Effects of Various Potassium Fertilizer Dosages on Agronomic and Economic Assessment of Sweet Potato Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Material
2.2. Experimental Design
2.3. Sampling and Measurement
3. Results
3.1. Photosynthesis of Sweet Potato
3.2. Soil-Available Potassium
3.3. Potassium Uptake and Potassium-Use Efficiency
3.4. The Dry Biomass, T/R, and Yield
3.5. The Starch Index and Net Profit
4. Discussion
4.1. Plant Photosynthesis
4.2. Potassium Uptake and Potassium-Use Efficiency
4.3. Yield and Starch Index of Sweet Potato
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, J.H.; Liu, T.K.; Liu, B.; Kuang, W.G.; Song, S.L. First report of curvularia plantarum causing leaf spot on sweet potato (Ipomoea batatas L.) in China. Plant Dis. 2022, 106, 1. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Liu, L.Z.; Lian, X.J.; Li, L.; Wu, H. The properties of different cultivars of Jinhai sweet potato starches in China. Int. J. Biol. Machromol. 2014, 67, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Motsa, N.M.; Modi, A.T.; Mabhaudhi, T. Sweet potato (Ipomoea batatas L.) as a drought tolerant and food security crop. S. Afr. J. Sci. 2015, 111, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.X. Weather shocks, sweet potatoes and peasant revolts in historical China. Econ. J. 2014, 124, 92–118. [Google Scholar] [CrossRef]
- Liu, Q.C. Sweet potato omics and biotechnology in China. Plant Omics. 2011, 4, 295–301. [Google Scholar]
- Lamaro, G.P.; Tsehaye, Y.; Girma, A.; Vannini, A.; Fedeli, R.; Loppi, S. Evaluation of Yield and Nutraceutical Traits of Orange-Fleshed Sweet Potato Storage Roots in Two Agro-Climatic Zones of Northern Ethiopia. Plants 2023, 12, 1319. [Google Scholar] [CrossRef] [PubMed]
- Lamaro, G.P.; Tsehaye, Y.; Girma, A.; Vannini, A.; Fedeli, R.; Loppi, S. Essential Mineral Elements and Potentially Toxic Elements in Orange-Fleshed Sweet Potato Cultivated in Northern Ethiopia. Biology 2023, 12, 266. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, A.J.; Chen, X.G.; Jin, R.; Li, H.M.; Tang, Z.H. The effect of potassium deficiency on growth and physiology in sweet potato (Ipomoea batatas L.) during early growth. Hort. Sci. 2017, 52, 1020–1028. [Google Scholar]
- Wang, J.D.; Zhu, G.P.; Dong, Y.; Zhang, H.; Rengel, Z.; Ai, Y.C.; Zhang, Y.C. Potassium starvation affects biomass partitioning and sink-source responses in three sweet potato genotypes with contrasting potassium-use efficiency. Crop Pasture Sci. 2018, 69, 506–514. [Google Scholar] [CrossRef]
- Nascimento, S.M.C.; Ceclio-Filho, A.B.; Silva, A.S.N.D.; Vargas, P.F. Carotene yield in sweet potato after potassium and phosphorus fertiliser application. Rev. Caatinga 2019, 32, 851–857. [Google Scholar] [CrossRef]
- Zhang, S.H.; Wang, H.D.; Fan, J.L.; Zhang, F.C.; Cheng, M.H.; Yang, L.; Ji, Q.Y.; Li, Z.J. Quantifying source-sink relationships of drip-fertigated potato under various water and potassium supplies. Field Crops Res. 2022, 285, 108604. [Google Scholar] [CrossRef]
- Song, X.D.; Liu, F.; Wu, H.Y.; Cao, Q.; Zhang, G.L. Effects of long-term K fertilization on soil available potassium in east China. Catena 2020, 188, 104412. [Google Scholar] [CrossRef]
