Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. LEAP Work and Data Analysis
3. Results and Discussion
3.1. Sample Quality and LEAP Analysis
3.2. APT Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lowenstam, H.A.; Weiner, S. On Biomineralization; Weiner, S., Ed.; Oxford University Press: New York, NY, USA, 1989; p. 324. [Google Scholar]
- Pérez-Huerta, A.; Coronado, I.; Hegna, T.A. Understanding biomineralization in the fossil record. Earth-Sci. Rev. 2018, 179, 95–122. [Google Scholar] [CrossRef]
- Stephenson, A.E.; DeYoreo, J.J.; Wu, L.; Wu, K.J.; Hoyer, J.; Dove, P.M. Peptides enhance magnesium incorporation in calcite: insights into origins of vital effects. Science 2008, 322, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-Y.; Carloni, J.D.; Demarchi, B.; Sparks, D.; Reid, D.G.; Kunitake, M.E.; Tang, C.C.; Duer, M.L.; Freeman, C.L.; Pokroy, B.; et al. Tuning hardness in calcite by incorporation of amino acids. Nat. Mater. 2016, 15, 903–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, D.C.; Ihli, J.; Thornton, P.D.; Holden, M.A.; Marzec, B.; Kim, Y.Y.; Kulak, A.N.; Levenstein, M.A.; Tang, C.; Lynch, C.; et al. 3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite. Nat. Comm. 2016, 7, 13524. [Google Scholar] [CrossRef] [PubMed]
- Kintsu, H.; Okumura, T.; Negishi, L.; Ifuku, S.; Kogure, T.; Sakuda, S.; Suzuki, M. Crystal defects induced by chitin and chitinolytic enzymes in the prismatic layer of Pinctada Fucata. Biochem. Biophys. Res. Comm. 2017, 489, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xin, H.L.; Muller, D.A.; Estroff, L.A. Visualizing the 3D structure of calcite single crystals grown in agarose hydrogels. Science 2009, 326, 1244–1247. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.M.; Joester, D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 2011, 469, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.M.; Tran, L.; Joester, D. Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 2012, 6, 10667–10675. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.M.; Cohen, M.J.; MacRenaris, K.W.; Pasteris, J.D.; Seda, T.; Joester, D. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 2015, 347, 746–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Huerta, A.; Laiginhas, F.; Reinhard, D.A.; Prosa, T.J.; Martens, R.L. Atom probe tomography (APT) of carbonate minerals. Micron 2016, 80, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Huerta, A.; Laiginhas, F. Preliminary data on the nanoscale chemical characterization of the inter-crystalline organic matrix of a calcium carbonate biomineral. Minerals 2018, 8, 223. [Google Scholar] [CrossRef]
- Thompson, K.; Lawrence, D.; Larson, D.J.; Olson, J.D.; Kelly, T.F.; Gorman, B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 2007, 107, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Saxey, D.W.; Moser, D.E.; Piazolo, S.; Reddy, S.M.; Valley, J.W. Atomic worlds: Current state and future atom probe tomography in geosciences. Scripta Mater 2018, 148, 115–121. [Google Scholar] [CrossRef]
- Cuif, J.-P.; Dauphin, Y.; Sorauf, J.E. Biominerals and Fossils Through Time; Cuif, J.-P., Dauphin, Y., Sorauf, J.E., Eds.; Cambridge University Press: England, UK, 2011; p. 490. [Google Scholar]
- Branson, O.; Bonnin, E.A.; Perea, D.E.; Spero, H.J.; Zhu, Z.; Winters, M.; Hönisch, B.; Russell, A.D.; Fehrenbacher, J.S.; Gagnon, A.C. Nanometer-scale chemistry of calcite biomineralization template: Implications for skeletal composition and nucleation. PNAS 2016, 113, 12934–12939. [Google Scholar] [CrossRef] [PubMed]
- Okumura, T.; Suzuki, M.; Nagasawa, H.; Kogure, T. Microstructural variation of biogenic calcite with intracrystalline organic macromolecules. Cryst. Growth Des. 2012, 12, 224–230. [Google Scholar] [CrossRef]
Specimen | 1536 | 1620 | 1592 | 1619 | 1670 | 1560 | 1618 | 1643 | 1644 |
---|---|---|---|---|---|---|---|---|---|
Sample Description | Yatalase 0 mg·mL−1 | Yatalase 0.12 mg·mL−2 | Yatalase 1.2 mg·mL−1 | Chitin Nanofiber | |||||
