An Innovative Co-Cultivation of Microalgae and Actinomycete-Inoculated Lettuce in a Hydroponic Deep-Water Culture System for the Sustainable Development of a Food–Agriculture–Energy Nexus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae
2.2. Lettuce
2.3. Hydroponic Nutrient Solution
2.4. Cultivation of Microalgae in Hydroponic Nutrient Solution
2.5. Co-Cultivation of Microalgae and Actinomycete-Inoculated Lettuce in a Hydroponic Deep-Water Culture System
2.6. Analytical Methods
2.6.1. Determination of Microalgal Growth
2.6.2. Determination of Lettuce Growth
2.6.3. Determination of Microalgal Lipid Content
2.6.4. FAME Characterizations
2.6.5. Estimation of Biodiesel Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Growing Microalgae in a Hydroponic Fertilizer-Based Culture Medium
3.2. Growing Microalgae and Actinomycete-Inoculated Lettuce in a Hydroponic Deep-Water Culture System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Agricultural productivity and food supply to meet increased demands. In Future Foods; Academic Press: Cambridge, MA, USA, 2022; pp. 539–553. [Google Scholar] [CrossRef]
- Gashgari, R.; Alharbi, K.; Mughrbil, K.; Jan, A.; Glolam, A. Comparison between growing plants in hydroponic system and soil based system. In Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering, ICMIE, Madrid, Spain, 16–18 August 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Huo, S.; Liu, J.; Addy, M.; Chen, P.; Necas, D.; Cheng, P.; Li, K.; Chai, H.; Liu, Y.; Ruan, R. The influence of microalgae on vegetable production and nutrient removal in greenhouse hydroponics. J. Clean. Prod. 2019, 243, 118563. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal biostimulants and biofertilisers in crop productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef]
- Kitwetch, B.; Rangseekaew, P.; Chromkaew, Y.; Pathom-Aree, W.; Srinuanpan, S. Employing a plant probiotic actinomycete for growth promotion of lettuce (Lactuca sativa L. var. longifolia) cultivated in a hydroponic system under nutrient limitation. Plants 2023, 12, 3793. [Google Scholar] [CrossRef] [PubMed]
- Supraja, K.V.; Behera, B.; Balasubramanian, P. Performance evaluation of hydroponic system for co-cultivation of microalgae and tomato plant. J. Clean. Prod. 2020, 272, 122823. [Google Scholar] [CrossRef]
- Özer Uyar, G.E.; Mısmıl, N. Symbiotic association of microalgae and plants in a deep water culture system. PeerJ 2022, 10, e14536. [Google Scholar] [CrossRef]
- Klinthong, W.; Yang, Y.H.; Huang, C.H.; Tan, C.S. A review: Microalgae and their applications in CO2 capture and renewable energy. Aerosol. Air Qual. Res. 2015, 15, 712–742. [Google Scholar] [CrossRef]
