Plasma-Modified Carbon Materials for Radionuclide Absorption
Abstract
:1. Introduction
2. Carbon Materials for Radioactive Nuclide Removal
2.1. Graphene and GO
2.2. Biochar
2.3. CNTs
2.4. AC
2.5. Fullerenes
2.6. Carbon Based Composite Materials
3. Plasma-Modified Carbon Materials for Nuclides Absorption
3.1. Plasma-Modified Carbon Materials for U Absorption
3.1.1. Plasma-Modified GO
3.1.2. Plasma-Modified Biochar
3.1.3. Plasma-Modified CNTs
3.1.4. Plasma-Modified Graphite
3.1.5. Plasma-Modified Carbon Composites
3.1.6. Other Plasma-Modified Carbon Materials (Carbon Dots and Carbon Black)
3.2. Plasma-Modified Carbon Materials for Absorption of Other Nuclides
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Nathaniel, S.P.; Alam, M.S.; Murshed, M.; Mahmood, H.; Ahmad, P. The roles of nuclear energy, renewable energy, and economic growth in the abatement of carbon dioxide emissions in the G7 countries. Environ. Sci. Pollut. Res. 2021, 28, 47957–47972. [Google Scholar] [CrossRef] [PubMed]
- Saidi, K.; Omri, A. Reducing CO2 emissions in OECD countries: Do renewable and nuclear energy matter? Prog. Nucl. Energy 2020, 126, 103425. [Google Scholar] [CrossRef]
- Liu, L.; Guo, H.; Dai, L.; Liu, M.; Xiao, Y.; Cong, T.; Gu, H. The role of nuclear energy in the carbon neutrality goal. Prog. Nucl. Energy 2023, 162, 104772. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; Rong, Q.; Liu, X.; Zhou, Y.; Yang, H.; Wang, G.; Chen, Z.; Wang, X. Enrichment and separation of radionuclides by organic polymer materials: A review. ACS ES&T Eng. 2024, 4, 250–268. [Google Scholar]
- Kiang, J.G.; Olabisi, A.O. Radiation: A poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019, 9, 25. [Google Scholar] [CrossRef]
- Kiang, J.G.; Blakely, W.F. Combined radiation injury and its impacts on radiation countermeasures and biodosimetry. Int. J. Radiat. Biol. 2023, 99, 1055–1065. [Google Scholar] [CrossRef]
- Ohba, T.; Tanigawa, K.; Liutsko, L. Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning. Environ. Int. 2021, 148, 106379. [Google Scholar] [CrossRef] [PubMed]
- Patra, K.; Sengupta, A. Recent advances in functionalized porous adsorbents for radioactive waste water decontamination: Current status, research gap and future outlook. Mater. Today Sustain. 2024, 25, 100703. [Google Scholar] [CrossRef]
- Fahad, S.A.; Nawab, M.S.; Shaida, M.A.; Verma, S.; Khan, M.U.; Siddiqui, V.; Naushad, M.; Saleemd, L.; Saleem, L.; Farooqi, I.H. Carbon based adsorbents for the removal of U(VI) from aqueous medium: A state of the art review. J. Water Process. Eng. 2023, 52, 103458. [Google Scholar] [CrossRef]
- Hao, M.; Liu, Y.; Wu, W.; Wang, S.; Yang, X.; Chen, Z.; Tang, Z.; Huang, Q.; Wang, S.; Yang, H.; et al. Advanced porous adsorbents for radionuclides elimination. EnergyChem 2023, 5, 100101. [Google Scholar] [CrossRef]
- Xu, M.; Cai, Y.; Chen, G.; Li, B.; Chen, Z.; Hu, B.; Wang, X. Efficient selective removal of radionuclides by sorption and catalytic reduction using nanomaterials. Nanomaterials 2022, 12, 1443. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Luo, Y.; Liu, Z.; Xie, X.; Xue, M.; Gao, B. Engineering carbon materials for organic pollutant removal via adsorption and photodegradation: A review. Sep. Purif. Technol. 2024, 359, 130872. [Google Scholar] [CrossRef]
- Kwak, C.H.; Lim, C.; Kim, S.; Lee, Y.S. Surface modification of carbon materials and its application as adsorbents. J. Ind. Eng. Chem. 2022, 116, 21–31. [Google Scholar] [CrossRef]
- Wu, M.; Jia, L.; Lu, S.; Qin, Z.; Wei, S.; Yan, R. Interfacial performance of high-performance fiber-reinforced composites improved by cold plasma treatment: A review. Surf. Interfaces 2021, 24, 101077. [Google Scholar]
- Duan, S.; Wang, Y.; Liu, X.; Shao, D.; Hayat, T.; Alsaedi, A.; Li, J. Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatment. ACS Sustain. Chem. Eng. 2017, 5, 4073–4085. [Google Scholar] [CrossRef]
- Boulanger, N.; Kuzenkova, A.S.; Iakunkov, A.; Romanchuk, A.Y.; Trigub, A.L.; Egorov, A.V.; Talyzin, A.V. Enhanced sorption of radionuclides by defect-rich graphene oxide. ACS Appl. Mater. Interfaces 2020, 12, 45122–45135. [Google Scholar] [CrossRef]
- Liao, J.; Ding, L.; Zhang, Y.; Zhu, W. Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. J. Hazard. Mater. 2022, 423, 127190. [Google Scholar] [CrossRef]
- Tan, X.L.; Xu, D.; Chen, C.L.; Wang, X.K.; Hu, W.P. Adsorption and kinetic desorption study of 152+ 154Eu (III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim. Acta 2008, 96, 23–29. [Google Scholar] [CrossRef]
