Graphene Oxide Promoted Light Activation of Peroxymonosulfate for Highly Efficient Triphenyl Phosphate Degradation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalytic Degradation Experiments
2.3. Characterization
3. Results and Discussion
3.1. Promoting Effect of GO on Light Activation of PMS for TPhP Degradation
3.2. Identification of Reactive Species and the Mechanism of the GO-Promoting Effect for TPhP Degradation
3.3. Effects of Typical Operation Parameters and Environmental Factors on the Catalytic Degradation of TPhP in the “Light+PMS+GO” System
3.4. Preliminary Analysis of TPhP Degradation Intermediates and Their Ecotoxicities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marklund, A.; Andersson, B.; Haglund, P. Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 2003, 53, 1137–1146. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, X.; Xie, Y.; Liu, F.; Sun, B.; Liu, W.; Wu, J.; Wu, Y. Bioaccumulation and Potential Endocrine Disruption Risk of Legacy and Emerging Organophosphate Esters in Cetaceans from the Northern South China Sea. Environ. Sci. Technol. 2024, 58, 4368–4380. [Google Scholar] [CrossRef]
- Sundkvist, A.M.; Olofsson, U.; Haglund, P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J. Environ. Monit. 2010, 12, 943. [Google Scholar] [CrossRef]
- Wei, G.-L.; Li, D.-Q.; Zhuo, M.-N.; Liao, Y.-S.; Xie, Z.-Y.; Guo, T.-L.; Li, J.-J.; Zhang, S.-Y.; Liang, Z.-Q. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environ. Pollut. 2015, 196, 29–46. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, W.; Yu, W.; Tang, S.; Yin, H. Metagenomic insights into the mechanisms of triphenyl phosphate degradation by bioaugmentation with Sphingopyxis sp. GY. Ecotox. Environ. Safe 2023, 263, 115261. [Google Scholar] [CrossRef]
- Wang, R.; Tang, J.; Xie, Z.; Mi, W.; Chen, Y.; Wolschke, H.; Tian, C.; Pan, X.; Luo, Y.; Ebinghaus, R. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China. Environ. Pollut. 2015, 198, 172–178. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Du, Y.; Kong, D.; Wu, Q.; Hong, Y.; Wang, Y.; Tam, N.F.Y.; Leung, J.Y.S. Occurrence, composition and biological risk of organophosphate esters (OPEs) in water of the Pearl River Estuary, South China. Environ. Sci. Pollut. Res. 2020, 27, 14852–14862. [Google Scholar] [CrossRef]
- Song, Q.; Feng, Y.; Wang, Z.; Liu, G.; Lv, W. Degradation of triphenyl phosphate (TPhP) by CoFe2O4-activated peroxymonosulfate oxidation process: Kinetics, pathways, and mechanisms. Sci. Total Environ. 2019, 681, 331–338. [Google Scholar] [CrossRef]
- Song, Q.; Feng, Y.; Liu, G.; Lv, W. Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: Kinetics, pathways, and mechanisms. Chem. Eng. J. 2019, 361, 929–936. [Google Scholar] [CrossRef]
- Yuan, X. Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments. Sep. Purif. Technol. 2015, 156, 1028–1034. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Y.; Si, F.; Yao, C.; Du, M.; Hussain, I.; Kim, H.; Huang, S.; Lin, Z.; Hayat, W. Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent. Chem. Eng. J. 2019, 356, 178–189. [Google Scholar] [CrossRef]
- Huang, K.C.; Zhao, Z.; Hoag, G.E.; Dahmani, A.; Block, P.A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 2005, 61, 551–560. [Google Scholar] [CrossRef]
