Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Studied Scenarios
2.2. Assumptions for Materials and Scenarios
2.3. Basic Plant Description
2.4. Sensitivity Analysis
2.5. Economic Analysis
3. Results
3.1. Digester Performance
3.2. Valorization of Digestates by Pyrolysis
3.3. Sensitivity Analysis
3.4. Economic Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Battista, F.; Frison, N.; Bolzonella, D. Energy and nutrients’ recovery in anaerobic digestion of agricultural biomass: An Italian perspective for future applications. Energies 2019, 12, 3287. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, M.; Szara, E.; Sosulski, T.; Wąs, A.; Van Pruissen, G.W.; Cornelissen, R.L.; Borowik, M.; Konkol, M. A Bio-Refinery Concept for N and P Recovery—A Chance for Biogas Plant Development. Energies 2019, 12, 155. [Google Scholar]
- O’Keeffe, S.; Thrän, D. Energy crops in regional biogas systems: An integrative spatial LCA to assess the influence of crop mix and location on cultivation GHG emissions. Sustainability 2020, 12, 237. [Google Scholar]
- Klepel, O.; Danneberg, N. Porous carbon monoliths made from cellulose and starch. C J. Carbon Res. 2020, 6, 32. [Google Scholar] [CrossRef]
- Wang, H.; Lim, T.T.; Duong, C.; Zhang, W.; Xu, C.; Yan, L.; Mei, Z.; Wang, W. Long-term mesophilic anaerobic co-digestion of swine manure with corn stover and microbial community analysis. Microorganisms 2020, 8, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Lyons, G.; Bartlett, J. Economic and environmental analysis of small-scale anaerobic digestion plants on Irish dairy farms. Energies 2020, 13, 637. [Google Scholar]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Cartes, J.; Neumann, P.; Hospido, A.; Vidal, G. Life cycle assessment of management alternatives for sludge from sewage treatment plants in Chile: Does advanced anaerobic digestion improve environmental performance compared to current practices? J. Mater. Cycles Waste Manag. 2018, 20, 1530–1540. [Google Scholar] [CrossRef]
- Sensai, P.; Thangamani, A.; Visvanathan, C. Thermophilic co-digestion feasibility of distillers grains and swine manure: Effect of C/N ratio and organic loading rate during high solid anaerobic digestion (HSAD). Environ. Technol. 2014, 35, 2569–2574. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Antoniou, N.; Barakat, A.; Zabaniotou, A. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl. Energy 2015, 148, 32–38. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, J.; Zhao, M.; Cheng, S.; Wang, L.; Mang, H.P.; Li, Z. What could China give to and take from other countries in terms of the development of the biogas industry? Sustainability 2020, 12, 1490. [Google Scholar] [CrossRef] [Green Version]
- Arhoun, B.; Gomez-Lahoz, C.; Abdala-Diaz, R.T.; Rodriguez-Maroto, J.M.; Garcia-Herruzo, F.; Vereda-Alonso, C. Production of biogas from co-digestion of livestock and agricultural residues: A case study. J. Environ. Sci. Health A 2017, 52, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Abouelenien, F.; Namba, Y.; Nishio, N.; Nakashimada, Y. Dry co-digestion of poultry manure with agriculture wastes. Appl. Biochem. Biotechnol. 2016, 178, 932–946. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, U.R.; Sims, R.E.; Monti, A. Direct and indirect land-use competition issues for energy crops and their sustainable production–an overview. Biofuels Bioprod. Biorefin. 2010, 4, 692–704. [Google Scholar] [CrossRef]
- Fierro, J.; Martínez, J.E.; Rosas, J.G.; Blanco, D.; Gómez, X. Anaerobic codigestion of poultry manure and sewage sludge under solid-phase configuration. Environ. Prog. Sustain. Energy 2014, 33, 866–872. [Google Scholar] [CrossRef]