- Chen, X.Q.; Li, T.; Lu, D.J.; Cheng, L.; Zhou, J.M.; Wang, H.Y. Estimation of soil available potassium in chinese agricultural fields using a modified sodium tetraphenyl boron method. Land Degrad. Dev. 2020, 31, 1737–1748. [Google Scholar] [CrossRef]
- Zhu, X.D.; Li, Z.H.; Guo, L.X.; Lu, J.W.; Cong, R.H.; Ren, T.; Li, X.K. Main driving factors and responses to increase in soil available potassium in the yangtze river basin over the past 30 years. Land Degrad. Dev. 2021, 32, 4484–4493. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhao, X.L.; Liu, X.W.; Lu, D.J.; Chen, X.Q.; Wang, H.Y.; Zhou, J.M. Rice and wheat yield and soil potassium changes in response to potassium management in two soil types. Nutr. Cycl. Agroecosystems 2020, 117, 121–130. [Google Scholar] [CrossRef]
- Zhang, J.; Balkovič, J.; Azevedo, L.B.; Skalský, R.; Bouwman, A.F.; Xu, G.; Wang, J.Z.; Xu, M.G.; Yu, C.Q. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China. Sci. Total Environ. 2018, 627, 361–372. [Google Scholar] [CrossRef]
- Wang, H.D.; Wu, L.F.; Wang, X.K.; Zhang, S.H.; Cheng, M.H.; Feng, H.; Fan, J.L.; Zhang, F.C.; Xiang, Y.Z. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation. Agric. Water Manag. 2021, 245, 106662. [Google Scholar] [CrossRef]
- Zheng, W.; Sui, C.; Liu, Z.; Geng, J.; Tian, X.; Yang, X.; Zhang, M. Long-term effects of controlled-release urea on crop yields and soil fertility under wheat-corn double cropping systems. Agron. J. 2016, 108, 1703–1716. [Google Scholar] [CrossRef]
- Deng, F.; Yang, F.; Li, Q.P.; Zeng, Y.L.; Li, B.; Zhong, X.Y.; Lu, W.; Wang, L.; Chen, H.; Ren, W.H. Differences in starch structural and physicochemical properties and texture characteristics of cooked rice between the main crop and ratoon rice. Food Hydrocolloid. 2021, 116, 106643. [Google Scholar] [CrossRef]
- Chen, J.Q.; Guo, Z.D.; Chen, H.N.; Yang, X.Y.; Geng, J.B. Effects of different potassium fertilizer types and dosages on cotton yield, soil available potassium and leaf photosynthesis. Arch. Agron. Soil Sci. 2021, 67, 275–287. [Google Scholar] [CrossRef]
- Torabi, S.; Umate, P.; Manavski, N.; Plöchinger, M.; Kleinknecht, L.; Bogireddi, H.; Herrmann, R.G.; Wanner, G.; Schröder, W.P.; Meurer, J. PsbN is required for assembly of the photosystem ii reaction center innicotiana tabacum. Plant Cell 2014, 26, 1183–1199. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.D.; Ni, G.; Li, G.; Barnett, A.; Xu, K.; Grant-Burt, J.; Liefer, J.D.; Suggett, D.J.; Campbell, D.A. Quantitating active photosystem ii reaction center content from fluorescence induction transients. Limnol. Oceanogr. Meth. 2017, 15, 54–69. [Google Scholar] [CrossRef]
- Jaiswal, V.P.; Shukla, S.K.; Sharma, L.; Singh, I.; Pathak, A.D.; Nagargade, M.; Ghosh, A.; Gupta, C.; Gaur, A.; Awasthi, S.K.; et al. Potassium influencing physiological parameters, photosynthesis and sugarcane yield in subtropical India. Sugar Tech 2021, 23, 343–359. [Google Scholar] [CrossRef]
- Guo, K.; Liu, T.X.; Xu, A.H.; Zhang, L.; Bian, X.F.; Wei, C.X. Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocolloid. 2018, 89, 829–836. [Google Scholar] [CrossRef]