- Liu, J.; Wu, P.; Yang, S.; Rehman, S.; Ahmed, Z.; Zhu, N.; Dang, Z.; Liu, Z. A photo-switch for peroxydisulfate non-radical/radical activation over layered CuFe oxide: Rational degradation pathway choice for pollutants. Appl. Catal. B Environ. 2020, 261, 118232. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Ma, J.; Lin, C.; Li, X.; Zhang, H. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants. Chemosphere 2016, 151, 280–288. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Bruton, T.A.; Sedlak, D.L. Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 2018, 206, 457–464. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, Y.; Zhou, L.; Wang, L.; Lu, J.; Ferronato, C.; Chovelon, J.-M. Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes. Water Res. 2018, 133, 299–309. [Google Scholar] [CrossRef]
- Santos, A.; Fernandez, J.; Rodriguez, S.; Dominguez, C.M.; Lominchar, M.A.; Lorenzo, D.; Romero, A. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Sci. Total Environ. 2018, 615, 1070–1077. [Google Scholar] [CrossRef]
- Yang, X.; Wei, S.; Ma, X.; Gao, Z.; Huang, W.; Wang, D.; Liu, Z.; Wang, J. Core–shell CoTiO3@MnO2 heterostructure for the photothermal degradation of tetracycline. J. Mater. Sci. 2023, 58, 3551–3567. [Google Scholar] [CrossRef]
- Mandal, S.; Mallapur, S.; Reddy, M.; Singh, J.K.; Lee, D.-E.; Park, T. An Overview on Graphene-Metal Oxide Semiconductor Nanocomposite: A Promising Platform for Visible Light Photocatalytic Activity for the Treatment of Various Pollutants in Aqueous Medium. Molecules 2020, 25, 5380. [Google Scholar] [CrossRef]
- Ding, P.; Li, J.; Guo, M.; Ji, H.; Li, P.; Liu, W.; Tressel, J.; Gao, S.; Wang, Q.; Chen, S. Visible light-driven degradation of ofloxacin by graphene oxide-supported titania/zirconia ternary nanocomposites. Inorg. Chem. Commun. 2023, 155, 111001. [Google Scholar] [CrossRef]
- Jin, H.; Zhu, L.; Xu, X.; Yu, X.; Qu, X.; Liu, Z.; Yang, Y.; Gao, Y.; Wei, Q. Synergistic pollutant degradation by Ag3PO4/Fe3O4/graphene oxide visible light–persulfate coupled system: Mechanism elucidation and performance optimization. Catal. Commun. 2023, 177, 106643. [Google Scholar] [CrossRef]
- Sun, H.; Liu, S.; Liu, S.; Wang, S. A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue. Appl. Catal. B Environ. 2014, 146, 162–168. [Google Scholar] [CrossRef]
- Zhang, X.; Zhan, J.; Ma, J.; Wang, Z.; Han, B.; Li, F.; Zhang, Y.; Yang, Z. Metal-free catalysts with local fluorination regulation for peroxymonosulfate activation: Nearly 100% singlet oxygen production for selective degradation of aqueous organic pollutants. Chem. Eng. J. 2024, 480, 148026. [Google Scholar] [CrossRef]
- Berruti, I.; Oller, I.; Polo-López, M.I. Direct oxidation of peroxymonosulfate under natural solar radiation: Accelerating the simultaneous removal of organic contaminants and pathogens from water. Chemosphere 2021, 279, 130555. [Google Scholar] [CrossRef]
- Hu, H.; Chen, D.; Liang, Y.; Wang, W.; Lin, Y.; Xu, X.; Wang, X.; Wang, K.; Zhang, Y.; Ou, J.Z. Understanding the active sites and associated reaction pathways of metal-free carbocatalysts in persulfate activation and pollutant degradation. Environ. Sci. Nano 2024, 11, 1368–1393. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Pedrosa, M.; Drazic, G.; Tavares, P.B.; Figueiredo, J.L.; Silva, A.M.T. Metal-free graphene-based catalytic membrane for degradation of organic contaminants by persulfate activation. Chem. Eng. J. 2019, 369, 223–232. [Google Scholar] [CrossRef]
- Silva, R.R.M.; Valenzuela, L.; Rosal, R.; Ruotolo, L.A.M.; Nogueira, F.G.E.; Bahamonde, A. Peroxymonosulfate activation by Co3O4 coatings for imidacloprid degradation in a continuous flow-cell reactor under simulated solar irradiation. J. Environ. Chem. Eng. 2023, 11, 109265. [Google Scholar] [CrossRef]
- Dhawle, R.; Giannakopoulos, S.; Frontistis, Z.; Mantzavinos, D. Peroxymonosulfate enhanced photoelectrocatalytic degradation of 17α-ethinyl estradiol. Catal. Today 2023, 413–415, 114026. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, C.; Duan, X.; Sun, H.; Liu, S.; Tade, M.O.; Wang, S. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: Formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ. Sci. Nano 2017, 4, 315–324. [Google Scholar] [CrossRef]