- Wu, J.; Cao, Z.; Hu, Y.; Wang, X.; Wang, G.; Zuo, J.; Wang, K.; Qian, Y. Microbial insight into a pilot-scale enhanced two-stage high-solid anaerobic digestion system treating waste activated sludge. Int. J. Environ. Res. Public Health 2017, 14, 1483. [Google Scholar] [CrossRef] [Green Version]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronmy Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Świca, I.; Rudnicka, A. The cultivation of lipid-rich microalgae biomass as anaerobic digestate valorization technology—A pilot-scale study. Processes 2020, 8, 517. [Google Scholar]
- Barreiro-Vescovo, S.; Barbera, E.; Bertucco, A.; Sforza, E. Integration of microalgae cultivation in a biogas production process from organic municipal solid waste: From laboratory to pilot scale. ChemEngineering 2020, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Bueis, R.; Mulas, R.; Gómez, X.; González-Andrés, F. Innovative liquid formulation of digestates for producing a biofertilizer based on Bacillus siamensis: Field testing on sweet pepper. J. Plant Nutr. Soil Sci. 2017, 180, 748–758. [Google Scholar] [CrossRef]
- Posmanik, R.; Martinez, C.M.; Cantero-Tubilla, B.; Cantero, D.; Sills, D.; Cocero, M.J.; Tester, J.W. Acid and alkali catalyzed hydrothermal liquefaction of dairy manure digestate and food waste. ACS Sustain. Chem. Eng. 2018, 6, 2724–2732. [Google Scholar] [CrossRef]
- Nisticò, R.; Guerretta, F.; Benzi, P.; Magnacca, G.; Mainero, D.; Montoneri, E. Thermal conversion of municipal biowaste anaerobic digestate to valuable char. Resources 2019, 8, 24. [Google Scholar]
- Zhang, W.; Li, H.; Tang, J.; Lu, H.; Liu, Y. Ginger straw waste-derived porous carbons as effective adsorbents toward methylene Blue. Molecules 2019, 24, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakoor, M.B.; Ali, S.; Rizwan, M.; Abbas, F.; Bibi, I.; Riaz, M.; Khalil, U.; Niazi, N.K.; Rinklebe, J. A review of biochar-based sorbents for separation of heavy metals from water. Int. J. Phytoremediat. 2020, 22, 111–126. [Google Scholar] [CrossRef]
- Contescu, C.I.; Adhikari, S.P.; Gallego, N.C.; Evans, N.D.; Biss, B.E. Activated carbons derived from high-temperature pyrolysis of lignocellulosic biomass. C J. Carbon Res. 2018, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- González, J.; Sánchez, M.E.; Gómez, X. Enhancing anaerobic digestion: The effect of carbon conductive materials. C J. Carbon Res. 2018, 4, 59. [Google Scholar] [CrossRef] [Green Version]
- Dudek, M.; Świechowski, K.; Manczarski, P.; Koziel, J.A.; Białowiec, A. The effect of biochar addition on the biogas production kinetics from the anaerobic digestion of brewers’ spent grain. Energies 2019, 12, 1518. [Google Scholar] [CrossRef] [Green Version]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.J.; Belver, C. Review on activated carbons by chemical activation with FeCl3. C J. Carbon Res. 2020, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Comparison of the properties of activated carbons produced in one-stage and two-stage processes. C J. Carbon Res. 2018, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, D.; Torri, C. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 2016, 38, 167–173. [Google Scholar] [CrossRef]
- Pandey, D.S.; Katsaros, G.; Lindfors, C.; Leahy, J.J.; Tassou, S.A. Fast pyrolysis of poultry litter in a bubbling fluidised bed reactor: Energy and nutrient recovery. Sustainability 2019, 11, 2533. [Google Scholar] [CrossRef] [Green Version]
- Nigam, N.; Shanker, K.; Khare, P. Valorisation of residue of Mentha arvensis by pyrolysis: Evaluation of agronomic and environmental benefits. Waste Biomass Valorization 2019, 9, 1909–1919. [Google Scholar] [CrossRef]