- Pekkoh, J.; Duangjan, K.; Phinyo, K.; Kaewkod, T.; Ruangrit, K.; Thurakit, T.; Pumas, C.; Pathom-aree, W.; Cheirsilp, B.; Gu, W.; et al. Turning waste CO2 into value-added biorefinery co-products using cyanobacterium Leptolyngbya sp. KC45 as a highly efficient living photocatalyst. Chem. Eng. J. 2023, 460, 141765. [Google Scholar] [CrossRef]
- Adi, E.B.M.; Priadi, D.; Deswina, P.; Agustini, N.W.S. September. The growth of pak choy (Brassica rapa L.) on the microalgae (Spirulina platensis) biomass-based nutrient solution. IOP Conf. Ser. Earth Environ. Sci. 2023, 1230, 012205. [Google Scholar] [CrossRef]
- Barone, V.; Puglisi, I.; Fragalà, F.; Piero, A.R.L.; Giuffrida, F.; Baglieri, A. Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J. Appl. Phycol. 2019, 31, 465–470. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Zhou, Q. Co-cultivation of Chlorella spp. and tomato in a hydroponic system. Biomass Bioenergy 2017, 97, 132–138. [Google Scholar] [CrossRef]
- Ayuso-Calles, M.; García-Estévez, I.; Jiménez-Gómez, A.; Flores-Félix, J.D.; Escribano-Bailón, M.T.; Rivas, R. Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions. Foods 2020, 9, 1166. [Google Scholar] [CrossRef] [PubMed]
- Sebring, R.L.; Duiker, S.W.; Berghage, R.D.; Regan, J.M.; Lambert, J.D.; Bryant, R.B. Gluconacetobacter diazotrophicus inoculation of two lettuce cultivars affects leaf and root growth under hydroponic conditions. Appl. Sci. 2022, 12, 1585. [Google Scholar] [CrossRef]
- Boukhatem, Z.F.; Merabet, C.; Tsaki, H. Plant growth promoting actinobacteria, the most promising candidates as bioinoculants? Front. Agron. 2022, 4, 849911. [Google Scholar] [CrossRef]
- Lasudee, K.; Tokuyama, S.; Lumyong, S.; Pathom-Aree, W. Actinobacteria associated with arbuscular mycorrhizal Funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants: Evidence obtained from mung bean (Vigna radiata) and thai jasmine rice (Oryza sativa). Front. Microbiol. 2018, 9, 1247. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, G.H.M.; Talling, J.F.; Heaney, S.I. The influence of carbon dioxide-depletion on growth and sinking rate of two planktonic diatoms in culture. Br. Phycol. J. 1981, 16, 395–410. [Google Scholar] [CrossRef]
- Pekkoh, J.; Lomakool, S.; Chankham, J.; Duangjan, K.; Thurakit, T.; Phinyo, K.; Ruangrit, K.; Tragoolpua, Y.; Pumas, C.; Pathom-aree, W.; et al. Maximizing biomass productivity of cyanobacterium Nostoc sp. through high-throughput bioprocess optimization and application in multiproduct biorefinery towards a holistic zero waste. Biomass Conv. Biorefin. 2022, 1–21. [Google Scholar] [CrossRef]