- Jiménez-Reyes, M.; Almazán-Sánchez, P.T.; Solache-Ríos, M. Radioactive waste treatments by using zeolites. A short review. J. Environ. Radioact. 2021, 233, 106610. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Z.; Yang, J.; Liao, J.; Yang, Y.; Liu, N.; Tang, J. Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium (VI). Appl. Surf. Sci. 2014, 320, 10–20. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, N.; Ge, Y.; Ye, T.; Yang, Z.; Zou, L.; Ma, W.; Lu, L. Adsorption behavior and mechanism of U (VI) onto phytic Acid-modified Biochar/MoS2 heterojunction materials. Sep. Purif. Technol. 2022, 294, 121158. [Google Scholar] [CrossRef]
- Liao, S.; Li, Y.; Cheng, J.; Yu, J.; Ren, W.; Yang, S. Active and selective removal of U(VI) from contaminated water by plasma-initiated polymerization of aniline/GO. J. Mol. Liq. 2021, 344, 117687. [Google Scholar] [CrossRef]
- Lv, C.; Li, S.; Liu, L.; Zhu, X.; Yang, X. Enhanced electrochemical characteristics of the glucose oxidase bioelectrode constructed by carboxyl-functionalized mesoporous carbon. Sensors 2020, 20, 3365. [Google Scholar] [CrossRef]
- Lu, S.; Sun, Y.; Chen, C. Adsorption of radionuclides on carbon-based nanomaterials. In Interface Science and Technology, 1st ed.; Chen, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 29, pp. 141–215. [Google Scholar]
- Pan, X.; Ji, J.; Zhang, N.; Xing, M. Research progress of graphene-based nanomaterials for the environmental remediation. Chin. Chem. Lett. 2020, 31, 1462–1473. [Google Scholar] [CrossRef]
- Li, M.; Tang, X.; Tan, J.; Cheng, G.; Wu, F.; Zhou, N. Properties and mechanism of uranium adsorption on single-sided fluorinated graphene: A first-principles study. Surf. Interfaces 2024, 50, 104504. [Google Scholar] [CrossRef]
- Zhou, C.; Li, B.; Li, Y.; Zhao, J.; Mei, Q.; Wu, Y.; Li, M.; Chen, Y.; Fan, Y. A review of graphene oxide-based adsorbents for removing lead ions in water. J. Environ. Chem. Eng. 2024, 12, 111839. [Google Scholar] [CrossRef]
- Kuzenkova, A.S.; Romanchuk, A.Y.; Trigub, A.L.; Maslakov, K.I.; Egorov, A.V.; Amidani, L.; Kittrell, C.; Kvashnina, K.N.; Tour, J.M.; Talyzin, A.V.; et al. New insights into the mechanism of graphene oxide and radionuclide interaction. Carbon 2020, 158, 291–302. [Google Scholar] [CrossRef]
- Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Mater. Adv. 2021, 2, 598–627. [Google Scholar] [CrossRef]
- Wang, L.; Ok, Y.S.; Tsang, D.C.W.; Alessi, D.S.; Rinklebe, J.; Mašek, O.; Bolan, N.S.; Hou, D. Biochar composites: Emerging trends, field successes and sustainability implications. Soil Use Manag. 2022, 38, 14–38. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Cleaner Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Wang, L.; Ok, Y.S.; Tsang, D.C.W.; Alessi, D.S.; Rinklebe, J.; Wang, H.; Mašek, O.; Hou, R.; O’Connor, D.; Hou, D. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag. 2020, 36, 358–386. [Google Scholar] [CrossRef]
- Guo, L.; Peng, L.; Li, J.; Zhang, W.; Shi, B. Graphitic N-doped biochar for superefficient uranium recycling from nuclear wastewater. Sci. Total Environ. 2023, 882, 163462. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, X.; Jiang, J. Phosphate-modified hydrothermal biochar: Green and efficient uranium adsorption. Mater. Lett. 2024, 377, 137363. [Google Scholar] [CrossRef]
- Sumalatha, B.; Narayana, A.V.; Khan, A.A.; Venkateswarulu, T.C.; Reddy, G.S.; Reddy, P.R.; Babu, D.J. A Sustainable Green Approach for Efficient Capture of Strontium from Simulated Radioactive Wastewater Using Modified Biochar. Int. J. Environ. Res. 2022, 16, 75. [Google Scholar] [CrossRef]
- Apul, O.G.; Karanfil, T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Res. 2015, 68, 34–55. [Google Scholar] [CrossRef]
- Yu, J.-G.; Zhao, X.-H.; Yang, H.; Chen, X.-H.; Yang, Q.; Yu, L.-Y.; Jiang, J.-H.; Chen, X.-Q. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ. 2014, 482, 241–251. [Google Scholar] [CrossRef]
- Hassan, S.S.; Abdel Rahman, E.M.; El-Subruiti, G.M.; Kamel, A.H.; Diab, H.M. Removal of uranium-238, thorium-232, and potassium-40 from wastewater via adsorption on multiwalled carbon nanotubes. ACS Omega 2022, 7, 12342–12353. [Google Scholar] [CrossRef]
- Yılmaz, C.E.; Aslani, M.A.; Aslani, C.K. Removal of thorium by modified multi-walled carbon nanotubes: Optimization, thermodynamic, kinetic, and molecular dynamic viewpoint. Prog. Nucl. Energy 2020, 127, 103445. [Google Scholar] [CrossRef]
- Mozhiarasi, V.; Natarajan, T.S. Bael fruit shell–derived activated carbon adsorbent: Effect of surface charge of activated carbon and type of pollutants for improved adsorption capacity. Biomass Convers. Biorefin. 2024, 14, 8761–8774. [Google Scholar] [CrossRef]