- Gao, Y.; Tang, Z.H.; Xia, H.Q.; Sheng, M.F.; Liu, M.; Pan, S.Y.; Li, Z.Y.; Liu, J.R. Potassium fertilization stimulates sucrose-to-starch conversion and root formation in sweet potato (Ipomoea batatas L.). Int. J. Mol. Sci. 2021, 22, 4826. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kuo, Y.W.; Lin, K.H.; Huang, W.; Deng, C.; Ye, K.W.; Chen, S.P. Piriformospora indica colonization increases the growth, development, and herbivory resistance of sweet potato (Ipomoea batatas L.). Plant Cell Rep. 2021, 40, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Sultana, T.; Chowdhury, A.H.; Saha, B.K.; Rahman, A.; Chowdhury, T.; Sultana, R. Response of aloe vera to potassium fertilization in relation to leaf biomass yield, its uptake and requirement, critical concentration and use efficiency. J. Plant Nutr. 2021, 44, 2081–2095. [Google Scholar] [CrossRef]
- Limeneh, D.F.; Beshir, H.M.; Mengistu, F.G. Nutrient uptake and use efficiency of onion seed yield as influenced by nitrogen and phosphorus fertilization. J. Plant Nutr. 2020, 43, 1229–1247. [Google Scholar] [CrossRef]
- Liu, C.K.; Tu, B.J.; Wang, X.; Jin, J.; Li, Y.S.; Zhang, Q.Y.; Liu, X.B.; Ma, B.L. Potassium translocation combined with specific root uptake is responsible for the high potassium efficiency in vegetable soybean. Crop Pasture Sci. 2020, 70, 516–525. [Google Scholar] [CrossRef]
- Farooque, A.A.; Zare, M.; Abbas, F.; Bos, M.; Esau, T.; Zaman, Q. Forecasting potato tuber yield using a soil electromagnetic induction method. Eur. J. Soil Sci. 2020, 71, 880–897. [Google Scholar] [CrossRef]
- Gaj, R.; Borowski-Beszta, J. Effects of foliar fertilization with potassium and micronutrients on potato yield and quality. Eur. J. Hortic. Sci. 2020, 85, 394–400. [Google Scholar] [CrossRef]
- Yang, S.T.; Liu, X.J.; Qiao, S.; Tan, W.F.; Li, M.; Feng, J.Y.; Zhang, C.; Kang, X.; Huang, T.B.; Zhu, Y.L.; et al. Starch content differences between two sweet potato accessions are associated with specific changes in gene expression. Funct. Integr. Genomic. 2018, 18, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Ratuszniak, E.; Kubas, A. Research on size of starch grains in different potato cultivars for the possibility of reduction of environment pollution with wastes from starch production. Rocz. Ochr. Srodowiska 2020, 12, 409–418. [Google Scholar]
- Takiko, S.; Motoyasu, O.; Tatsuro, H.; Sun-Hyung, K. Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol. 2006, 23, 85–90. [Google Scholar]
- Flis, B.; Zimnoch-Guzowska, E.; Mankowski, D. Correlations among yield, taste, tuber characteristics and mineral contents of potato cultivars grown at different growing conditions. J. Agric. Sci. 2012, 4, 197–207. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yang, Y.; Li, X.H.; Li, X.N.; Zhang, H.J.; Zhang, Z.; Xu, Y.H. Starch flocculation by the sweet potato sour liquid is mediated by the adhesion of lactic acid bacteria to starch. Front. Microbiol. 2017, 8, 1412. [Google Scholar] [CrossRef]
Year | pH Value | Organic Matter | Total N | NO3−-N | NH4+-N | Available P | Available K |
---|---|---|---|---|---|---|---|
(2.5:1) | (g kg−1) | (g kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | |
2018 | 7.16 | 12.1 | 1.02 | 65.12 | 33.77 | 29.67 | 114.76 |
2019 | 7.32 | 12.4 | 1.08 | 68.93 | 37.21 | 31.73 | 121.86 |