- Srinuanpan, S.; Cheirsilp, B.; Kitcha, W.; Prasertsan, P. Strategies to improve methane content in biogas by cultivation of oleaginous microalgae and the evaluation of fuel properties of the microalgal lipids. Renew. Energy 2017, 113, 1229–1241. [Google Scholar] [CrossRef]
- Lizzul, A.M.; Hellier, P.; Purton, S.; Baganz, F.; Ladommatos, N.; Campos, L. Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour. Technol. 2014, 151, 12–18. [Google Scholar] [CrossRef]
- Sharma, K.K.; Schuhmann, H.; Schenk, P.M. High lipid induction in microalgae for biodiesel production. Energies 2012, 5, 1532–1553. [Google Scholar] [CrossRef]
- Singh, R.P.; Yadav, P.; Kumar, I.; Solanki, M.K.; Roychowdhury, R.; Kumar, A.; Gupta, R.K. Advancement of abiotic stresses for microalgal lipid production and its bioprospecting into sustainable biofuels. Sustainability 2023, 15, 13678. [Google Scholar] [CrossRef]
- Fernandes, T.; Fernandes, I.; Andrade, C.A.P.; Cordeiro, N. Changes in fatty acid biosynthesis in marine microalgae as a response to medium nutrient availability. Algal Res. 2016, 18, 314–320. [Google Scholar] [CrossRef]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Ravishankar, G.A.; Ambati, R.R. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells 2021, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Saranya, D.; Shanthakumar, S. Insights into the influence of CO2 supplement on phycoremediation and lipid accumulation potential of microalgae: An exploration for biodiesel production. Environ. Technol. Innov. 2021, 23, 101596. [Google Scholar] [CrossRef]
- Jusoh, M.; Loh, S.H.; Chuah, T.S.; Aziz, A.; San Cha, T. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry 2015, 111, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “balanced antagonistic metabolic functions” in the human body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef] [PubMed]
- Habeebullah, S.F.K.; Alagarsamy, S.; Al-Haddad, S.; Al-Yamani, F. Composition, in vitro antioxidant and angiotensin-converting enzyme inhibitory effects of lipids isolated from fifteen species of seaweeds. Food Chem. Adv. 2023, 3, 100352. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Bharti, A.; Prasanna, R.; Kumar, G.; Kumar, A.; Nain, L. Co-cultivation of cyanobacteria for raising nursery of chrysanthemum using a hydroponic system. J. Appl. Phycol. 2019, 31, 3625–3635. [Google Scholar] [CrossRef]
- Oliveira, T.J.S.S.; Oliveira, C.E.S.; Jalal, A.; Gato, I.M.B.; Rauf, K.; Moreira, V.A.; Lima, B.H.; Vitória, L.S.; Giolo, V.M.; Teixeira Filho, M.C.M. Inoculation reduces nitrate accumulation and increases growth and nutrient accumulation in hydroponic arugula. Sci. Hortic. 2023, 320, 112213. [Google Scholar] [CrossRef]