Instrument Model | LEAP 5000 XR | ||||||||
Instrument settings | |||||||||
Laser pulse energy (pJ) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Pulse frequency (kHz) | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
Target detection rate (%) | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | 0.3 |
Set point temperature (K) | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Chamber pressure (Torr) | 7.3 × 10−11 | 4.2 × 10−11 | 8.8 × 10−11 | 7.7 × 10−11 | 7.0 × 10−11 | 7.0 × 10−11 | 6.2 × 10−11 | 5.6 × 10−11 | 5.7 × 10−11 |
Data summary | |||||||||
Analysis software | IVAS 3.8.0 | ||||||||
Total ions: | 48024648 | 35636257 | 60000006 | 45472807 | 35847529 | 43304847 | 75127198 | 24815390 | 23041842 |
Sigle (%) | 83.6 | 80.6 | 81.8 | 82.3 | 79.5 | 83.3 | 83.1 | 78.8 | 80.7 |
Multiple (%) | 15.7 | 18.4 | 17.5 | 17 | 19.8 | 16 | 16.1 | 20.3 | 18.4 |
Partial (%) | 0.7 | 1 | 0.7 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.9 |
Reconstructed ions: | 29411910 | 30385324 | 31017178 | 29660280 | 25807314 | 21789070 | 22083942 | 9477451 | 11404208 |
Ranged (%) | 60.3 | 38.4 | 59.6 | 60.9 | 40.9 | 65.4 | 63.3 | 58.3 | 53.8 |
Unranged (%) | 39.7 | 61.6 | 40.4 | 39.1 | 59.1 | 34.6 | 36.7 | 41.7 | 46.2 |
Mass calib. (peaks/interp.) | Lin. Method | ||||||||
(M/∆M) for 40Ca++ | 198.2 | 261.4 | 298.6 | 241.6 | 223.4 | 152.6 | 70.4 | 158.4 | 220.4 |
(M/∆M10)c | 99.2 | 122.4 | 126.6 | 116.4 | 105.7 | 68.8 | 42 | 75.1 | 105.3 |
Background (ppm/ns) | 19 | 7.2 | 38.1 | 36 | 8 | 36.4 | 29.4 | 89.9 | 22.7 |
Recontruction | |||||||||
Final speciment state | Fractured | Fractured | Fractured | Fractured | Fractured | Fractured | Fractured | Fractured | Fractured |
Pre-/post-analysis imaging | SEM/n.a | SEM/n.a | SEM/n.a | SEM/n.a | SEM/n.a | SEM/n.a | SEM/n.a | SEM/n.a | SEM/n.a |
Radius evolution model | “shank” | “shank” | “shank” | “shank” | “shank” | “shank” | “shank” | “shank” | “shank” |
Avg. atomic volume (nm3) | 0.0435 | 0.0435 | 0.0435 | 0.0435 | 0.0435 | 0.0435 | 0.0435 | 0.0435 | 0.0435 |
Vinitial; Vfinal (V) | 4300;5700 | 1300;4400 | 1800;5400 | 3600;5300 | 1300;4700 | 1600;5200 | 4200;6000 | 3900;5000 | 4200;5400 |
Specimen | 1536 | 1620 | 1592 | 1619 | 1670 | 1560 | 1618 | 1643 | 1644 |
---|---|---|---|---|---|---|---|---|---|
Sample Description | Yatalase 0 mg·mL−1 | Yatalase 0.12 mg·mL−2 | Yatalase 1.2 mg·mL−1 | Chitin nanofiber | |||||
m/z | Ion type | ||||||||
12*† | C+ | n.d. | C+ | C+ | n.d. | C+ | n.d. | C+ | C+ |
14 | n.d. | n.d. | n.d. | n.d. | n.d. | N+ | N+ | N+ | n.d. |
15*† | NH+ | NH+ | NH+ | NH+ | NH+ | NH+ | NH+ | NH+ | NH+ |
16 | O+ | O+ | O+ | O+ | O+ | O+ | O+ | O+ | O+ |
17 | OH+ | OH+ | OH+ | OH+ | OH+ | OH+ | OH+ | OH+ | OH+ |
18 | H2O+ | H2O+ | H2O+ | H2O+ | H2O+ | H2O+ | H2O+ | H2O+ | H2O+ |
19 | H3O+ | H3O+ | H3O+ | H3O+ | H3O+ | H3O+ | H3O+ | H3O+ | H3O+ |
20 | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ |
21 | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ |
21.5 | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ |
22 | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ |
23 | Na+ | Na+ | Na+ | Na+ | Na+ | Na+ | Na+ | Na+ | Na+ |
24 | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ | Ca2+ |
25* | n.d. | n.d. | C2H+ | C2H+ | n.d. | C2H+ | C2H+ | n.d. | n.d. |
26* | C2H2+ | n.d. | n.d. | C2H2+ | n.d. | C2H2+ | C2H2+ | n.d. | n.d. |
28*† | CO+ | CO+ | CO+ | CO+ | CO+ | CO+ | CO+ | CO+ | CO+ |
29* | COH+ | COH+ | COH+ | COH+ | COH+ | COH+ | COH+ | COH+ | COH+ |
30* | COH2+ | COH2+ | COH2+ | COH2+ | COH2+ | COH2+ | COH2+ | COH2+ | COH2+ |
31† | n.d. | n.d. | P+ | P+ | n.d. | P+ | P+ | n.d. | n.d. |
32 | O2+ | O2+ | O2+ | O2+ | O2+ | O2+ | O2+ | O2+ | O2+ |
33† | n.d. | n.d. | S+ | S+ | n.d. | S+ | S+ | O2+ | O2+ |
34† | n.d. | n.d. | S+ | S+ | n.d. | S+ | S+ | n.d. | n.d. |
38† | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | C2N+ | n.d. | n.d. |
40* | C2O+ | C2O+ | C2O+ | C2O+ | C2O+ | C2O+ | C2O+ | C2O+ | C2O+ |