NO. | Treatments | N:P2O5:K2O | PCU | Urea | CS | KS |
---|---|---|---|---|---|---|
(kg ha−1) | (kg ha−1) | (kg ha−1) | (kg ha−1) | (kg ha−1) | ||
1 | Control | 0-0-0 | - | - | - | - |
2 | KS0 | 100-90-0 | 116.3 | 108.7 | 694.4 | - |
3 | KS100 | 100-90-100 | 116.3 | 108.7 | 694.4 | 200.0 |
4 | KS200 | 100-90-200 | 116.3 | 108.7 | 694.4 | 400.0 |
5 | KS300 | 100-90-300 | 116.3 | 108.7 | 694.4 | 600.0 |
Treatment/Year | Pn | SPAD | ||||
---|---|---|---|---|---|---|
(umol m−2 s−1) | ||||||
50 Day | 100 Day | 150 Day | 50 Day | 100 Day | 150 Day | |
2018 | ||||||
Control | 22.01 d | 24.52 d | 20.48 c | 53.04 d | 54.52 c | 50.51 d |
KS0 | 23.92 c | 25.44 c | 21.52 bc | 55.88 c | 57.55 b | 52.36 c |
KS100 | 25.59 ab | 26.45 ab | 22.63 b | 57.04 b | 59.19 ab | 54.58 b |
KS200 | 26.55 a | 27.60 a | 23.81 a | 59.29 a | 61.19 a | 57.54 a |
KS300 | 26.43 a | 27.60 a | 23.61 a | 59.27 a | 61.29 a | 57.44 a |
2019 | ||||||
Control | 22.78 c | 25.15 c | 20.89 d | 53.95 c | 55.41 d | 52.41 d |
KS0 | 24.69 bc | 26.58 bc | 22.41 c | 56.37 bc | 57.55 c | 55.42 c |
KS100 | 25.50 b | 27.48 ab | 23.28 b | 58.11 ab | 59.26 b | 57.15 ab |
KS200 | 26.48 a | 28.74 a | 24.50 a | 60.19 a | 61.89 a | 58.76 a |
KS300 | 26.67 a | 28.72 a | 24.32 a | 60.37 a | 61.58 a | 58.51 a |
Source of variance | ||||||
Year (Y) | 0.0374 * | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.0179 * | <0.0001 ** |
Treatment (T) | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Y × T | 0.1692 ns | 0.2883 ns | 0.8076 ns | 0.7395 ns | 0.2827 ns | 0.0764 ns |
Treatment/Year | ΦPSII | Fv/Fm | qP | qN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
50 Day | 100 Day | 150 Day | 50 Day | 100 Day | 150 Day | 50 Day | 100 Day | 150 Day | 50 Day | 100 Day | 150 Day | |
2018 | ||||||||||||
Control | 0.78 c | 0.80 b | 0.76 b | 0.82 b | 0.82 b | 0.79 b | 0.58 d | 0.60 c | 0.49 c | 0.72 a | 0.68 a | 0.79 a |
KS0 | 0.79 b | 0.80 b | 0.77 ab | 0.82 b | 0.82 b | 0.80 a | 0.61 c | 0.63 bc | 0.53 b | 0.68 b | 0.65 b | 0.77 ab |
KS100 | 0.79 b | 0.81 a | 0.78 a | 0.82 b | 0.83 a | 0.80 a | 0.64 b | 0.64 b | 0.54 b | 0.67 b | 0.64 b | 0.75 b |
KS200 | 0.81 a | 0.81 a | 0.78 a | 0.83 a | 0.83 a | 0.80 a | 0.69 a | 0.68 a | 0.57 a | 0.62 c | 0.62 c | 0.71 c |
KS300 | 0.81 a | 0.81 a | 0.78 a | 0.83 a | 0.83 a | 0.80 a | 0.68 a | 0.69 a | 0.58 a | 0.61 c | 0.61 c | 0.70 c |
2019 | ||||||||||||
Control | 0.78 b | 0.79 b | 0.76 b | 0.81 c | 0.82 c | 0.79 c | 0.61 c | 0.63 c | 0.53 c | 0.77 a | 0.74 a | 0.82 a |
KS0 | 0.79 ab | 0.81 a | 0.78 a | 0.82 b | 0.83 b | 0.80 b | 0.63 b | 0.67 b | 0.57 b | 0.74 b | 0.71 b | 0.80 b |
KS100 | 0.80 a | 0.81 a | 0.77 ab | 0.82 b | 0.83 b | 0.81 ab | 0.64 b | 0.68 ab | 0.58 b | 0.73 b | 0.70 b | 0.79 b |
KS200 | 0.80 a | 0.81 a | 0.78 a | 0.83 a | 0.84 a | 0.82 a | 0.68 a | 0.73 a | 0.62 a | 0.69 c | 0.66 c | 0.76 c |
KS300 | 0.80 a | 0.81 a | 0.78 a | 0.83 a | 0.84 a | 0.82 a | 0.68 a | 0.74 a | 0.64 a | 0.68 c | 0.65 c | 0.75 c |
Source of variance | ||||||||||||
Year (Y) | 0.0007 ** | 0.0025 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.0025 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Treatment (T) | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Y × T | 0.8102 ns | 0.8494ns | 0.0061 ** | 0.5453 ns | 0.8453 ns | 0.1075 ns | 0.0034 ** | 0.2104 ns | 0.3627 ns | 0.8102 ns | 0.0579 ns | 0.3142 ns |