- He, S.; Chen, G.; Xiao, H.; Shi, G.; Ruan, C.; Ma, Y.; Dai, H.; Yuan, B.; Chen, X.; Yang, X. Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture. J. Colloid Interface Sci. 2021, 582, 90–101. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Xu, X.; Meng, X.; Qu, J.; Wang, Z.; Liu, C.; Qu, B. Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg(II) from aqueous solution. Bioresour. Technol. 2020, 306, 123154. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jena, H.M. Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J. Cleaner Prod. 2016, 137, 1246–1259. [Google Scholar] [CrossRef]
- Raut, E.R.; Bedmohata, M.A.; Chaudhari, A.R. Comparative study of preparation and characterization of activated carbon obtained from sugarcane bagasse and rice husk by using H3PO4 and ZnCl2. Mater. Today Proc. 2022, 66, 1875–1884. [Google Scholar] [CrossRef]
- Wang, S.; Nam, H.; Nam, H. Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. J. Environ. Chem. Eng. 2020, 8, 103683. [Google Scholar] [CrossRef]
- Abd El-Magied, M.O.; Hassan, A.M.; El-Aassy, I.K.; Gad, H.M.; Youssef, M.A.; Mohammaden, T.F. Development of functionalized activated carbon for uranium removal from groundwater. Int. J. Environ. Res. 2021, 15, 543–558. [Google Scholar] [CrossRef]
- Alahabadi, A.; Singh, P.; Raizada, P.; Anastopoulos, I.; Sivamani, S.; Dotto, G.L.; Landarani, M.; Ivanets, A.; Kyzas, G.Z.; Hosseini-Bandegharaei, A. Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids Surf. A 2020, 607, 125516. [Google Scholar] [CrossRef]
- Liu, P.; Yu, Q.; Xue, Y.; Chen, J.; Ma, F. Adsorption performance of U(VI) by amidoxime-based activated carbon. J. Radioanal. Nucl. Chem. 2020, 324, 813–822. [Google Scholar] [CrossRef]
- Du, J.; Jiang, G. Adsorption of actinide ion complexes on C60O: An all-electron ZORA-DFT-D3 study. Spectrochim. Acta Part A 2019, 223, 117375. [Google Scholar] [CrossRef]
- Jena, N.K.; Sundararajan, M.; Ghosh, S.K. On the interaction of uranyl with functionalized fullerenes: A DFT investigation. RSC Adv. 2012, 2, 2994–2999. [Google Scholar] [CrossRef]
- Du, J.; Jiang, G. The strong interaction of actinyl ions with fullerenol driven by multiple hydrogen bonds. Dalton Trans. 2022, 51, 5118–5126. [Google Scholar] [CrossRef]
- Bonifazi, D.; Enger, O.; Diederich, F. Supramolecular [60]fullerene chemistry on surfaces. Chem. Soc. Rev. 2007, 36, 390–414. [Google Scholar] [CrossRef]
- Le-Minh, N.; Sivret, E.C.; Shammay, A.; Stuetz, R.M. Factors affecting the adsorption of gaseous environmental odors by activated carbon: A critical review. Crit. Rev. Environ. Sci. Technol. 2018, 48, 341–375. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Liberati, B.; Novak, M.; Cooper, M.; Kruse, N.; Young, D.; Trembly, J. Radium-226 removal from simulated produced water using natural zeolite and ion-exchange resin. Ind. Eng. Chem. Res. 2016, 55, 12502–12505. [Google Scholar] [CrossRef]
- Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating hierarchical pores in zeolite catalysts. Trends Chem. 2019, 1, 601–611. [Google Scholar] [CrossRef]
- Liang, C.; Li, Z.; Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem. Int. Ed. 2008, 47, 3696–3717. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z.; Wang, X.; Ying, D.; Niu, F.; Cao, X.; Wang, Y.; Hua, R.; Liu, Y.; Wang, X. Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem. Eng. J. 2018, 341, 208–217. [Google Scholar] [CrossRef]
- Chen, L.; Feng, S.; Zhao, D.; Chen, S.; Li, F.; Chen, C. Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite. J. Colloid Interface Sci. 2017, 490, 197–206. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, C.; Liu, Z.; Zhang, L.; Chen, L.; Wang, J.; Wang, X.; Yang, S.; Wang, S. Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(VI). Environ. Sci. Nano 2017, 4, 1876–1886. [Google Scholar] [CrossRef]
- Wu, J.; Tian, K.; Wang, J. Adsorption of uranium (VI) by amidoxime modified multiwalled carbon nanotubes. Prog. Nucl. Energy 2018, 106, 79–86. [Google Scholar] [CrossRef]
- Song, W.; Liu, M.; Hu, R.; Tan, X.; Li, J. Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive wastewater. Chem. Eng. J. 2014, 246, 268–276. [Google Scholar] [CrossRef]
- Das, S.; Pandey, A.K.; Athawale, A.A.; Manchanda, V.K. Exchanges of uranium (VI) species in amidoxime-functionalized sorbents. J. Phys. Chem. B 2009, 113, 6328–6335. [Google Scholar] [CrossRef]
- Akhavan, B.; Jarvis, K.; Majewski, P. Hydrophobic plasma polymer coated silica particles for petroleum hydrocarbon removal. ACS Appl. Mater. Interfaces 2013, 5, 8563–8571. [Google Scholar] [CrossRef]
- Akhavan, B.; Jarvis, K.; Majewski, P. Plasma polymer-functionalized silica particles for heavy metals removal. ACS Appl. Mater. Interfaces 2015, 7, 4265–4274. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, J.; Luo, W.; Liao, X.; Shi, B. In situ chemical oxidation-grafted amidoxime-based collagen fibers for rapid uranium extraction from radioactive wastewater. Sep. Purif. Technol. 2023, 307, 122826. [Google Scholar] [CrossRef]