- Cherifi, Y.; Addad, A.; Vezin, H.; Barras, A.; Ouddane, B.; Chaouchi, A.; Szunerits, S.; Boukherroub, R. PMS activation using reduced graphene oxide under sonication: Efficient metal-free catalytic system for the degradation of rhodamine B, bisphenol A, and tetracycline. Ultrason. Sonochem. 2019, 52, 164–175. [Google Scholar] [CrossRef]
- Zaharie-Butucel, D.; Potara, M.; Craciun, A.M.; Boukherroub, R.; Szunerits, S.; Astilean, S. Revealing the structure and functionality of graphene oxide and reduced graphene oxide/pyrene carboxylic acid interfaces by correlative spectral and imaging analysis. Phys. Chem. Chem. Phys. 2017, 19, 16038–16046. [Google Scholar] [CrossRef]
- Kumar, P.; Subrahmanyam, K.S.; Rao, C.N.R. Graphene produced by radiation-induced reduction of graphene oxide. Int. J. Nanosci. 2011, 10, 559–566. [Google Scholar] [CrossRef]
- Sun, H.; Liu, S.; Zhou, G.; Ang, H.M.; Tadé, M.O.; Wang, S. Reduced Graphene Oxide for Catalytic Oxidation of Aqueous Organic Pollutants. ACS Appl. Mater. Interfaces 2012, 4, 5466–5471. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Wang, S. Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Acc. Chem. Res. 2018, 51, 678–687. [Google Scholar] [CrossRef]
- Hu, W.; Tan, J.; Pan, G.; Chen, J.; Chen, Y.; Xie, Y.; Wang, Y.; Zhang, Y. Direct conversion of wet sewage sludge to carbon catalyst for sulfamethoxazole degradation through peroxymonosulfate activation. Sci. Total Environ. 2020, 728, 138853. [Google Scholar] [CrossRef]
- Hu, W.; Tong, W.; Li, Y.; Xie, Y.; Chen, Y.; Wen, Z.; Feng, S.; Wang, X.; Li, P.; Wang, Y.; et al. Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate. J. Hazard. Mater. 2020, 388, 121801. [Google Scholar] [CrossRef]
- Huang, B.-C.; Jiang, J.; Huang, G.-X.; Yu, H.-Q. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate. J. Mater. Chem. A 2018, 6, 8978–8985. [Google Scholar] [CrossRef]
- Shao, P.; Tian, J.; Yang, F.; Duan, X.; Gao, S.; Shi, W.; Luo, X.; Cui, F.; Luo, S.; Wang, S. Identification and Regulation of Active Sites on Nanodiamonds: Establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants. Adv. Funct. Mater. 2018, 28, 1705295. [Google Scholar] [CrossRef]
- Wang, Y.; Ao, Z.; Sun, H.; Duan, X.; Wang, S. Activation of peroxymonosulfate by carbonaceous oxygen groups: Experimental and density functional theory calculations. Appl. Catal. B Environ. 2016, 198, 295–302. [Google Scholar] [CrossRef]
- Xin, K.; Li, M.; Lu, D.; Meng, X.; Deng, J.; Kong, D.; Ding, D.; Wang, Z.; Zhao, Y. Bioinspired Coordination Micelles Integrating High Stability, Triggered Cargo Release, and Magnetic Resonance Imaging. ACS Appl. Mater Interfaces 2017, 9, 80–91. [Google Scholar] [CrossRef]
- Cai, M.; Dai, L.; Huang, Y.; Xie, Y.; Zhang, Y.; Wang, Y. Waste baijiu distillers’ grains-derived biochar for efficient removal of organophosphate esters from water through adsorption. Ind. Crops Prod. 2024, 221, 119402. [Google Scholar] [CrossRef]
- Li, D.; Duan, X.; Sun, H.; Kang, J.; Zhang, H.; Tade, M.O.; Wang, S. Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon 2017, 115, 649–658. [Google Scholar] [CrossRef]