- Lustosa Carvalho, M.; de Moraes, M.T.; Cerri, C.E.P.; Cherubin, M.R. Biochar amendment enhances water retention in a tropical sandy soil. Agriculture 2020, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Pujol Pereira, E.I.; Léchot, J.; Feola Conz, R.; da Silva Cardoso, A.; Six, J. Biochar enhances nitrous oxide reduction in acidic but not in near-neutral pH soil. Soil Syst. 2019, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Dutta, T.; Kwon, E.; Bhattacharya, S.S.; Jeon, B.H.; Deep, A.; Uchimiya, M.; Kim, K.H. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review. Gcb Bioenergy 2017, 9, 990–1004. [Google Scholar] [CrossRef]
- Liu, T.; Yang, L.; Hu, Z.; Xue, J.; Lu, Y.; Chen, X.; Griffiths, B.S.; Whalen, J.K.; Liu, M. Biochar exerts negative effects on soil fauna across multiple trophic levels in a cultivated acidic soil. Biol. Fertil. Soils 2020, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Cui, B.; Yin, P.; Zhang, C. Design and preparation of biomass-derived carbon materials for supercapacitors: A Review. C J. Carbon Res. 2018, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. A Review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water. C J. Carbon Res. 2018, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valorization 2016, 7, 201–235. [Google Scholar] [CrossRef]
- Arenas, C.B.; Meredith, W.; Snape, C.E.; Gómez, X.; González, J.F.; Martinez, E.J. Effect of char addition on anaerobic digestion of animal by-products: Evaluating biogas production and process performance. Environ. Sci. Pollut. Res. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gómez, X.; Meredith, W.; Fernández, C.; Sánchez-García, M.; Díez-Antolínez, R.; Garzón-Santos, J.; Snape, C.E. Evaluating the effect of biochar addition on the anaerobic digestion of swine manure: Application of Py-GC/MS. Environ. Sci. Pollut. Res. 2018, 25, 25600–25611. [Google Scholar] [CrossRef] [PubMed]
- Martínez, E.J.; Rosas, J.G.; Sotres, A.; Moran, A.; Cara, J.; Sánchez, M.E.; Gómez, X. Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities. Biochem. Eng. J. 2018, 137, 314–325. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Fernández, C.; Gómez, X.; Morán, A. Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 2011, 16, 1044. [Google Scholar] [CrossRef]
- Fierro, J.; Martinez, E.J.; Rosas, J.G.; Fernández, R.A.; López, R.; Gomez, X. Co-Digestion of swine manure and crude glycerine: Increasing glycerine ratio results in preferential degradation of labile compounds. Water Air Soil Pollut. 2016, 227, 78. [Google Scholar] [CrossRef]
- Fujita, M.; Scharer, J.M.; Moo-Young, M. Effect of corn stover addition on the anaerobic digestion of swine manure. Agric. Wastes 1980, 2, 177–184. [Google Scholar] [CrossRef]
- Fischer, J.R.; Iannotti, E.L.; Fulhage, C.D. Production of methane gas from combinations of wheat straw and swine manure. Trans. ASAE 1983, 26, 546–548. [Google Scholar] [CrossRef]
- Lehtomäki, A.; Huttunen, S.; Rintala, J.A. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resour. Conserv. Recycl. 2007, 51, 591–609. [Google Scholar] [CrossRef]
- Comino, E.; Rosso, M.; Riggio, V. Investigation of increasing organic loading rate in the co-digestion of energy crops and cow manure mix. Bioresour. Technol. 2010, 101, 3013–3019. [Google Scholar] [CrossRef]
- Brown, B.B.; Yiridoe, E.K.; Gordon, R. Impact of single versus multiple policy options on the economic feasibility of biogas energy production: Swine and dairy operations in Nova Scotia. Energy Policy 2007, 35, 4597–4610. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_production_-_crops (accessed on 21 May 2020).