- Niemczyk-Soczynska, B.; Gradys, A.; Sajkiewicz, P. Hydrophilic surface functionalization of electrospun nanofibrous scaffolds in tissue engineering. Polymers 2020, 12, 2636. [Google Scholar] [CrossRef] [PubMed]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Hilal, N. Surface design of liquid separation membrane through graft polymerization: A state of the art review. Membranes 2021, 11, 832. [Google Scholar] [CrossRef]
- Ran, C.; Zhou, X.; Dong, P.; Liu, K.; Ostrikov, K. Ultralong-lasting plasma-activated water inhibits pathogens and improves plant disease resistance in soft rot-infected hydroponic lettuce. Plasma Process. Polym. 2024, 21, e2400039. [Google Scholar] [CrossRef]
- Zhou, X.F.; Xiang, H.F.; Yang, M.H.; Geng, W.Q.; Liu, K. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: Effect of voltage and frequency. J. Phys. D Appl. Phys. 2023, 56, 455202. [Google Scholar] [CrossRef]
- Yan, A.; Kong, X.; Xue, S.; Guo, P.; Chen, Z.; Li, D.; Liu, Z.; Zhang, H.; Ning, W.; Wang, R. Atmospheric pressure plasma jet interacting with a droplet on dielectric surface. Plasma Sources Sci. Technol. 2024, 33, 105011. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Zhang, R.; Wang, X. Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique. Sci. China Chem. 2016, 59, 150–158. [Google Scholar] [CrossRef]
- Zhu, H.; Duan, S.; Chen, L.; Alsaedi, A.; Hayat, T.; Li, J. Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution. Plasma Sci. Technol. 2017, 19, 115501. [Google Scholar] [CrossRef]
- Kadela, K.; Grzybek, G.; Kotarba, A.; Stelmachowski, P. Enhancing graphene nanoplatelet reactivity through low-temperature plasma modification. ACS Appl. Mater. Interfaces 2024, 16, 19771–19779. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Xue, S.; Guo, P.; He, J.; Wang, G.; Zeng, Y.; Qie, L.; Wang, R. Research progress of low-temperature-plasma polishing technology in chip material processing. Clean Energy Sci. Technol. 2024, 2, 263. [Google Scholar] [CrossRef]
- Song, Y.; Yang, J.; Cui, J.; Zhao, B.; Yang, W.; Li, H.; Wang, R. Preparation of highly efficient antibacterial non-woven by facile plasma-induced graft polymerizing of DADMAC. Plasma Sci. Technol. 2023, 25, 114001. [Google Scholar] [CrossRef]
- Liang, H.; Ming, F.; Alshareef, H.N. Applications of plasma in energy conversion and storage materials. Adv. Energy Mater. 2018, 8, 1801804. [Google Scholar] [CrossRef]
- Gupta, B.; Plummer, C.; Bisson, I.; Frey, P.; Hilborn, J. Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: Characterization and human smooth muscle cell growth on grafted films. Biomaterials 2002, 23, 863–871. [Google Scholar] [CrossRef]
- Song, W.; Wang, X.; Wang, Q.; Shao, D.; Wang, X. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Phys. Chem. Chem. Phys. 2015, 17, 398–406. [Google Scholar] [CrossRef]
- Hu, B.; Guo, X.; Zheng, C.; Song, G.; Chen, D.; Zhu, Y.; Song, X.; Sun, Y. Plasma-enhanced amidoxime/magnetic graphene oxide for efficient enrichment of U(VI) investigated by EXAFS and modeling techniques. Chem. Eng. J. 2019, 357, 66–74. [Google Scholar] [CrossRef]
- Ulusoy, U.; Şimşek, S.; Ceyhan, Ö. Investigations for modification of polyacrylamide-bentonite by phytic acid and its usability in Fe3+, Zn2+ and UO22+ adsorption. Adsorption 2003, 9, 165–175. [Google Scholar] [CrossRef]
- Kelley, S.P.; Barber, P.S.; Mullins, P.H.; Rogers, R.D. Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants. Chem. Commun. 2014, 50, 12504–12507. [Google Scholar] [CrossRef]
- Yi, J.; Huo, Z.; Tan, X.; Chen, C.; Asiri, A.M.; Alamry, K.A.; Li, J. Plasma-facilitated modification of pumpkin vine-based biochar and its application for efficient elimination of uranyl from aqueous solution. Plasma Sci. Technol. 2019, 21, 095502. [Google Scholar] [CrossRef]
- Chen, Z.; He, X.; Li, Q.; Yang, H.; Liu, Y.; Wu, L.; Liu, Z.; Hu, B.; Wang, X. Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction. J. Environ. Sci. 2022, 122, 1–13. [Google Scholar] [CrossRef]
- Wang, R.; Xia, Z.; Kong, X.; Liang, L.; Ostrikov, K.K. Etching and annealing treatment to improve the plasma-deposited SiOx film adhesion force. Surf. Coat. Technol. 2021, 427, 127840. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, J.; Zhang, Y.; Zhang, J.; Liang, J.; Zhang, J.; Li, J. The electrosorption of uranium (VI) onto the modified porous biocarbon with ammonia low-temperature plasma: Kinetics and mechanism. Chem. Eng. J. 2023, 463, 142413. [Google Scholar] [CrossRef]