- Kumsiri, B.; Pekkoh, J.; Pathom-aree, W.; Lumyong, S.; Phinyo, K.; Pumas, C.; Srinuanpan, S. Enhanced production of microalgal biomass and lipid as an environmentally friendly biodiesel feedstock through actinomycete co-culture in biogas digestate. Bioresour. Technol. 2021, 337, 125446. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Incharoensakdi, A. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. Biotechnol. Biofuels 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Mulgund, A. Increasing lipid accumulation in microalgae through environmental manipulation, metabolic and genetic engineering: A review in the energy NEXUS framework. Energy Nexus 2022, 5, 100054. [Google Scholar] [CrossRef]
- CEN. Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods; CEN Publications: Brussels, Belgium, 2012. [Google Scholar]
- ASTM. Standard specification for biodiesel fuel (B100) blend stock for distillate fuels. In Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Saxena, P.; Jawale, S.; Joshipura, M.H. A review on prediction of properties of biodiesel and blends of biodiesel. Proc. Eng. 2013, 51, 395–402. [Google Scholar] [CrossRef]
- Giakoumis, E.G.; Sarakatsanis, C.K. Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel 2018, 222, 574–585. [Google Scholar] [CrossRef]
- Talebi, A.F.; Tabatabaei, M.; Chisti, Y. BiodieselAnalyzer: A user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res. J. 2014, 2, 55–57. [Google Scholar] [CrossRef]
- Klajn, F.F.; Gurgacz, F.; Lenz, A.M.; Iacono, G.E.P.; de Souza, S.N.M.; Ferruzzi, Y. Comparison of the emissions and performance of ethanol-added diesel–biodiesel blends in a compression ignition engine with those of pure diesel. Environ. Technol. 2018, 41, 511–520. [Google Scholar] [CrossRef]
- Wu, G.; Ge, J.C.; Choi, N.J. A comprehensive review of the application characteristics of biodiesel blends in diesel engines. Appl. Sci. 2020, 10, 8015. [Google Scholar] [CrossRef]
- Serrano, M.; Martínez, M.; Aracil, J. Long term storage stability of biodiesel: Influence of feedstock, commercial additives and purification step. Fuel Process. Technol. 2013, 116, 135–141. [Google Scholar] [CrossRef]
Fatty Acids | Relative Content (%) | |||||
---|---|---|---|---|---|---|
JM-320 | EC-225 | EC-450 | EC-900 | EC-1350 | EC-1800 | |
Caproic acid (C6:0) | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.21 ± 0.01 | 0.16 ± 0.02 | 0.25 ± 0.01 | 0.25 ± 0.11 |
Caprylic acid (C8:0) | ND | ND | 0.01 ± 0.02 | ND | ND | ND |
Capric acid (C:10) | 0.01 ± 0.00 | ND | 0.01 ± 0.02 | ND | ND | ND |
Lauric acid (C12:0) | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.02 ± 0.02 | 0.10 ± 0.04 | 0.05 ± 0.01 | 0.14 ± 0.08 |
Myristoleic acid (C14:1) | ND | ND | ND | ND | ND | 0.35 ± 0.03 |
Myristic acid (C14:0) | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.51 ± 0.01 | 0.55 ± 0.01 | 0.64 ± 0.02 | 1.25 ± 0.05 |