- Xu, A.; Chen, R.; Khan, A.; Zhao, W.; Lin, J.; Hu, R.; Li, W.; Liu, X.; Li, X.; Zhao, S. Modulating electronic structure of Fe site by adjacent Cu site through orbital coupling in Cu-Fe2O3 catalyst derived from Fenton sludge quenching. Chem. Eng. J. 2024, 493, 152489. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Sun, H.; Zhang, D.; Zhao, Y.; Chen, L. Self-assembling TiO2 on aminated graphene based on adsorption and catalysis to treat organic dyes. Appl. Surf. Sci. 2021, 539, 147889. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Cao, D.; Wang, Y.; Zhu, Y. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl. Catal. B Environ. 2017, 211, 79–88. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, Y.; Gao, N.; Chu, W.; Chen, J.; Lu, X.; Zhu, Y.; An, N. Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism. Sep. Purif. Technol. 2017, 189, 176–185. [Google Scholar] [CrossRef]
- Dai, L.; Xie, Y.; Zhang, Y.; Wang, Y. Treatment of bisphenol pollutant in water by N,P-co-doped carbon nanosheet: Fast degradation, toxicity elimination and reaction mechanism investigation. Environ. Pollut 2023, 327, 121586. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Pantelaki, I.; Voutsa, D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment. Sci. Total Environ. 2019, 649, 247–263. [Google Scholar] [CrossRef]
- Chen, X.; Qian, S.; Ma, Y.; Zhu, J.; Shen, S.; Tang, J.; Ding, Y.; Zhi, S.; Zhang, K.; Yang, L.; et al. Efficient degradation of sulfamethoxazole in various waters with peroxymonosulfate activated by magnetic-modified sludge biochar: Surface-bound radical mechanism. Environ. Pollut. 2023, 319, 121010. [Google Scholar] [CrossRef]
- Yu, Q.; Xie, H.B.; Chen, J. Atmospheric chemical reactions of alternatives of polybrominated diphenyl ethers initiated by OH: A case study on triphenyl phosphate. Sci Total Environ. 2016, 571, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.; Huang, J.; Wang, B.; Cao, Q.; Deng, S.; Yu, G. Ozonation of trimethoprim in aqueous solution: Identification of reaction products and their toxicity. Water Res. 2013, 47, 2863–2872. [Google Scholar] [CrossRef]
- Miao, H.-F.; Cao, M.; Xu, D.-Y.; Ren, H.-Y.; Zhao, M.-X.; Huang, Z.-X.; Ruan, W.-Q. Degradation of phenazone in aqueous solution with ozone: Influencing factors and degradation pathways. Chemosphere 2015, 119, 326–333. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.; Fu, K.; Gu, Z.; Shi, J.; Deng, H. Overlooked role of secondary radicals in the degradation of beta-blockers and toxicity change in UV/chlorine process. Chem. Eng. J. 2020, 391, 123606. [Google Scholar] [CrossRef]
- Wang, X.; Dai, L.; He, S.; Wang, Y.; Zhang, Y. A novel biomineralization regulation strategy to fabricate schwertmannite/graphene oxide composite for effective light-assisted oxidative degradation of sulfathiazole. Sep. Purif. Technol. 2023, 312, 123314. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Wang, F.; Li, Z.; Gu, W.; Zhang, Y.; Xie, H. Co single-atom confined in N-doped hollow carbon sphere with superb stability for rapid degradation of organic pollutants. Chem. Eng. J. 2023, 452, 139229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xie, Y.; Wang, X.; Wang, Y. Graphene Oxide Promoted Light Activation of Peroxymonosulfate for Highly Efficient Triphenyl Phosphate Degradation. C 2025, 11, 65. https://doi.org/10.3390/c11030065
Li Y, Xie Y, Wang X, Wang Y. Graphene Oxide Promoted Light Activation of Peroxymonosulfate for Highly Efficient Triphenyl Phosphate Degradation. C. 2025; 11(3):65. https://doi.org/10.3390/c11030065
Chicago/Turabian StyleLi, Yilong, Yi Xie, Xuqian Wang, and Yabo Wang. 2025. "Graphene Oxide Promoted Light Activation of Peroxymonosulfate for Highly Efficient Triphenyl Phosphate Degradation" C 11, no. 3: 65. https://doi.org/10.3390/c11030065
APA StyleLi, Y., Xie, Y., Wang, X., & Wang, Y. (2025). Graphene Oxide Promoted Light Activation of Peroxymonosulfate for Highly Efficient Triphenyl Phosphate Degradation. C, 11(3), 65. https://doi.org/10.3390/c11030065