Amperometric Biosensor Based on Laccase Enzyme, Gold Nanoparticles, and Glutaraldehyde for the Determination of Dopamine in Biological and Environmental Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Apparatus
2.3. Preparation of the Gold Nanoparticles
2.4. Preparation of the Biosensor Using Laccase Enzyme, AuNPs, and Glutaraldehyde
2.5. Preparation of the Synthetic Urine, Bovine Serum and River Water Samples
3. Results and Discussion
3.1. Morphological Characterization of the Materials
3.2. Using the Lac-Glu-AuNPs/CPE Biosensor for the Analysis of the Electrochemical Behavior of Dopamine
3.3. Optimization of the Lac-Glu-AuNPs/CPE Sensor
3.4. Amperometric Determination of Dopamine
3.5. Study of Repeatability and Interference Effects
3.6. Biosensor Stability after Storage
3.7. Application of the Proposed Amperometric Biosensor in Synthetic Urine, Bovine Serum and Water Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fontenele, E.G.; Martins, M.R.; Quidute, A.R.; Montenegro, R.M., Jr. Environmental contaminants and endocrine disruptors. Arq. Bras. Endocrinol. E Metabol. 2010, 54, 6–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waring, R.H.; Harris, R.M. Endocrine disrupters: A human risk? Mol. Cell. Endocrinol. 2005, 244, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Kopin, I.J.; Goldstein, D.S. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacol. Rev. 2004, 56, 331–349. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Strafella, A.P. Dopaminergic neurotransmission in the human brain: New lessons from perturbation and imaging. Neurosci. A Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2012, 18, 149–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, N.R.; Sreedevi, G.; Prabhavathi, K.; Chakravarthy, I.E. Spectrophotometric determination of dopamine in pharmaceutical formulations. J. Anal. Chem. 2005, 60, 252–253. [Google Scholar] [CrossRef]
- Chatterjee, D.; Gerlai, R. High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish. Behav. Brain Res. 2009, 200, 208–213. [Google Scholar] [CrossRef]
- Zuo, F.; Jin, L.; Fu, X.; Zhang, H.; Yuan, R.; Chen, S. An electrochemiluminescent sensor for dopamine detection based on a dual-molecule recognition strategy and polyaniline quenching. Sens. Actuators B Chem. 2017, 244, 282–289. [Google Scholar] [CrossRef]
- Kartsova, L.A.; Sidorova, A.A.; Kazakov, V.A.; Bessonova, E.A.; Yashin, A.Y. Determination of Catecholamines by Capillary Electrophoresis and Reversed-Phase High-Performance Liquid Chromatography. J. Anal. Chem. 2004, 59, 737–741. [Google Scholar] [CrossRef]
- Fotopoulou, M.A.; Ioannou, P.C. Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography. Anal. Chim. Acta 2002, 462, 179–185. [Google Scholar] [CrossRef]
- Carrera, V.; Sabater, E.; Vilanova, E.; Sogorb, M.A. A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J. Chromatogr. B 2007, 847, 88–94. [Google Scholar] [CrossRef]
- Cho, I.-H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res. 2020, 24, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldrian, P. Fungal laccases—Occurrence and properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianfreda, L.; Xu, F.; Bollag, J.-M. Laccases: A Useful Group of Oxidoreductive Enzymes. Bioremediation J. 1999, 3, 1–26. [Google Scholar] [CrossRef]
- Yaropolov, A.I.; Skorobogat’ko, O.V.; Vartanov, S.S.; Varfolomeyev, S.D. Laccase. Appl. Biochem. Biotechnol. 1994, 49, 257–280. [Google Scholar] [CrossRef]
