Development and Characterization of Biomimetic Carbonated Calcium-Deficient Hydroxyapatite Deposited on Carbon Fiber Scaffold
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Carbon Fiber Scaffold
3.2. Homogeneity of the CaP Deposits
3.3. Microtexture of the CaP Deposits
3.4. Chemical Composition of the CaP Deposits
3.5. Identification of the CaP Phases
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Han, H.; Mikhalovsky, S.V.; Phillips, G.J.; Lloyd, A.W. Calcium phosphate sonoelectrodeposition on carbon fabrics and its effect on osteoblast cell viability in vitro, New Carbon Mater. New Carbon Mater. 2007, 22, 121–125. [Google Scholar] [CrossRef]
- Stoch, A.; Brożek, A.; Błażewicz, S.; Jastrzębski, W.; Stoch, J.; Adamczyk, A.; Rój, I. FTIR study of electrochemically deposited hydroxyapatite coatings on carbon materials. J. Mol. Struct. 2003, 651–653, 389–396. [Google Scholar] [CrossRef]
- Kuo, M.C.; Yen, S.K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C 2002, 20, 153–160. [Google Scholar] [CrossRef]
- Habraken, W.; Habibovic, P.; Epple, M.; Bohnerdoi, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Han, H.M.; Phillips, G.J.; Mikhalovsky, S.V.; FitzGerald, S.; Lloyd, A.W. Sono-electrochemical deposition of calcium phosphate coatings on carbon materials—Effect of electrolyte concentration. J. Mater. Sci. Mater. Med. 2008, 19, 2845–2850. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Kitagaki, K.; Umegaki, T. Thermal instability and proton conductivity of ceramic hydroxyapatite at high temperatures. J. Am. Ceram. Soc. 1995, 78, 1191–1197. [Google Scholar] [CrossRef]
- Yamashita, K.; Yonehara, E.; Ding, X.; Nagai, M.; Umegaki, T.; Matsuda, M. Electrophoretic coating of multilayered apatite composite on alumina ceramics. J. Biomed. Mater. Res. 1998, 43, 46–53. [Google Scholar] [CrossRef]
- Candidato, R.T., Jr.; Sokolowski, P.; Pawlowski, L.; Lecomte-Nana, G.; Constantinescu, C.; Denoirjean, A. Development of hydroxyapatite coatings by solution precursor plasma spray process and their microstructural characterization. Surf. Coat. Technol. 2017, 318, 39–49. [Google Scholar] [CrossRef]
- Ślósarczyk, A.; Klisch, M.; Błażewicz, M.; Piekarczyk, J.; Stobierski, L.; Rapacz-Kmita, A. Hot pressed hydroxyapatite–carbon fibre composites. J. Eur. Ceram. Soc. 2000, 20, 1397–1402. [Google Scholar] [CrossRef]
- Metoki, N.; Mandler, D.; Eliaz, N. Effect of decorating titanium with different self-assembled monolayers on the electrodeposition of calcium phosphate. Cryst. Growth Des. 2016, 16, 2756–2764. [Google Scholar] [CrossRef]
- Han, H.M.; Phillips, G.J.; Mikhalovsky, S.V.; FitzGerald, S.; Lloyd, A.W. Sono-electrochemical deposition of calcium phosphates on carbon materials: Effect of current density. J. Mater. Sci. Mater. Med. 2008, 19, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Musiani, M. Electrodeposition of composites: An expanding subject in electrochemical materials science. Electrochim. Acta 2000, 45, 3397–3402. [Google Scholar] [CrossRef]
- Ðoši, M.; Erakovi, S.; Jankovi, A.; Vukašinovi-Sekuli, M.; Mati, I.Z.; Stojanovi, J.; Rhee, K.Y.; Miškovi-Stankovi, V.; ParK, S.J. In vitro investigation of electrophoretically deposited bioactive hydroxyapatite/chitosan coatings reinforced by grapheme. J. Ind. Eng. Chem. 2017, 47, 336–347. [Google Scholar] [CrossRef]