- Whiting, A.; Azapagic, A. Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 2014, 70, 181–193. [Google Scholar] [CrossRef]
- Kopp, J.; Dichtl, N. Influence of the free water content on the dewaterability of sewage sludges. Water Sci. Technol. 2001, 44, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Evangelisti, S.; Lettieri, P.; Borello, D.; Clift, R. Life cycle assessment of energy from waste via anaerobic digestion: A UK case study. Waste Manag. 2014, 34, 226–237. [Google Scholar] [CrossRef]
- Titiladunayo, I.F.; McDonald, A.G.; Fapetu, O.P. Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valorization 2012, 3, 311–318. [Google Scholar] [CrossRef]
- Abnisa, F.; Arami-Niya, A.; Daud, W.W.; Sahu, J.N. Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. BioEnergy Res. 2013, 6, 830–840. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A. Production and analysis of fast pyrolysis oils from proteinaceous biomass. BioEnergy Res. 2011, 4, 303–411. [Google Scholar] [CrossRef]
- Salman, C.A.; Schwede, S.; Thorin, E.; Yan, J. Predictive modelling and simulation of integrated pyrolysis and anaerobic digestion process. Energy Procedia 2017, 105, 850–857. [Google Scholar] [CrossRef]
- Kim, Y.; Parker, W.A. Technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour. Technol. 2008, 99, 1409–1416. [Google Scholar] [CrossRef]
- Fonts, I.; Azuara, M.; Gea, G.; Murillo, M.B. Study of the pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrolysis 2009, 85, 184–191. [Google Scholar] [CrossRef]
- Özbay, G.; Pekgözlü, A.K.; Ozcifci, A. The effect of heat treatment on bio-oil properties obtained from pyrolysis of wood sawdust. Eur. J. Wood Wood Prod. 2015, 73, 507–514. [Google Scholar] [CrossRef]
- Gebrezgabher, S.A.; Meuwissen, M.P.; Prins, B.A.; Lansink, A.G.O. Economic analysis of anaerobic digestion—A case of Green power biogas plant in The Netherlands. NJAS-Wagening. J. Life Sci. 2010, 57, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Naqi, A.; Kuhn, J.N.; Joseph, B. Techno-economic analysis of producing liquid fuels from biomass via anaerobic digestion and thermochemical conversion. Biomass Bioenergy 2019, 130, 105395. [Google Scholar] [CrossRef]
- Carrasco, J.L.; Gunukula, S.; Boateng, A.A.; Mullen, C.A.; DeSisto, W.J.; Wheeler, M.C. Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production. Fuel 2017, 193, 477–484. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Andriamanohiarisoamanana, F.J.; Yasui, S.; Iwasaki, M.; Nishida, T.; Ihara, I.; Umetsu, K. Feasibility study of a centralized biogas plant performance in a dairy farming area. J. Mater. Cycles Waste Manag. 2018, 20, 314–322. [Google Scholar] [CrossRef]
- Kintl, A.; Vítěz, T.; Elbl, J.; Vítězová, M.; Dokulilová, T.; Nedělník, J.; Skládanka, J.; Brtnický, M. Mixed culture of corn and white lupine as an alternative to silage made from corn monoculture intended for biogas production. BioEnergy Res. 2019, 12, 694–702. [Google Scholar] [CrossRef]
- González, R.; Smith, R.; Blanco, D.; Fierro, J.; Gómez, X. Application of thermal analysis for evaluating the effect of glycerine addition on the digestion of swine manure. J. Therm. Anal. Calorim. 2019, 135, 2277–2286. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Bernal, M.P. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- Kurt, M.; Aksoy, A.; Sanin, F.D. Evaluation of solar sludge drying alternatives by costs and area requirements. Water Res. 2015, 82, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Bennamoun, L. Solar drying of wastewater sludge: A review. Renew. Sustain. Energy Rev. 2012, 16, 1061–1073. [Google Scholar] [CrossRef]
- Available online: https://www.thermo-system.com/es/tambien-resolvemos-sus-problemas-de-lodos (accessed on 13 June 2020).
- González-Arias, J.; Gil, M.V.; Fernández, R.Á.; Martínez, E.J.; Fernández, C.; Papaharalabos, G.; Gómez, X. Integrating anaerobic digestion and pyrolysis for treating digestates derived from sewage sludge and fat wastes. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Soltan, M.; Elsamadony, M.; Mostafa, A.; Awad, H.; Tawfik, A. Harvesting zero waste from co-digested fruit and vegetable peels via integrated fermentation and pyrolysis processes. Environ. Sci. Pollut. Res. 2019, 26, 10429–10438. [Google Scholar] [CrossRef] [PubMed]
- Piñas, J.A.V.; Venturini, O.J.; Lora, E.E.S.; del Olmo, O.A.; Roalcaba, O.D.C. An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems. Renew. Energy 2019, 139, 40–51. [Google Scholar] [CrossRef]
- Win, S.S.; Hegde, S.; Chen, R.B.; Trabold, T.A. Feasibility Assessment of Low-Volume Anaerobic Digestion Systems for Institutional Food Waste Producers. In Proceedings of the ASME 2017 11th International Conference on Energy Sustainability Collocated with the ASME 2017 Power Conference Joint with ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers Digital Collection, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar] [CrossRef]
- Campbell, R.M.; Anderson, N.M.; Daugaard, D.E.; Naughton, H.T. Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Appl. Energy 2018, 230, 330–343. [Google Scholar] [CrossRef]
- Available online: https://www.rensmart.com/Calculators/KWH-to-CO2 (accessed on 13 June 2020).