Pentadecanoic acid (C15:0) | 0.46 ± 0.02 | 0.41 ± 0.02 | 2.82 ± 0.18 | 3.95 ± 0.00 | 7.91 ± 0.41 | 7.25 ± 0.26 |
Palmitoleic acid (C16:1) | 4.72 ± 0.03 | 4.16 ± 0.20 | 4.45 ± 0.13 | 5.37 ± 0.01 | 6.20 ± 0.41 | 17.11 ± 0.12 |
Palmitic acid (C16:0) | 36.08 ± 0.07 | 36.6 ± 0.09 | 35.22 ± 0.30 | 31.33 ± 0.00 | 33.45 ± 0.17 | 25.97 ± 0.17 |
cis-10-Heptadecanoic acid (C17:1) | 0.12 ± 0.03 | 0.16 ± 0.00 | ND | 0.03 ± 0.00 | 0.05 ± 0.01 | ND |
Heptadecanoic acid (C17:0) | 0.28 ± 0.01 | 0.24 ± 0.00 | 0.67 ± 0.03 | 1.00 ± 0.05 | 1.41 ± 0.07 | 1.46 ± 0.12 |
γ-Linolenic acid (GLA) (C18:3n6) | ND | ND | ND | 0.06 ± 0.02 | 0.10 ± 0.02 | ND |
Linoleic acid (C18:2n6c) | 5.87 ± 0.58 | 8.52 ± 1.98 | 26.68 ± 0.28 | 29.13 ± 0.01 | 20.38 ± 0.18 | 15.95 ± 0.15 |
Elaidic acid (C18:1n9t) | 22.64 ± 0.20 | 18.85 ± 2.04 | 21.52 ± 0.01 | 21.33 ± 0.02 | 19.73 ± 0.21 | 16.73 ± 0.21 |
Oleic acid (C18:1n9c) | 24.5 ± 0.36 | 25.98 ± 0.18 | 1.91 ± 0.19 | 2.00 ± 0.01 | 2.53 ± 0.01 | 3.63 ± 0.33 |
Stearic acid (C18:0) | 4.23 ± 0.00 | 3.94 ± 0.01 | 4.24 ± 0.05 | 3.89 ± 0.01 | 6.11 ± 0.03 | 7.57 ± 0.11 |
Arachidonic acid (C20:4n6) | 0.03 ± 0.01 | 0.06 ± 0.00 | ND | ND | ND | ND |
cis-5,8,11,14,17-Eicosapentaenoic (C20:5n3) | 0.02 ± 0.00 | 0.02 ± 0.00 | ND | ND | ND | ND |
Eicosadienoic acid (C20:2n6) | 0.02 ± 0.01 | 0.05 ± 0.00 | 0.21 ± 0.14 | 0.09 ± 0.01 | 0.18 ± 0.03 | 0.61 ± 0.07 |
cis-11-Eicosenoic acid (C20:1n9) | 0.16 ± 0.03 | 0.22 ± 0.01 | 0.21 ± 0.10 | 0.31 ± 0.02 | 0.23 ± 0.03 | 0.20 ± 0.14 |
Arachidic acid (C20:0) | 0.10 ± 0.01 | 0.10 ± 0.00 | 0.12 ± 0.02 | 0.14 ± 0.02 | 0.17 ± 0.02 | 0.16 ± 0.04 |
Henicosanoic acid (C21:0) | 0.01 ± 0.00 | 0.01 ± 0.00 | ND | ND | ND | 0.06 ± 0.04 |
cis-4,7,10,13,16,19-Docosahexaenoic (C22:6n3) | 0.02 ± 0.01 | 0.02 ± 0.00 | ND | ND | ND | ND |
13,16-Docosadienoic acid (C22:2n6) | 0.12 ± 0.00 | ND | 0.45 ± 0.01 | ND | 0.24 ± 0.00 | 1.03 ± 0.37 |
Behenic acid (C22:0) | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.07 ± 0.00 | 0.07 ± 0.03 | 0.11 ± 0.08 | 0.08 ± 0.00 |
Tricosanoic acid (C23:0) | 0.05 ± 0.00 | 0.07 ± 0.00 | 0.20 ± 0.06 | 0.20 ± 0.07 | 0.11 ± 0.01 | 0.10 ± 0.01 |
Nervonic acid (C24:1n9) | 0.03 ± 0.03 | ND | ND | ND | ND | ND |
Lignoceric acid (C24:0) | 0.13 ± 0.01 | 0.17 ± 0.02 | 0.46 ± 0.00 | 0.30 ± 0.02 | 0.16 ± 0.01 | 0.09 ± 0.12 |
C16–C18 | 98.44 ± 0.47 | 98.43 ± 0.00 | 94.70 ± 0.54 | 94.14 ± 0.05 | 89.94 ± 0.23 | 88.42 ± 0.65 |
Saturated fatty acids (SFAs) | 41.75 ± 0.01 | 41.97 ± 0.08 | 44.56 ± 0.02 | 41.68 ± 0.03 | 50.37 ± 0.07 | 44.39 ± 0.25 |
Unsaturated fatty acid (UFAs) | 58.25 ± 0.01 | 58.03 ± 0.08 | 55.44 ± 0.02 | 58.32 ± 0.03 | 49.63 ± 0.07 | 55.61 ± 0.25 |