- Nardecchia, S.; Serrano, M.C.; Gutiérrez, M.C.; Portolés, M.T.; Ferrer, M.L.; del Monte, F. Osteoconductive performance of carbon nanotube scaffolds homogeneously mineralized by flow-through electrodeposition. Adv. Funct. Mater. 2012, 22, 4411–4420. [Google Scholar] [CrossRef]
- Picard, Q. Biomatériaux hybrides: Tissu de fibres de carbone/phosphates de calcium: Synthèse, caractérisation et biocompatibilité. Ph.D. Thesis, Orléans University, Orléans, France, 30 November 2016. [Google Scholar]
- Elliot, J.C. Structure and chemistry of the apatites and other calcium orthophosphates. Stud. Inorg. Chem. 1994, 18, 389–398. [Google Scholar]
- Venkateswarlu, K.; Sandhyarani, M.; Nellaippan, T.A.; Rameshbabu, N. Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis. Procedia Mater. Sci. 2014, 5, 212–221. [Google Scholar] [CrossRef]
- Karampas, I.A.; Kontoyannis, C.G. Characterization of calcium phosphates mixtures. Vib. Spectrosc. 2013, 64, 126–133. [Google Scholar] [CrossRef]
- Raynaud, S.; Champion, E.; Bernache-Assollant, D.; Thomas, P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability of powders. Biomaterials 2002, 23, 1065–1072. [Google Scholar] [CrossRef]
- Gómez-Morales, J.; Iafisco, M.; Delgado-López, J.M.; Sarda, S.; Drouet, C. Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Prog. Cryst. Growth Charact. Mater. 2013, 59, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Drevet, R. Élaboration de nouveaux revêtements prothétiques phosphocalciques par électrodéposition. caractérisations physico-chimique et structurale. Ph.D. Thesis, Reims University, Reims, France, 10 June 2011. [Google Scholar]
- Brown, W.E.; Smith, J.P.; Lehr, J.R.; Frazier, A.W. Octacalcium Phosphate and Hydroxyapatite: Crystallographic and Chemical Relations between Octacalcium Phosphate and Hydroxyapatite. Nature 1962, 196, 1050–1055. [Google Scholar] [CrossRef]
- Brown, W.E.; Eidelman, N.; Tomazic, B. Octacalcium phosphate as a precursor in biomineral formation. Adv. Dent. Res. 1987, 1, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Han, H.M.; Phillips, G.J.; Mikhalovsky, S.V.; Lloyd, A.W. In vitro cytotoxicity assessment of carbon fabric coated with calcium phosphate. New Carbon Mater. 2008, 23, 139–143. [Google Scholar] [CrossRef]
- Xie, W.; Song, F.; Wang, R.; Sun, S.; Li, M.; Fan, Z.; Liu, B.; Zhang, Q.; Wang, J. Mechanically robust 3D graphene-hydroxyapatite hybrid bioscaffolds with enhanced osteoconductive and biocompatible performance. Crystals 2018, 8, 105. [Google Scholar] [CrossRef]
SBET (m2/g) | Vtotal (cm3/g) | Vmicro 1 (cm3/g) | Vultramicro 2 (cm3/g) | Vmeso 1 (cm3/g) |
---|---|---|---|---|
1693 | 0.68 | 0.51 | 0.52 | 0.09 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picard, Q.; Olivier, F.; Delpeux, S.; Chancolon, J.; Warmont, F.; Bonnamy, S. Development and Characterization of Biomimetic Carbonated Calcium-Deficient Hydroxyapatite Deposited on Carbon Fiber Scaffold. C 2018, 4, 25. https://doi.org/10.3390/c4020025
Picard Q, Olivier F, Delpeux S, Chancolon J, Warmont F, Bonnamy S. Development and Characterization of Biomimetic Carbonated Calcium-Deficient Hydroxyapatite Deposited on Carbon Fiber Scaffold. C. 2018; 4(2):25. https://doi.org/10.3390/c4020025
Chicago/Turabian StylePicard, Quentin, Florian Olivier, Sandrine Delpeux, Jérôme Chancolon, Fabienne Warmont, and Sylvie Bonnamy. 2018. "Development and Characterization of Biomimetic Carbonated Calcium-Deficient Hydroxyapatite Deposited on Carbon Fiber Scaffold" C 4, no. 2: 25. https://doi.org/10.3390/c4020025