- De Dias Oliveira, M.E.; Vaughan, B.E.; Rykiel, E.J. Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint. BioScience 2005, 55, 593–602. [Google Scholar] [CrossRef]
Plant Characteristics | Value | Unit |
---|---|---|
Digester volume ** | 2400 | m3 |
HRT | 45 | d |
Scenario 2: Co-digestion mixture with crop wastes (8% w/w) | ||
Plant treatment capacity | 15 250 | t/year |
Lignocellulosic waste | 1250 | t/year |
TS | 140 | g/L |
VS * | 77 | % |
Scenario 3: Co-digestion mixture with residual glycerine (6% v/v) | ||
Glycerine | 1050 | t/year |
TS | 114.0 | g/L |
VS * | 91.6 | g/L |
Digestion Performance Parameter | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
Substrate | Swine Manure | Swine Manure + Crop Wastes | Swine Manure + Glycerine |
OLR (kg/m3 d) | 1.5 | 2.4 | 2.3 |
Daily methane production (m3/d) | 523 | 890 | 1600 |
SV digester (g/L) | 17.6 | 65.6 | 30.5 |
%SV digester | 44.4 | 67.6 | 70 |
Daily amount of digestate produced (t/d) * | 6.1 | 14.1 | 8.2 |
Digester thermal needs (MJ/d): Summer period | 3200 | 3500 | 3980 |
Digester thermal needs (MJ/d): Winter period | 4900 | 5700 | 5650 |
Daily electricity production (kWh) from complete biogas valorization | 1770 | 3000 | 5400 |
Thermal energy available (MJ/d) | 9560 | 16,400 | 29,155 |
Pyrolysis Performance Parameters | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
Energy demand for drying (MJ/day) | 15,900 | 39,270 | 21,930 |
Pyrolysis products | |||
Pyrolysis gas (m3/day) | 215 | 500 | 290 |
Bio-oil (m3/day) | 400 | 940 | 550 |
Biochar (kg/day) | 520 | 1205 | 700 |
Thermal needs (MJ/day) | 3040 | 7050 | 4100 |
Energy available from pyrolysis products | |||
Pyrolysis gas (MJ/day) | 2570 | 5980 | 3480 |
Bio-oil (MJ/day) | 7540 | 17,490 | 10,180 |
Scenario 1 | Scenario 2 | Scenario 3 | |
---|---|---|---|
Energy demand for digester and drying (MJ/day) | |||
Summer | 19,080 | 42,750 | 25,905 |
Winter | 20,765 | 45,000 | 27,575 |
Energy supplied to the burner (MJ/day) | |||
Summer | 5440 | 21,660 | Not applicable |
Winter | 9020 | 26,430 | Not applicable |
Daily Generation of Electricity (kWh) | |||
Summer | 2546 | 3985 | 7142 |
Winter | 2208 | 3535 |
Factors | Responses | |||||
---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | |||||
X1 | X2 | X3 | Y1 | Y2 | Y1 | Y2 |
% Bio-oil yield | HHV Bio-oil | %TS dewat dig | Daily Electricity (kWh) | Heat burner (MJ/day) | Daily Electricity (kWh) | Heat burner (MJ/day) |
1 | 1 | 1 | 3371 | 117 | 6444 | 3534 |
−1 | 1 | 1 | 2253 | 6280 | 3850 | 17,830 |
1 | −1 | 1 | 3028 | 2005 | 5650 | 7914 |
−1 | −1 | 1 | 2026 | 7528 | 3324 | 20,726 |
1 | 1 | −1 | 2302 | 11,440 | 3856 | 30,943 |
−1 | 1 | −1 | 1184 | 17,601 | 2470 | 38,576 |
1 | −1 | −1 | 1960 | 13,328 | 3060 | 35,323 |
−1 | −1 | −1 | 957 | 18,850 | 736 | 48,134 |