- Ramírez, P.; Mano, N.; Andreu, R.; Ruzgas, T.; Heller, A.; Gorton, L.; Shleev, S. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase. Biochim. Biophys. Acta 2008, 1777, 1364–1369. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, M.; Di Tuoro, D.; Arduini, F.; Moscone, D.; Cammarota, M.; Mita, D.G.; Lepore, M. Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection. Electrochim. Acta 2013, 109, 340–347. [Google Scholar] [CrossRef]
- Gouveia-Caridade, C.; Pauliukaite, R.; Brett, C.M.A. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol. Electrochim. Acta 2008, 53, 6732–6739. [Google Scholar] [CrossRef] [Green Version]
- Švancara, I.; Vytřas, K.; Barek, J.; Zima, J. Carbon Paste Electrodes in Modern Electroanalysis. Crit. Rev. Anal. Chem. 2001, 31, 311–345. [Google Scholar] [CrossRef]
- Silva, T.A.; Moraes, F.C.; Janegitz, B.C.; Fatibello-Filho, O. Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review. J. Nanomater. 2017, 2017, 4571614. [Google Scholar] [CrossRef] [Green Version]
- Islam, T.; Hasan, M.M. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020, 25, 5787. [Google Scholar] [CrossRef]
- Zeng, S.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Yu, X.; Luan, F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics 2011, 6, 491. [Google Scholar] [CrossRef]
- Pingarrón, J.M.; Yáñez-Sedeño, P.; González-Cortés, A. Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 2008, 53, 5848–5866. [Google Scholar] [CrossRef]
- Ojea-Jiménez, I.; Romero, F.M.; Bastús, N.G.; Puntes, V. Small Gold Nanoparticles Synthesized with Sodium Citrate and Heavy Water: Insights into the Reaction Mechanism. J. Phys. Chem. C 2010, 114, 1800–1804. [Google Scholar] [CrossRef]
- Baluta, S.; Lesiak, A.; Cabaj, J. Graphene Quantum Dots-based Electrochemical Biosensor for Catecholamine Neurotransmitters Detection. Electroanalysis 2018, 30, 1781–1790. [Google Scholar] [CrossRef]
- Laube, N.; Mohr, B.; Hesse, A. Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. J. Cryst. Growth 2001, 233, 367–374. [Google Scholar] [CrossRef]
- Anuar, N.S.; Basirun, W.J.; Shalauddin, M.; Akhter, S. A dopamine electrochemical sensor based on a platinum–silver graphene nanocomposite modified electrode. RSC Adv. 2020, 10, 17336–17344. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, L.; Zhang, X.; Liu, X.; Jian, J.; Kong, D.; Zeng, D.; Yuan, H.; Feng, S. Electrochemical dopamine sensor based on superionic conducting potassium ferrite. Biosens. Bioelectron. 2020, 153, 112045. [Google Scholar] [CrossRef] [PubMed]
- Atta, N.F.; Galal, A.; El-Said, D.M. Novel Design of a Layered Electrochemical Dopamine Sensor in Real Samples Based on Gold Nanoparticles/β-Cyclodextrin/Nafion-Modified Gold Electrode. ACS Omega 2019, 4, 17947–17955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pramoda, K.; Moses, K.; Maitra, U.; Rao, C.N.R. Superior Performance of a MoS2-RGO Composite and a Borocarbonitride in the Electrochemical Detection of Dopamine, Uric Acid and Adenine. Electroanalysis 2015, 27, 1892–1898. [Google Scholar] [CrossRef]
- Palanisamy, S.; Ku, S.; Chen, S.-M. Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim. Acta 2013, 180, 1037–1042. [Google Scholar] [CrossRef]
- Palanisamy, S.; Velusamy, V.; Ramaraj, S.; Chen, S.-W.; Yang, T.C.K.; Balu, S.; Banks, C.E. Facile synthesis of cellulose microfibers supported palladium nanospindles on graphene oxide for selective detection of dopamine in pharmaceutical and biological samples. Mater. Sci. Eng. C 2019, 98, 256–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, N.-N.; Wang, Y.-Z.; Yang, X.-Y.; Zong, H.-L.; Chen, Y.-X.; Ma, Z.; Chen, C.-X. A novel electrochemical biosensor for the determination of dopamine and ascorbic acid based on graphene oxide /poly(aniline-co-thionine) nanocomposite. J. Electroanal. Chem. 2020, 873, 114352. [Google Scholar] [CrossRef]