Monounsaturated fatty acid (MUFAs) | 52.18 ± 0.56 | 49.37 ± 2.07 | 28.1 ± 0.18 | 29.03 ± 0.02 | 28.74 ± 0.21 | 38.02 ± 0.54 |
Polyunsaturated fatty acids (PUFAs) | 6.07 ± 0.55 | 8.66 ± 1.99 | 27.34 ± 0.15 | 29.28 ± 0.00 | 20.89 ± 0.14 | 17.59 ± 0.29 |
PUFAs/SFAs ratio | 0.15 ± 0.01 | 0.21 ± 0.05 | 0.61 ± 0.00 | 0.70 ± 0.00 | 0.41 ± 0.00 | 0.40 ± 0.00 |
Treatments | Growth Parameters | ||||||
---|---|---|---|---|---|---|---|
Fresh Weight (g) | Dry Weight (g) | Number of Leaves | Shoot Length (cm) | Root Length (cm) | |||
EC-450 | −M | −A | 8.95 ± 0.12 c | 1.06 ± 0.00 d | 11.33 ± 0.58 b | 16.90 ± 0.40 b | 27.37 ± 0.68 c |
+A | 9.41 ± 0.10 c | 0.89 ± 0.02 c | 12.00 ± 0.00 b | 15.40 ± 1.60 ab | 30.30 ± 1.30 d | ||
+M | −A | 4.87 ± 0.86 b | 0.42 ± 0.08 a | 9.33 ± 0.58 a | 14.60 ± 0.20 a | 23.75 ± 1.25 b | |
+A | 3.49 ± 0.22 a | 0.37 ± 0.02 a | 9.33 ± 0.58 a | 15.47 ± 1.05 ab | 29.60 ± 1.40 d | ||
EC-900 | −M | −A | 14.92 ± 0.57 d | 1.45 ± 0.04 e | 13.50 ± 0.50 c | 21.20 ± 0.30 c | 20.90 ± 1.90 a |
+A | 17.80 ± 0.20 e | 1.70 ± 0.05 f | 14.50 ± 0.50 d | 22.70 ± 2.60 c | 23.55 ± 0.05 b | ||
+M | −A | 9.39 ± 0.62 c | 0.72 ± 0.04 b | 12.00 ± 0.00 b | 26.00 ± 0.20 d | 34.00 ± 1.00 e | |
+A | 9.38 ± 0.39 c | 0.66 ± 0.04 b | 12.00 ± 0.00 b | 28.57 ± 0.90 e | 37.05 ± 0.65 f |
Fatty Acids | Relative Content (%) | |||
---|---|---|---|---|
EC-450 | EC-900 | |||
Uninoculated | Inoculated | Uninoculated | Inoculated | |
Caproic acid (C6:0) | 1.15 ± 0.01 | 0.63 ± 0.24 | 0.71 ± 0.05 | 0.66 ± 0.21 |
Caprylic acid (C8:0) | ND | 0.02 ± 0.03 | 0.05 ± 0.02 | 0.13 ± 0.01 |
Capric acid (C:10) | 1.09 ± 1.54 | 0.06 ± 0.03 | ND | ND |
Lauric acid (C12:0) | 0.13 ± 0.01 | 0.14 ± 0.00 | 0.14 ± 0.00 | 0.14 ± 0.20 |
Myristoleic acid (C14:1) | 0.49 ± 0.06 | 0.45 ± 0.02 | 0.27 ± 0.03 | 0.54 ± 0.05 |
Myristic acid (C14:0) | 1.30 ± 0.17 | 1.87 ± 0.11 | 1.50 ± 0.08 | 2.02 ± 0.16 |
Pentadecanoic acid (C15:0) | 4.76 ± 0.77 | 4.06 ± 0.11 | 2.53 ± 0.53 | 2.64 ± 0.70 |
Palmitoleic acid (C16:1) | 11.38 ± 0.01 | 9.61 ± 0.20 | 6.67 ± 0.30 | 7.21 ± 0.14 |
Palmitic acid (C16:0) | 32.99 ± 1.18 | 34.56 ± 0.69 | 41.19 ± 0.40 | 40.96 ± 0.57 |
cis-10-Heptadecanoic acid (C17:1) | ND | 0.02 ± 0.03 | ND | ND |
Heptadecanoic acid (C17:0) | 1.06 ± 0.03 | 1.05 ± 0.00 | 1.07 ± 0.02 | 1.37 ± 0.06 |
γ-Linolenic acid (GLA) (C18:3n6) | 0.16 ± 0.23 | 0.05 ± 0.07 | 0.03 ± 0.05 | ND |
Linoleic acid (C18:2n6c) | 7.25 ± 0.29 | 5.92 ± 0.01 | 5.35 ± 0.07 | 3.79 ± 0.12 |
Elaidic acid (C18:1n9t) | 11.11 ± 0.69 | 11.81 ± 0.09 | 9.67 ± 0.07 | 8.06 ± 0.33 |
Oleic acid (C18:1n9c) | 4.01 ± 0.28 | 7.24 ± 0.51 | 4.38 ± 0.02 | 7.47 ± 0.71 |
Stearic acid (C18:0) | 20.55 ± 1.17 | 18.39 ± 0.03 | 24.72 ± 0.04 | 24.19 ± 1.04 |
Arachidonic acid (C20:4n6) | 0.10 ± 0.14 | 0.26 ± 0.04 | ND | ND |