- Shao, D.; Jiang, Z.; Wang, X.; Li, J.; Meng, Y. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution. J. Phys. Chem. B 2009, 113, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Hu, J.; Wang, X. Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO22+, Cu2+, and Pb2+ from aqueous solutions. Plasma Process. Polym. 2010, 7, 977–985. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Kyzas, G.Z.; Vassiliou, A.A.; Bikiaris, D.N. Chitosan derivatives as biosorbents for basic dyes. Langmuir 2007, 23, 7634–7643. [Google Scholar] [CrossRef]
- Chen, J.; Lu, D.; Chen, B.; OuYang, P. Removal of U(VI) from aqueous solutions by using MWCNTs and chitosan modified MWCNTs. J. Radioanal. Nucl. Chem. 2013, 295, 2233–2241. [Google Scholar] [CrossRef]
- Geng, J.; Ma, L.; Wang, H.; Liu, J.; Bai, C.; Song, Q.; Li, J.; Hou, M.; Li, S. Amidoxime-grafted hydrothermal carbon microspheres for highly selective separation of uranium. J. Nanosci. Nanotechnol. 2012, 12, 7354–7363. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yu, S.; Shaban, M.; Ren, X.; Chen, S.; Li, Z.; Li, H.; Chen, C. Plasma-assisted preparation of amidoxime-carbon nanotubes hybrids for effective uranium extraction. J. Environ. Chem. Eng. 2024, 12, 114495. [Google Scholar] [CrossRef]
- Saraswati, T.E.; Tsumura, S.; Nagatsu, M. High-efficiency plasma surface modification of graphite-encapsulated magnetic nanoparticles using a pulsed particle explosion technique. Jpn. J. Appl. Phys. 2013, 53, 010205. [Google Scholar] [CrossRef]
- Xiao, J.; Song, W.; Hu, R.; Chen, L.; Tian, X. One-step arc-produced amino-functionalized graphite-encapsulated magnetic nanoparticles for the efficient removal of radionuclides. ACS Appl. Nano Mater. 2018, 2, 385–394. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, P. Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder. Desalination 2009, 249, 331–336. [Google Scholar] [CrossRef]
- Li, C.; Bai, H.; Shi, G. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009, 38, 2397–2409. [Google Scholar] [CrossRef]
- Choi, M.; Jang, J. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. J. Colloid Interface Sci. 2008, 325, 287–289. [Google Scholar] [CrossRef]
- Bhaumik, M.; Maity, A.; Srinivasu, V.V.; Onyango, M.S. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. Hazard. Mater. 2011, 190, 381–390. [Google Scholar] [CrossRef]
- Hu, R.; Shao, D.; Wang, X. Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions. Polym. Chem. 2014, 5, 6207–6215. [Google Scholar] [CrossRef]
- Zong, P.; Cao, D.; Cheng, Y.; Wang, S.; Zhang, J.; Guo, Z.; Hayat, T.; Alharbi, N.S.; He, C. Carboxymethyl cellulose supported magnetic graphene oxide composites by plasma induced technique and their highly efficient removal of uranium ions. Cellulose 2019, 26, 4039–4060. [Google Scholar] [CrossRef]
- Kim, B.C.; Lee, J.; Um, W.; Kim, J.; Joo, J.; Lee, J.H.; Kwak, J.H.; Kim, J.H.; Lee, C.; Lee, H.; et al. Magnetic mesoporous materials for removal of environmental wastes. J. Hazard. Mater. 2011, 192, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Qu, G.; Yan, L.; Wang, R.; Guo, P.; Yang, Y.; Li, X. Efficient Removal of Representative Chemical Agents by Rapid and Sufficient Adsorption via Magnetic Graphene Oxide Composites. Appl. Sci. 2023, 13, 10731. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Wang, X.; He, B.; Pan, D.; Liang, J.; Wang, F.; Fan, Q. Arsenazo-functionalized magnetic carbon composite for uranium (VI) removal from aqueous solution. J. Mol. Liq. 2018, 269, 441–449. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Zhang, K.; Lu, Y.; Chen, J.; Wang, S.; Hu, B.; Wang, X. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review. Chemosphere 2022, 287, 132313. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, Y.; Yuan, H.; Ren, Z.; Xu, C.; Chen, J. Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale 2015, 7, 20743–20748. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Zhu, A.; Wang, R. Multiple chemical warfare agent simulant decontamination by self-driven microplasma. Plasma Sci. Technol. 2023, 25, 114002. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, C.; Lu, Y.; Wu, F.; Ye, G.; Wei, G.; Sun, T.; Chen, J. Visualization of adsorption: Luminescent mesoporous silica-carbon dots composite for rapid and selective removal of U(VI) and in situ monitoring the adsorption behavior. ACS Appl. Mater. Interfaces 2017, 9, 7392–7398. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Man, H.; Sun, L.; Zang, S. Carbon black: A good adsorbent for triclosan removal from water. Water 2022, 14, 576. [Google Scholar] [CrossRef]