- Min, K.; Yoo, Y.J. Amperometric detection of dopamine based on tyrosinase–SWNTs–Ppy composite electrode. Talanta 2009, 80, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Li, M.; Pan, Z.; Li, D. A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode. Chem. Cent. J. 2012, 6, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Liu, P.; Ye, Y.; Li, J.; Zhao, W.; Huang, X. Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine. Sens. Actuators B Chem. 2014, 197, 292–299. [Google Scholar] [CrossRef]
- Singhal, A.; Choudhary, G.; Thakur, I.S. Characterization of laccase activity produced by Cryptococcus albidus. Prep. Biochem. Biotechnol. 2012, 42, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, C.; Tzanov, T.; Gübitz, G.M.; Cavaco-Paulo, A. Voltammetric monitoring of laccase-catalysed mediated reactions. Bioelectrochemistry 2002, 58, 149–156. [Google Scholar] [CrossRef] [Green Version]
Analyte | Electrode | Method | Linear Range (mol L−1) | LOD (mol L−1) | Ref. |
---|---|---|---|---|---|
Dopamine | Pt–Ag/Gr/GCE | DPV | 1.0 × 10−7–6.0 × 10−5 | 1.2 × 10−8 | [26] |
K2Fe4O7/GCE | DPV | 1.0 × 10−6–1.4 × 10−4 | 2.2 × 10−7 | [27] | |
NF-CD-AuNPs/Au | DPV | 5.0 × 10−8–2.0 × 10−4 | 6.0 × 10−10 | [28] | |
MoS2-RGO/CPE | DPV | 1.5 × 10−6–1.0 × 10−4 | 9.4 × 10−7 | [29] | |
RGO-PdNPs/GCE | LSV | 1.0 × 10−6–1.5 × 10−4 | 2.3 × 10−7 | [30] | |
GO-CMF/PdSPs/GCE | DPV | 3.0 × 10−7–1.96 × 10−4 | 2.3 × 10−8 | [31] | |
GO/P(ANI-co-THI)/GCE | DPV | 2.0 × 10−6–5.0 × 10−4 | 2.0 × 10−6 | [32] | |
Tyrosinase-SWNTs-Ppy/GCE | Amperometry | 5.0 × 10−6–5.0 × 10−5 | 5.0 × 10−6 | [33] | |
Lac/Si/MWCNTs/SPE | DPV | 1.3 × 10−7–8.55 × 10−5 | 4.2 × 10−7 | [34] | |
Lac/SiO2-PA/GCE | Amperometry | 9.9 × 10−7–1.03 × 10−4 | 2.6 × 10−7 | [35] | |
Lac-Glu-AuNPs/CPE | Amperometry | 8.0 × 10−7–6.2 × 10−5 | 6.0 × 10−8 | This work |
Matrices | Added (mol L−1) | Proposed Method (mol L−1) | Recovery ** (Sensor, %) |
---|---|---|---|
Found * | |||
Urine | 5.0 × 10−7 | (4.9 ± 0.2) × 10−7 | 98 |
5.0 × 10−6 | (5.1 ± 0.1) × 10−7 | 102 | |
Serum | 5.0 × 10−7 | (4.6 ± 0.3) × 10−7 | 92 |
5.0 × 10−6 | (4.8 ± 0.2) × 10−6 | 95 | |
River water | 5.0 × 10−7 | (4.7 ± 0.2) × 10−7 | 94 |
5.0 × 10−6 | (5.0 ± 0.2) × 10−6 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.M.; Wong, A.; Fatibello-Filho, O.; Moraes, F.C. Amperometric Biosensor Based on Laccase Enzyme, Gold Nanoparticles, and Glutaraldehyde for the Determination of Dopamine in Biological and Environmental Samples. C 2022, 8, 40. https://doi.org/10.3390/c8030040
Santos AM, Wong A, Fatibello-Filho O, Moraes FC. Amperometric Biosensor Based on Laccase Enzyme, Gold Nanoparticles, and Glutaraldehyde for the Determination of Dopamine in Biological and Environmental Samples. C. 2022; 8(3):40. https://doi.org/10.3390/c8030040
Chicago/Turabian StyleSantos, Anderson M., Ademar Wong, Orlando Fatibello-Filho, and Fernando C. Moraes. 2022. "Amperometric Biosensor Based on Laccase Enzyme, Gold Nanoparticles, and Glutaraldehyde for the Determination of Dopamine in Biological and Environmental Samples" C 8, no. 3: 40. https://doi.org/10.3390/c8030040
APA StyleSantos, A. M., Wong, A., Fatibello-Filho, O., & Moraes, F. C. (2022). Amperometric Biosensor Based on Laccase Enzyme, Gold Nanoparticles, and Glutaraldehyde for the Determination of Dopamine in Biological and Environmental Samples. C, 8(3), 40. https://doi.org/10.3390/c8030040