waals potential: An important complement to molecular electrostatic potential in studying intermolecular interactions. J. Mol. Model. 2020, 26, 315. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Independent gradient model based on hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 2022, 43, 539–555. [Google Scholar] [CrossRef]
- Lu, T.; Liu, Z.; Chen, Q. Comment on “18 and 12–member carbon rings (cyclo [n] carbons)—A density functional study”. Mater. Sci. Eng. B 2021, 273, 115425. [Google Scholar] [CrossRef]
S3 | S19 | S70 | S82 | S144 | |
---|---|---|---|---|---|
Sr | 1.39 | 1.26 | 1.59 | 1.58 | 1.61 |
D (Å) | 0.43 | 1.22 | 0.26 | 0.47 | 0.68 |
H (Å) | 9.83 | 9.74 | 9.92 | 9.98 | 10.00 |
t (Å) | −3.57 | −1.82 | −3.07 | −3.98 | −2.54 |
HDI | 2.71 | 2.79 | 2.62 | 2.50 | 2.40 |
EDI | 2.84 | 2.95 | 2.62 | 2.88 | 2.58 |
TDM | 3.29 | 4.97 | 2.69 | 3.40 | 2.50 |
S29 | S50 | S134 | S152 | S176 | |
---|---|---|---|---|---|
Sr | 1.38 | 1.46 | 1.17 | 1.42 | 1.24 |
D (Å) | 0.03 | 0.01 | 0.03 | 0.01 | 0.01 |
H (Å) | 9.91 | 9.99 | 10.18 | 10.33 | 10.20 |
t (Å) | −5.79 | −5.18 | −3.01 | −5.02 | −4.35 |
HDI | 2.27 | 2.26 | 3.17 | 2.58 | 2.87 |
EDI | 2.81 | 2.98 | 2.41 | 3.4 | 2.59 |
TDM | 2.56 | 5.65 | 2.00 | 2.78 | 2.49 |
Interactions | Bilayer HLOPC60 (kJ/mol) | Bilayer TLOPC60 (kJ/mol) |
---|---|---|
electrostatic | 0.12 | −0.32 |
repulsion | 44.03 | 112.67 |
dispersion | −149.79 | −247.60 |
total | −105.65 | −135.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, H.; Gai, X.; Zou, Y.; Wang, J. Optical Transitions Dominated by Orbital Interactions in Two-Dimensional Fullerene Networks. C 2025, 11, 17. https://doi.org/10.3390/c11010017
Bai H, Gai X, Zou Y, Wang J. Optical Transitions Dominated by Orbital Interactions in Two-Dimensional Fullerene Networks. C. 2025; 11(1):17. https://doi.org/10.3390/c11010017
Chicago/Turabian StyleBai, Haonan, Xinwen Gai, Yi Zou, and Jingang Wang. 2025. "Optical Transitions Dominated by Orbital Interactions in Two-Dimensional Fullerene Networks" C 11, no. 1: 17. https://doi.org/10.3390/c11010017
APA StyleBai, H., Gai, X., Zou, Y., & Wang, J. (2025). Optical Transitions Dominated by Orbital Interactions in Two-Dimensional Fullerene Networks. C, 11(1), 17. https://doi.org/10.3390/c11010017