- Sha, H.; Su, X.; Chen, X.; Wang, L.; Wang, S.; Ke, Y.; Zhou, P. Effect of dissolution for black carbon on the adsorption capacity for methylene blue: Equilibrium, kinetics and thermodynamics. J. Dispers. Sci. Technol. 2024, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, C.; Li, X.; Ren, J.; Zhang, G.; Xie, H.; Liu, B.; Zhou, G. Preparation of carbon black-based porous carbon adsorbents and study of toluene adsorption properties. J. Chem. Technol. Biotechnol. 2023, 98, 117–128. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, P.; Li, C.; Fan, X.; Wen, Q.; Zhan, Q.; Shu, X.; Xu, T.; Zeng, G. Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations. Environ. Technol. 2013, 34, 201–207. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yu, S.; Ren, X.; Chen, S.; Li, Z.; Li, H.; Chen, C. Amidoxime functionality of carbon black by plasma technology for efficient uranium extraction from aqueous solution and simulated seawater. Sep. Purif. Technol. 2025, 356, 129931. [Google Scholar] [CrossRef]
- Park, S.; Ham, D.; Lee, W. Effect of Underwater Plasma Discharge on the Chemical Regeneration of Spent Granular Activated Carbon. J. Korean Soc. Environ. Eng. 2018, 40, 458–464. [Google Scholar] [CrossRef]
- El-Khatib, A.M.; Bondouk, I.I.; Omar, K.M.; Hamdy, A.; Abbas, M.I.; El-Khatib, M.; Hammoury, S.I.; Gouda, M.M. Impact of (nano ZnO/multi-wall CNTs) prepared by arc discharge method on the removal efficiency of stable iodine 127I and radioactive iodine 131I from water. Sci. Rep. 2024, 14, 4242. [Google Scholar] [CrossRef]
- Zong, P.; Cao, D.; Cheng, Y.; Wang, S.; Hayat, T.; Alharbi, N.S.; Guo, Z.; Zhao, Y.; He, C. Enhanced performance for Eu(III) ion remediation using magnetic multiwalled carbon nanotubes functionalized with carboxymethyl cellulose nanoparticles synthesized by plasma technology. Inorg. Chem. Front. 2018, 5, 3184–3196. [Google Scholar] [CrossRef]
- Ali, S.; Shah, I.A.; Huang, H. Selectivity of Ar/O2 plasma-treated carbon nanotube membranes for Sr(II) and Cs(I) in water and wastewater: Fit-for-purpose water treatment. Sep. Purif. Technol. 2020, 237, 116352. [Google Scholar] [CrossRef]
- Song, M.; Wang, Q.; Meng, Y. Removal of UO22+ from aqueous solution by plasma functionalized MWCNTs. J. Radioanal. Nucl. Chem. 2012, 293, 899–906. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, S.; Wang, X.; Xu, C.; Li, J.; Chen, C.; Chen, J.; Hayat, T.; Alsaedi, A.; Alharbi, N.S.; et al. Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U(VI) and 241Am(III). Environ. Sci. Technol. 2017, 51, 12274–12282. [Google Scholar] [CrossRef]
Adsorbent | Advantages | Disadvantages |
---|---|---|
AC | Widely applicable, strong adsorption capacity, low cost, and wide array of sources [40,41,42]. | Low selectivity, and adsorption capacity is influenced by environmental factors [53]. |
Biochar | High permeability, good porosity, large surface area, and environmentally friendly [30]. | Poor environmental stability [42], and adsorption efficiency depends on raw materials [55]. |
Graphene | Excellent thermal/electrical conductivity, large specific surface area, and multiple oxygen-containing functional groups [25]. | Limited oxygen-containing functional groups, high cost, and complex preparation process [54]. |
CNTs | High elastic modulus and tensile strength, and excellent electrical and thermal conductivity [36]. | High cost, challenges in large-scale production, and insolubility issues [37]. |
Zeolites | High ion-exchange capacity, excellent selectivity, low cost, and compatibility with natural environments [56]. | Small pore size and long diffusion paths reduce transport efficiency [57]. |
No. | Adsorption Target | Carbon Material | Structure of Plasma Source and Its Discharge Modes | Excitation Source | Working Gas and Gas Pressure | Adsorption Mechanism | Functional Groups and Modification Methods | Adsorption Capacity | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | U(VI) Eu(III) Co(II) | GO | Dielectric barrier discharge (DBD) plasma | Power: 240 W; voltage: 120 V; time: 30 min; room temperature | Atmospheric pressure | Complexation between nitrogen- and oxygen-containing functional groups and radionuclides | A large number of nitrogenous and oxygen-containing functional groups; grafting | At pH = 5.0 ± 0.1 and T = 295 K, the adsorption capacity of PAM/GO for U(VI), Eu(III), and Co(II) was 0.698, 1.245, and 1.621 mmol/g, respectively | Song et al., 2015 [80] |
2 | U(VI) | Magnetic GO | - | Power: 120 W; voltage: 600 V; current: 20 mA | N2, 10 Pa | Inner-sphere surface complexation | Oxygen- and nitrogen-containing functional groups; grafting | At pH = 4 and T = 293 K, the adsorption capacity of AO/mGO was 435 mg/g and 2.85 mg/g in the South China Sea | Hu et al., 2018 [81] |