−1.682 | 0 | 0 | 1162 | 17,717 | 4469 | 27,564 |
1.682 | 0 | 0 | 781 | 19,821 | 326 | 50,389 |
0 | −1.682 | 0 | 1327 | 16,814 | 1593 | 43,411 |
0 | 1.682 | 0 | 1794 | 14,240 | 2676 | 37,441 |
0 | 0 | −1.682 | 1061 | 20,811 | 927 | 53,217 |
0 | 0 | 1.682 | 2891 | 1438 | 5356 | 6317 |
Y1: Electricity (kWh/day) | Y2: Heat Burner (MJ/day) | |||
---|---|---|---|---|
Coefficient | Value | p | Value | p |
β0 | −8970.8 | 0.173 | 106,149.4 | 0.024 |
β1 | 263.5 | 0.171 | −1451.8 | 0.172 |
β2 | 140.9 | 0.424 | −776.2 | 0.424 |
β3 | 538.5 | 0.027 | −5701.7 | 0.003 |
β1β2 | 29.0 | 0.895 | −159.9 | 0.895 |
β1β3 | −0.005 | 0.999 | 0.030 | 0.999 |
β2β3 | −0.005 | 0.999 | 0.030 | 0.999 |
β11 | 3514.4 | 0.131 | −30,885.8 | 0.039 |
β22 | 3722.4 | 0.115 | −32,031.8 | 0.035 |
β33 | 3869.4 | 0.105 | −33,588.2 | 0.030 |
R2 | 0.84658 | 0.93914 | ||
R2 adj | 0.50138 | 0.80221 |
Y1: Electricity (kWh/day) | Y2: Heat Burner (MJ/day) | |||
---|---|---|---|---|
Coefficient | Value | p | Value | p |
β0 | −15,917.7 | 0.464 | 21,8801.5 | 0.113 |
β1 | 121.7 | 0.843 | −670.7 | 0.843 |
β2 | 415.3 | 0.510 | −2288.5 | 0.510 |
β3 | 1215. | 0.102 | −13,314.9 | 0.014 |
β1β2 | −83.8 | 0.916 | 461.8 | 0.916 |
β1β3 | 151.1 | 0.850 | −832.7 | 0.850 |
β2β3 | −151.1 | 0.850 | 832.7 | 0.850 |
β11 | 6473.9 | 0.390 | −63,562.1 | 0.161 |
β22 | 6380.9 | 0.397 | −63,049.6 | 0.164 |
β33 | 6736.7 | 0.373 | −66,817.2 | 0.146 |
R2 | 0.61226 | 0.84799 | ||
R2 adj | −0.26016 | 0.50596 |
Plant Characteristics | Value |
---|---|
Scenario 2: Co-substrate | crop wastes |
Scenario 2: Plant treatment capacity (t/year) | 15,250 |
Scenario 3: Co-substrate | glyceryne |
Scenario 3: Plant treatment capacity (t/year) | 15,050 |
Digestion Plant, Initial Capital Investment (million US$) | 2.8 |
Pyrolysis Plant, Initial Capital Investment (million US$) | 1.2 |
Feedstock price: crop wastes (US$/t) | 10 |
Feedstock price: residual glycerine (US$/L) | 13.5 |
Electricity selling price (cUS$/kWh) | 12–40 |
Char selling prince (US$/t) | 200–600 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, R.; González, J.; Rosas, J.G.; Smith, R.; Gómez, X. Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C 2020, 6, 43. https://doi.org/10.3390/c6020043
González R, González J, Rosas JG, Smith R, Gómez X. Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C. 2020; 6(2):43. https://doi.org/10.3390/c6020043
Chicago/Turabian StyleGonzález, Rubén, Judith González, José G. Rosas, Richard Smith, and Xiomar Gómez. 2020. "Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis" C 6, no. 2: 43. https://doi.org/10.3390/c6020043
APA StyleGonzález, R., González, J., Rosas, J. G., Smith, R., & Gómez, X. (2020). Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C, 6(2), 43. https://doi.org/10.3390/c6020043