Changes of C, H, and N Elements of Corn Straw during the Microwave Heating Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental System
2.3. Experimental Procedures
3. Results and Discussion
3.1. Effect of Temperature on Migration of C, H, and N Elements
3.2. Effect of Residence Time on Migration of C, H, and N Elements
3.3. Effect of Microwave Power on Migration of C, H, and N Elements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amalina, F.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. Effect of process parameters on bio-oil yield from lignocellulosic biomass through microwave-assisted pyrolysis technology for sustainable energy resources: Current status. J. Anal. Appl. Pyrolysis 2023, 171, 105958. [Google Scholar] [CrossRef]
- Rajpoot, L.; Tagade, A.; Deshpande, G.; Verma, K.; Geed, S.R.; Patle, D.S.; Sawarkar, A.N. An overview of pyrolysis of de-oiled cakes for the production of biochar, bio-oil, and pyro-gas: Current status, challenges, and future perspective. Bioresour. Technol. Rep. 2022, 19, 101205. [Google Scholar] [CrossRef]
- Dong, F.; Wang, Y.; Su, B.; Hua, Y.; Zhang, Y. The process of peak CO2 emissions in developed economies: A perspective of industrialization and urbanization. Resour. Conserv. Recycl. 2019, 141, 61–75. [Google Scholar] [CrossRef]
- Gadkari, S.; Fidalgo, B.; Gu, S. Numerical investigation of microwave-assisted pyrolysis of lignin. Fuel Process. Technol. 2017, 156, 473–484. [Google Scholar] [CrossRef]
- Kamari, M.L.; Maleki, A.; Daneshpour, R.; Rosen, M.A.; Pourfayaz, F.; Nazari, M.A. Exergy, energy and environmental evaluation of a biomass-assisted integrated plant for multigeneration fed by various biomass sources. Energy 2023, 263, 125649. [Google Scholar] [CrossRef]
- Contescu, C.I.; Adhikari, S.P.; Gallego, N.C.; Evans, N.D.; Biss, B.E. Activated carbons derived from high-temperature pyrolysis of lignocellulosic biomass. C-J. Carbon Res. 2018, 4, 51. [Google Scholar] [CrossRef]
- 3060 Blue Book on Zero-Carbon Biomass Energy Development Potential; Biomass Energy Industry Branch of China Industrial Development Promotion Association: Beijing, China, 2021.
- Sun, J.; Luo, J.; Lin, J.; Ma, R.; Sun, S.; Fang, L.; Li, H. Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology. Energy 2022, 247, 123547. [Google Scholar] [CrossRef]
- Wu, G.; Cheng, D.; Li, L.; Li, C.; Jiang, G.; Zheng, Y. Biomass energy utilization and soil carbon sequestration in rural China: A case study based on circular agriculture. J. Renew. Sustain. Energy 2018, 10, 13107–13111. [Google Scholar] [CrossRef]
- Shi, C.; Shi, H.; Li, H.; Liu, H.; Mostafa, E.; Zhao, W.; Zhang, Y. Efficient heating of activated carbon in microwave field. C-J. Carbon Res. 2023, 9, 48. [Google Scholar] [CrossRef]
- Guo, R.M.; Cheng, T.C.; Ng, J.H.; William, W.F.C.; Su, S.L.; Hwai, C.O.; Farid, N.A. Microwave pyrolysis for valorisation of horse manure biowaste. Energy Convers. Manag. 2020, 220, 113074. [Google Scholar]
- Asif, F.C.; Saha, G.C. Graphene-like carbon structure synthesis from biomass pyrolysis: A critical review on feedstock-process-properties relationship. C-J. Carbon Res. 2023, 9, 31. [Google Scholar] [CrossRef]
- Qiu, T.; Liu, C.; Cui, L.; Liu, H.; Kashif, M.; Zhang, Y. Comparison of corn straw biochars from electrical pyrolysis and microwave pyrolysis. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 636–649. [Google Scholar] [CrossRef]
- Shvets, A.; Vershinina, K.; Vinogrodskiy, K.; Geniy, K. Microwave pyrolysis of woody biomass: Influence of radiation power on the composition of conversion products. Appl. Sci. 2023, 13, 7926. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, W.; Cui, L.; Tariq, M.; Li, B. Experimental microwave-assisted air gasification of biomass for syngas production. Fuel 2023, 339, 126954. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, Y.; Cui, L.; Liu, H.; Tarique, M. Experimental microwave-assisted air gasification of biomass in fluidized bed reactor. Bioresour. Technol. 2023, 369, 128378. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Kang, Q.H.; Liu, Y.; Asif, A.S.; Ao, W.; Ran, C.; Fu, J.; Deng, Z.; Song, Y.; Dai, J. Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Characterization and analyses of condensates and non-condensable gases. Energy 2019, 187, 583–584. [Google Scholar] [CrossRef]
- Shi, K.; Yan, J.; Luo, X.; Luo, X.; Yang, G.; Chen, Y.; Edward, L.; Wu, T. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Front. Chem. 2020, 8, 3. [Google Scholar] [CrossRef]
- Zhou, N.; Zhou, J.; Dai, L.; Guo, F.; Wang, Y.; Li, H.; Deng, W.; Lei, H.; Paul, C.; Liu, Y.; et al. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresour. Technol. 2020, 314, 123756. [Google Scholar] [CrossRef]
- Huang, F.; Tahmasebi, A.; Maliutina, K.; Yu, J. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways. Bioresour. Technol. 2017, 245, 1067–1074. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, Z.; Zhang, B.; Wang, W.; Gabriel, V.; Fernando, L. Effect of alkalitreated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk. Sci. Total Environ. 2020, 703, 134605. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, P.; Zhang, B.; Yang, C.; Liu, Y.; Lin, X.; Ruan, R. Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. J. Anal. Appl. Pyrolysis 2009, 86, 161–167. [Google Scholar] [CrossRef]
- Lu, Q.; Zhao, W.; Xia, Y.; Liu, J.; Meng, H.; Guo, X.; Hu, S.; Hu, B. Research on the migration and transformation mechanism of nitrogen during biomass pyrolysis. J. Fuel Chem. Technol. 2023, 51, 1047–1059+1025. [Google Scholar]
- Yao, X.; Xu, K. Pyrolysis characteristics of corn cob and release rule of gas products. J. Agric. Eng. 2015, 31, 275–282. [Google Scholar]
Proximate Analysis (wt.%) | Ultimate Analysis (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
Mar | Vdaf | FCar | Aar | Car | Har | Oar a | Nar | Sar |
5.11 | 37.55 | 12.14 | 75.45 | 31.77 | 4.50 | 1.24 | 0.66 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Cao, W.; Zhang, M.; Zhao, W.; Zhang, Y. Changes of C, H, and N Elements of Corn Straw during the Microwave Heating Process. C 2023, 9, 117. https://doi.org/10.3390/c9040117
Liu Z, Cao W, Zhang M, Zhao W, Zhang Y. Changes of C, H, and N Elements of Corn Straw during the Microwave Heating Process. C. 2023; 9(4):117. https://doi.org/10.3390/c9040117
Chicago/Turabian StyleLiu, Zhihong, Weitao Cao, Man Zhang, Wenke Zhao, and Yaning Zhang. 2023. "Changes of C, H, and N Elements of Corn Straw during the Microwave Heating Process" C 9, no. 4: 117. https://doi.org/10.3390/c9040117