3 | Uranyl | Biochar | - | A high-voltage pulsed DC voltage device; power: 100 W | - | Surface complexation and electrostatic interactions | C-O, C=O, and -COO; grafting | At pH = 5 and T = 298 K, the adsorption capacity was 207.02 mg/g | Yi et al., 2019 [84] |
4 | U(VI) | Biochar | - | Power: 100 W; time: 2 hr | N2, 1.8 Pa | 1. Electron transfer reaction 2. Complexation of -NH2, P-OH/P=O and C-OH groups | -NH2, phosphate group, -OH group; grafting | At pH = 6, T = 298 K, and time = 1 h, the adsorption capacity was 648.54 mg/g | Chen et al., 2022 [85] |
5 | U(VI) | Biochar | Radio frequency (RF) plasma | Power: 200 W | NH3, 4.0 Pa | The Faraday side reaction was mainly introduced | Nitrogen-containing and oxygen-containing groups; etching | At pH = 4 and T = 298 K, the adsorption capacity was 466.72 mg/g and the electroadsorption efficiency of biocarbon for U(VI) was 94.45%; the electroadsorption capacity in seawater was 78.34 mg/g | Wang et al., 2023 [87] |
6 | UO22+ | MWCNTs | Customized grafting reactors | Power: 70 W; voltage: 650 V; current: 60 mA | N2, 10 Pa | Strong complexation ability of CMC with metal ions | -NH2 and CMC; grafting | At pH = 5, T = 298 K, and m/v = 0.4 g/L, the ionic strength was 0.01 mol NaClO4 and the adsorption capacity was 111.86 mg/g | Shao et al., 2009 [88] |
7 | UO22+ Cu2+ Pb2+ | MWCNTs | Customized grafting reactors | Power: 70 W; voltage: 650 V; current: 60 mA | N2, 10 Pa | The functional groups of the material formed strong complexes with metal ions | UO22+: -OH and other functional groups; grafting | At pH = 5.0 ± 0.1, T = 20 ± 1 °C, time = 24 h, m/v = 0.4 g/L, and C[NaClO4] = 0.01 mol/L, the adsorption capacity of UO22+ was 39.2 mg/g | Shao et al., 2010 [89] |
8 | U(VI) | MWCNTs | Graft reactor | Power: 70 W; voltage: 650 V; current: 60 mA | N2, 10 Pa | Inner-sphere surface complexation dominated | The functional groups of CS; grafting | At pH = 5.0 ± 0.1, T = 20 ± 1 °C, time = 48 h, m/v = 0.4 g/L, and C[NaClO4] = 0.01 mol/L, the adsorption capacity was 41 mg/g | Chen et al., 2012 [91] |
9 | U(VI) | MWCNTs | In a custom-made grafting reactor | Power: 100 W; voltage: 800 V; current: 15 mA | N2, 10 Pa | Surface complexation | AO; grafting | At pH = 4.5, the adsorption capacity for U(VI) was 145 mg/g (0.61 mmol/g) | Wang et al., 2014 [20] |
10 | U(VI) | CNTs | RF plasma | Power: 100 W; time: 20 min | O2, vacuum environment | The synergistic effect of abundant oxygen- and nitrogen-containing functional groups within AO groups on CNTs facilitated the process, and when U(VI) reached the surface of CNTs-AO, complex formation or ion exchange reactions took place | Oxygen-containing functional groups and nitrogen-containing functional groups; grafting | At pH = 6 and T = 303 K, the adsorption capacity was 275.98 mg/g | He et al., 2024 [93] |
11 | UO22+ | MWCNTs | RF plasma | Power: 80 W | O2, 20 Pa | Ion exchange and outer-sphere surface complexation | -COOH, carbonyl (C=O), and -OH groups; modification | At pH = 5.6 ± 0.1, T = 343.15 K, m/v = 0.3 g/L, C(NaClO4) = 0.01 M, the adsorption capacity was 4.06 × 10−4 mol/g | Song et al., 2012 [118] |
12 | U(VI) Th(IV) Eu(III) | Graphite-embedded magnetic nanoparticles | One-step arc discharge | Voltage: 650 V; current: 120 A; the discharge was produced by gradually decreasing the distance between the two rods | Gas mixture of He/CH4/NH (NH3: 0–5.0%; He/CH4 = 2:1), 80 Torr | Inner-sphere surface complexation | Quaternary, pyrrolic, amino, and pyridinic N | At pH = 4.0 ± 0.1 and T = 298.15 K, the adsorption capacities for U(VI), Th(IV), and Eu(III) were 47.28 mg/g, 45.48 mg/g, and 32.21 mg/g, respectively | Xiao et al., 2018 [95] |
13 | U(VI) | FG | - | The HV pulsed DC voltage; power: 100 W | 3.9 Pa | Complexation of U(VI) with -NH2 and phenolic hydroxyl groups on the surface of modified FG | -NH2 and -OH; grafting | At pH 6.0 ± 0.1 and T = 333.15 K, the adsorbent concentration = 0.25 g/L, the adsorption capacity was 140.68 mg/g | Duan et al., 2017 [15] |
14 | U(VI) | GO/PPy | DBD plasma | Power: 200 W; voltage: 100–110 V; time: 30 min; room temperature | N2 | Mainly attributed to surface complexation due to the coordination of U(VI) ions with oxygen- and nitrogen-containing functional groups | Nitrogen- and oxygen-containing functional groups; grafting | At pH = 5.0 ± 0.1 and T = 298 ± 2 K, the adsorption capacity was 147.1 mg/g | Hu et al., 2014 [100] |
15 | U(VI) | AGO | RF plasma | Power: 100 W | Ar, 10 Pa | Coordination of -NH2 functional groups | Graphite’s original functional group and -NH2 group | At pH = 5 and T = 298 K, the adsorption capacity was 341.5 mg/g | Liao et al., 2021 [22] |