41* | n.d. | n.d. | C2OH+ | n.d. | n.d. | n.d. | C2OH+ | n.d. | n.d. |
42* | C2OH2+ | C2OH2+ | C2OH2+ | C2OH2+ | n.d. | C2OH2+ | C2OH2+ | n.d. | C2OH2+ |
43* | n.d. | n.d. | n.d. | HCNO+ | n.d. | HCNO+ | HCNO+ | n.d. | HCNO+ |
44 | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ |
45 | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ | CO2+ |
46 | CO2+ | n.d. | CO2+ | CO2+ | n.d. | CO2+ | CO2+ | CO2+ | CO2+ |
48 | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ |
49 | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ |
49.5 | Ca2O2+ | n.d. | Ca2O2+ | Ca2O2+ | n.d. | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ |
50 | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ |
51 | Ca2O2+ | n.d. | Ca2O2+ | Ca2O2+ | n.d. | n.d. | n.d. | n.d. | n.d. |
52 | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | n.d. | Ca2O2+ |
56 | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ |
57 | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ |
58 | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ |
59 | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ |
60 | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ | CaO+ |
61* | n.d. | C2O2H5+ | C2O2H5+ | C2O2H5+ | n.d. | C2O2H5+ | C2O2H5+ | C2O2H5+ | C2O2H5+ |
62† | n.d. | n.d. | C2SH4 | C2SH5 | n.d. | n.d. | n.d. | n.d. | n.d. |
64* | C4O+ | n.d. | C4O+ | C4O+ | n.d. | C4O+ | C4O+ | n.d. | n.d. |
68* | C3O2+ | C3O2+ | C3O2+ | C3O2+ | C3O2+ | C3O2+ | C3O2+ | C3O2+ | C3O2+ |
70 | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ |
71 | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ | Ca2CO32+ |
72 | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ |
74 | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ |
75 | n.d. | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ |
76 | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ | CaO2+ |
79* | n.d. | C4NOH+ | C4NOH+ | C4NOH+ | C4NOH+ | C4NOH+ | C4NOH+ | n.d. | C4NOH+ |
80* | C4O2+ | C4O2+ | C4O2+ | C4O2+ | C4O2+ | C4O2+ | C4O2+ | C4O2+ | C4O2+ |
82* | C4O2H2+ | C4O2H2+ | C4O2H2 | n.d. | n.d. | C4O2H2+ | C4O2H2+ | n.d. | C4O2H2+ |
87.5* | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | C6H9N052+ |
90* | n.d. | C3H6O3+ | C3H6O3+ | C3H6O3+ | n.d. | n.d. | C3H6O3+ | n.d. | n.d. |
92* | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | C5O2+ | n.d. | n.d. |
100 | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ |
104 | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | CaCO3+ | n.d. | CaCO3+ |
112 | Ca2O2+ | Ca2O2+ | Ca2O2+ | Ca2O2+ | n.d. | Ca2O2+ | n.d. | n.d. | n.d. |
113* | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | C6O2H9 | n.d. | n.d. |
118* | n.d. | C4NO3H8+ | C4NO3H8+ | C4NO3H8+ | n.d. | C4NO3H8+ | n.d. | n.d. | C4NO3H8+ |
119* | n.d. | n.d. | C4NO3H9+ | n.d. | n.d. | n.d. | n.d. | n.d. | C4NO3H9+ |
120† | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | C3O2NSH6+ | n.d. | n.d. |
144 | Ca2O4+ | Ca2O4+ | Ca2O4+ | Ca2O4+ | Ca2O4+ | Ca2O4+ | Ca2O4+ | Ca2O4+ | Ca2O4+ |
175 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | C6H9N05+ |
188 | Ca2CO6+ | Ca2CO6+ | Ca2CO6+ | Ca2CO6+ | Ca2CO6+ | Ca2CO6+ | Ca2CO6+ | n.d. | Ca2CO6+ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Huerta, A.; Suzuki, M.; Cappelli, C.; Laiginhas, F.; Kintsu, H. Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies. C 2019, 5, 50. https://doi.org/10.3390/c5030050
Pérez-Huerta A, Suzuki M, Cappelli C, Laiginhas F, Kintsu H. Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies. C. 2019; 5(3):50. https://doi.org/10.3390/c5030050
Chicago/Turabian StylePérez-Huerta, Alberto, Michio Suzuki, Chiara Cappelli, Fernando Laiginhas, and Hiroyuki Kintsu. 2019. "Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies" C 5, no. 3: 50. https://doi.org/10.3390/c5030050
APA StylePérez-Huerta, A., Suzuki, M., Cappelli, C., Laiginhas, F., & Kintsu, H. (2019). Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies. C, 5(3), 50. https://doi.org/10.3390/c5030050