Treatment/Year | Soil-Available K | ||
---|---|---|---|
(mg kg−1) | |||
50 Day | 100 Day | 150 Day | |
2018 | |||
Control | 118.23 d | 95.59 d | 75.18 d |
KS0 | 118.04 d | 96.22 d | 77.93 d |
KS100 | 144.90 c | 115.04 c | 96.23 c |
KS200 | 153.55 b | 126.30 b | 107.56 b |
KS300 | 167.21 a | 141.27 a | 117.39 a |
2019 | |||
Control | 123.93 d | 106.42 d | 98.07 d |
KS0 | 126.26 d | 107.11 d | 96.37 d |
KS100 | 153.56 c | 126.33 c | 104.93 c |
KS200 | 166.96 b | 138.15 b | 118.48 b |
KS300 | 177.67 a | 156.68 a | 127.54 a |
Source of variance | |||
Year (Y) | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Treatment (T) | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Y × T | 0.0138 * | 0.5314 ns | 0.002 ** |
Treatment/Year | K Uptake | KAE | KRE | ||
---|---|---|---|---|---|
(kg ha−1) | (kg kg−1) | (%) | |||
50 Day | 100 Day | 150 Day | |||
2018 | |||||
Control | 37.69 d | 56.81 e | 124.48 d | - | - |
KS0 | 53.23 c | 77.01 d | 141.96 c | - | - |
KS100 | 67.49 b | 85.86 c | 165.62 b | 28.65 b | 34.19 b |
KS200 | 75.52 a | 102.52 a | 184.31 a | 35.18 a | 39.93 a |
KS300 | 78.99 a | 95.37 b | 172.21 b | 29.07 b | 34.56 b |
2019 | |||||
Control | 44.71 e | 66.55 e | 149.41 d | - | - |
KS0 | 63.67 d | 83.07 d | 161.33 c | - | - |
KS100 | 76.82 c | 97.67 c | 183.67 b | 30.25 b | 32.26 b |
KS200 | 85.54 b | 112.41 a | 203.30 a | 39.31 a | 41.18 a |
KS300 | 91.82 a | 106.78 b | 197.56 a | 30.25 b | 31.82 b |
Source of variance | |||||
Year (Y) | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.0184 * |
Treatment (T) | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Y × T | 0.2373 ns | 0.4235 ns | 0.5639 ns | 0.0498 * | 0.0737 ns |
Treatment/Year | Overground Biomass | Underground Biomass | T/R | Yield | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(kg ha−1) | (kg ha−1) | (kg ha−1) | ||||||||
50 Day | 100 Day | 150 Day | 50 Day | 100 Day | 150 Day | 50 Day | 100 Day | 150 Day | ||
2018 | ||||||||||
Control | 1191.32 d | 4519.76 e | 3038.62 d | 566.36 d | 4524.63 d | 10,255.33 d | 2.11 a | 0.99 d | 0.29 a | 31,694.73 d |
KS0 | 1349.61 c | 5040.69 d | 3304.03 c | 747.91 c | 4887.36 c | 12,079.14 c | 1.81 bc | 1.03 c | 0.27 b | 34,845.98 c |
KS100 | 1440.55 b | 5535.13 c | 3414.66 b | 786.62 b | 5298.09 b | 13,201.32 b | 1.83 b | 1.04 c | 0.26 c | 37,113.74 b |
KS200 | 1496.32 ab | 6160.45 b | 3562.38 a | 847.62 a | 5563.34 a | 14,048.77 a | 1.77 bc | 1.11 b | 0.25 c | 40,475.37 a |
KS300 | 1511.13 a | 6410.94 a | 3601.39 a | 874.34 a | 5565.63 a | 14,040.05 a | 1.73 c | 1.15 a | 0.26 c | 40,036.72 a |
2019 | ||||||||||
Control | 1170.90 d | 4364.09 e | 2793.33 e | 600.33 e | 4420.89 d | 13,663.02 d | 1.95 a | 0.98 d | 0.20 d | 33,828.09 d |
KS0 | 1394.33 c | 4958.33 d | 3043.21 d | 729.09 d | 4750.67 c | 14,121.67 c | 1.91 a | 1.04 c | 0.21 c | 36,381.45 c |
KS100 | 1514.67 b | 5220.67 c | 3132.33 c | 800.33 c | 4935.33 b | 14,313.73 b | 1.89 ab | 1.06 bc | 0.22 bc | 39,670.73 b |
KS200 | 1604.67 a | 5470.69 b | 3298.67 b | 868.27 b | 5044.36 b | 14,586.88 b | 1.85 bc | 1.08 a | 0.23 b | 42,755.35 a |