16 | U(VI) | CMC/MGOs | Customized reactors | Power: 120 W; voltage: 950 V | N2, 10 Pa | Inner-sphere surface complexation | Hydroxyl group, carboxymethyl group, epoxy group, etc. | At pH = 5.5 ± 0.1, T = 301 K, and m/v = 0.25 g/L, the adsorption capacity was 7.94 × 10−4 mol/g | Zong et al., 2019 [101] |
17 | U(VI) | Biochar/MoS2 composites | RF plasma | Power: 180 W | H2, 30 Pa | The S vacancies, S, C-O and P-O of the BDC/MoS2-PO4 were bonded to [O = U = O]2+ in the solution | Modification | At pH = 6, the adsorption capacity was 204.08 mg/g | Sun et al., 2022 [21] |
18 | 238U (VI)241 Am(III) | AO/carbon nanofiber hybrids | Customized grafting reactors | Power: 70 W; voltage: 650 V; current: 60 mA | N2, 10 Pa | At pH = 5.0–7.0: inner-sphere surface complexation/surface precipitated; at pH = 3.5: inner-sphere surface complexation was formed on AO/CNF | AO; grafting | At pH = 3.5 and T = 293 K, the adsorption capacities for 238U(VI) and 241Am(III) were 588.24 mg/g and 40.79 mg/g, respectively | Sun et al., 2017 [119] |
19 | U(VI) | CDs | Atmospheric-pressure microplasma | Current: 10 mA | 60 sccm Ar | - | −COOH, -OH, etc. | At pH = 5, T = 298.15 K, and m/v = 0.5 mg/mL, the adsorption capacity was 173.60 mg/g | Wang et al., 2017 [108] |
20 | U(VI) | CB | RF plasma | Power: 60 W; time: 30 min | Carrier gas O2/Ar (5:25 ratio), <30 Pa | Adsorption was closely related to the single-site or double-site chelation of U(VI) with -NH2 and -C=N-OH, respectively | AO, oxygen-containing functional groups (mainly -COO); grafting | At pH = 6, T = 303 K, dosage = 0.4 g/L, and time = 24 h, the adsorption capacity was 220.95 mg/g in aqueous solution; at pH = 8.3, T = 293 K, dosage = 0.1 mg/L, and C[U (VI)] = 4.0 μg/L, the adsorption capacity was 3.2 mg/g in dynamic simulated seawater | He et al., 2024 [113] |
21 | U(VI) | C core–shell | RF plasma | Voltage: 5000 V; current: 1.0 mA | Ar, 200 sccm | The uranyl and -AsO2(OH) groups produced a strong affinity through chelation | Arsenazo III; grafting | At pH = 4, T = 298 K, C[U(VI)] = 2 × 10−5 mol/L, m/v = 0.6 g/L, and ionic strength = 0.01 mol/L NaCl, the adsorption capacity was 46.2 mg/g | Li et al., 2018 [104] |
22 | I | AC | Underwater plasma discharge | Power: 600 W; voltage: 2100 V | - | - | -OH, etc. | At 20% NaOH and 50% ethanol and time = 48 h, the adsorption capacity was 849 mg/g in water and the recovery of I adsorption capacity was 89% | Park et al., 2018 [114] |
23 | 127I− 131I− | ZnO/ MWCNTs nanocomposite | Arc discharge | Constant voltage: 2100 V alternating current: 15 A; each discharge time: 2 min; total discharge time: 30 min | - | Multi-layer physical adsorption | - | At pH = 5, T = 25 °C, and time = 60 min, the adsorption capacity was 15.25 mg/g | El- Khatib et al., 2024 [115] |
24 | Eu(III) | CMC/iron oxides/ MWCNTs | Customized grafting reactors | Power: 70 W; voltage: 650 V; current: 60 mA | N2, 10 Pa | At low pH, the main interaction mechanism was outer-sphere surface complexation, and at high pH, it was inner-sphere surface complexation | Multiple hydroxyl and carboxyl functional groups; grafting | At pH = 6.0 ± 0.1, T = 298 K, m/v = 0.6 g/L, and ionic strength = 0.01 mol/L NaNO3, the adsorption capacity was 3.36 × 10−4 mol/g | Zong et al., 2018 [116] |
25 | Sr(II) Cs(I) | CNT membrane | RF plasma | Power: 80 W | 70 Sccm3 min−1 for Ar and 40 Sccm3 min−1 for O2, 2 Pa | The removal mechanisms of divalent cations by adsorbents usually involved inner-sphere complexation reactions between the metal ions and the electron-pair donor atoms available on the surface of the adsorbents and the monovalent cations was primarily induced by electrostatic or Coulombic attraction between negatively charged CNTs | Functionalization | The partition coefficient was 4.14 for strontium and 0.81 for Cs | Ali et al., 2020 [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Guo, Z.; Lian, B.; Kang, J.; Fang, Z.; Qie, L.; Liu, L.; Zhao, L.; Wang, R. Plasma-Modified Carbon Materials for Radionuclide Absorption. C 2025, 11, 28. https://doi.org/10.3390/c11020028
Fang Y, Guo Z, Lian B, Kang J, Fang Z, Qie L, Liu L, Zhao L, Wang R. Plasma-Modified Carbon Materials for Radionuclide Absorption. C. 2025; 11(2):28. https://doi.org/10.3390/c11020028
Chicago/Turabian StyleFang, Yifan, Zixuan Guo, Bing Lian, Jing Kang, Zhou Fang, Longfei Qie, Lili Liu, Luxiang Zhao, and Ruixue Wang. 2025. "Plasma-Modified Carbon Materials for Radionuclide Absorption" C 11, no. 2: 28. https://doi.org/10.3390/c11020028
APA StyleFang, Y., Guo, Z., Lian, B., Kang, J., Fang, Z., Qie, L., Liu, L., Zhao, L., & Wang, R. (2025). Plasma-Modified Carbon Materials for Radionuclide Absorption. C, 11(2), 28. https://doi.org/10.3390/c11020028