KS300 | 1613.45 a | 6071.31 a | 3535.44 a | 898.17 a | 5674.25 a | 14,692.33 a | 1.79 c | 1.07 ab | 0.24 a | 42,726.38 a |
Source of variance | ||||||||||
Year (Y) | 0.0001 ** | <0.0001 ** | <0.0001 ** | 0.0060 ** | <0.0001 ** | <0.0001 ** | 0.0336 * | <0.0001 * | <0.0001 ** | <0.0001 ** |
Treatment (T) | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.0002 ** | <0.0001 ** |
Y × T | 0.0270 * | <0.0001 ** | 0.0036 ** | 0.0297 * | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.0415 * |
Treatment/Year | Starch Yield | Starch Content | Amylose Content | Amylopectin Content | Amylose/Amylopectin |
---|---|---|---|---|---|
(kg ha−1) | (%) | (%) | (%) | ||
2018 | |||||
Control | 6827.87 d | 66.23 c | 13.25 d | 52.43 b | 0.25 d |
KS0 | 7207.67 c | 66.47 c | 13.73 c | 53.46 a | 0.26 c |
KS100 | 8362.67 b | 67.66 b | 14.16 b | 53.53 a | 0.27 b |
KS200 | 9053.33 a | 68.43 a | 14.77 a | 53.67 a | 0.28 a |
KS300 | 9076.21 a | 68.61 a | 14.75 a | 53.63 a | 0.28 a |
2019 | |||||
Control | 8758.67 d | 67.36 d | 13.51 d | 54.64 c | 0.24 d |
KS0 | 9028.34 c | 68.62 c | 14.06 c | 55.36 b | 0.25 c |
KS100 | 9435.09 b | 69.27 b | 14.77 b | 55.62 a | 0.26 b |
KS200 | 9951.38 a | 70.42 a | 15.53 a | 55.71 a | 0.28 a |
KS300 | 9971.33 a | 70.36 a | 15.57 a | 55.72 a | 0.28 a |
Source of variance | |||||
Year (Y) | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.8178 ns |
Treatment (T) | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Y × T | <0.0001 ** | 0.0041 ** | 0.0490 * | 0.4948 ns | 0.0602 ns |
Treatment | Total Revenue | Fertilizer Costs | Labor Cost | Other Costs | Net Profit | Change vs. Control (%) | |||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | (USD ha−1 Year−1) | 2018 | 2019 | 2018 | 2019 | |||
Control | 8352 | 8914 | 0 | 2000 | 800 | 5552 | 6114 | - | - |
KS0 | 9182 | 9586 | 170 | 2200 | 800 | 6012 | 6416 | 8 | 5 |
KS100 | 9779 | 10,453 | 278 | 2200 | 800 | 6501 | 7175 | 16 | 17 |
KS200 | 10,665 | 11,266 | 386 | 2200 | 800 | 7279 | 7880 | 31 | 29 |
KS300 | 10,550 | 11,258 | 494 | 2200 | 800 | 7055 | 7764 | 27 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Zhao, Q.; Li, Z.; Yang, X.; Lei, S.; Zhang, Q.; Li, H.; Lang, Y.; Huo, X.; Liu, Q. Effects of Various Potassium Fertilizer Dosages on Agronomic and Economic Assessment of Sweet Potato Fields. Horticulturae 2024, 10, 44. https://doi.org/10.3390/horticulturae10010044
Geng J, Zhao Q, Li Z, Yang X, Lei S, Zhang Q, Li H, Lang Y, Huo X, Liu Q. Effects of Various Potassium Fertilizer Dosages on Agronomic and Economic Assessment of Sweet Potato Fields. Horticulturae. 2024; 10(1):44. https://doi.org/10.3390/horticulturae10010044
Chicago/Turabian StyleGeng, Jibiao, Qichao Zhao, Zeli Li, Xiuyi Yang, Shutong Lei, Qingping Zhang, Hui Li, Ying Lang, Xianqi Huo, and Qianjin Liu. 2024. "Effects of Various Potassium Fertilizer Dosages on Agronomic and Economic Assessment of Sweet Potato Fields" Horticulturae 10, no. 1: 44. https://doi.org/10.3390/horticulturae10010044
APA StyleGeng, J., Zhao, Q., Li, Z., Yang, X., Lei, S., Zhang, Q., Li, H., Lang, Y., Huo, X., & Liu, Q. (2024). Effects of Various Potassium Fertilizer Dosages on Agronomic and Economic Assessment of Sweet Potato Fields. Horticulturae, 10(1), 44. https://doi.org/10.3390/horticulturae10010044