Eicosadienoic acid (C20:2n6) | 0.43 ± 0.07 | 1.02 ± 0.02 | 0.2 ± 0.20 | ND |
cis-11-Eicosenoic acid (C20:1n9) | 0.1 ± 0.01 | 0.11 ± 0.05 | 0.14 ± 0.05 | 0.09 ± 0.13 |
Arachidic acid (C20:0) | 0.34 ± 0.16 | 0.51 ± 0.00 | 0.27 ± 0.11 | 0.27 ± 0.38 |
Henicosanoic acid (C21:0) | 0.48 ± 0.68 | 0.17 ± 0.01 | 0.46 ± 0.55 | ND |
13,16-Docosadienoic acid (C22:2n6) | 0.61 ± 0.12 | 1.44 ± 0.03 | 0.19 ± 0.18 | 0.28 ± 0.40 |
Erucic acid (C22:1n9) | 0.04 ± 0.06 | ND | 0.05 ± 0.00 | ND |
Behenic acid (C22:0) | 0.19 ± 0.01 | 0.21 ± 0.12 | 0.15 ± 0.01 | 0.1 ± 0.14 |
Tricosanoic acid (C23:0) | 0.08 ± 0.12 | 0.21 ± 0.00 | 0.10 ± 0.01 | 0.05 ± 0.07 |
Lignoceric acid (C24:0) | 0.19 ± 0.01 | 0.17 ± 0.02 | 0.19 ± 0.05 | 0.04 ± 0.06 |
C16–C18 | 88.51 ± 2.84 | 88.66 ± 0.36 | 93.07 ± 0.52 | 93.04 ± 0.78 |
Saturated fatty acids (SFAs) | 64.31 ± 0.42 | 62.07 ± 0.29 | 73.07 ± 0.27 | 72.56 ± 0.72 |
Unsaturated fatty acids (UFAs) | 35.69 ± 0.42 | 37.93 ± 0.29 | 26.93 ± 0.27 | 27.44 ± 0.72 |
Monounsaturated fatty acid (MUFAs) | 27.13 ± 0.40 | 29.25 ± 0.29 | 21.17 ± 0.14 | 23.37 ± 1.00 |
Polyunsaturated fatty acids (PUFAs) | 8.56 ± 0.02 | 8.68 ± 0.01 | 5.77 ± 0.41 | 4.07 ± 0.28 |
PUFAs/SFAs ratio | 0.13 ± 0.00 | 0.14 ± 0.00 | 0.08 ± 0.01 | 0.06 ± 0.00 |
Parameters | EC-450 | EC-900 | International Standard | ||||
---|---|---|---|---|---|---|---|
Uninoculated | Inoculated | Uninoculated | Inoculated | EN 14214 | ASTM D6751 | TH 2020 | |
SV | 212.65 ± 0.46 | 209.98 ± 0.17 | 210.18 ± 1.78 | 211.83 ± 0.23 | NS | NS | NS |
IV | 41.18 ± 0.46 | 42.91 ± 0.22 | 30.12 ± 0.46 | 29.13 ± 0.53 | ≤120 | NS | ≤120 |
CN | 62.7 ± 0.05 | 62.64 ± 0.07 | 65.49 ± 0.12 | 65.51 ± 0.15 | ≥47 | ≥51 | ≥51 |
DU | 44.25 ± 0.44 | 46.62 ± 0.28 | 32.7 ± 0.68 | 31.51 ± 0.44 | NS | NS | NS |
HHV | 40.09 ± 0.01 | 40.18 ± 0.01 | 40.36 ± 0.07 | 40.31 ± 0.02 | NS | NS | NS |
LCSF | 14.57 ± 0.83 | 13.82 ± 0.15 | 17.35 ± 0.22 | 16.69 ± 1.16 | NS | NS | NS |
CFPP | 29.31 ± 2.60 | 26.93 ± 0.48 | 38.02 ± 0.68 | 35.95 ± 3.66 | −20 to 5 | NS | NS |
CP | 12.36 ± 0.62 | 13.19 ± 0.36 | 16.67 ± 0.21 | 16.55 ± 0.3 | NS | NS | NS |
υ | 5.1 ± 0.00 | 5.1 ± 0.00 | 5.1 ± 0.00 | 5.1 ± 0.00 | 3.5 to 5 | 1.9 to 6 | <8 |
ρ | 0.85 ± 0.00 | 0.85 ± 0.00 | 0.85 ± 0.00 | 0.85 ± 0.00 | 0.86 to 0.90 | 0.85 to 0.90 | NS |
OS | 13.32 ± 0.13 | 17.18 ± 0.21 | 19.32 ± 0.11 | 28.57 ± 16.02 | ≥6 | >3 | ≥6 |
APE | 45.06 ± 0.94 | 50.04 ± 1.08 | 38.87 ± 0.23 | 38.64 ± 2.33 | NS | NS | NS |
BAPE | 7.58 ± 0.17 | 6.01 ± 0.13 | 5.42 ± 0.02 | 3.79 ± 0.12 | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathom-aree, W.; Sensupa, S.; Wichaphian, A.; Sriket, N.; Kitwetch, B.; Pekkoh, J.; Sattayawat, P.; Lomakool, S.; Chromkaew, Y.; Srinuanpan, S. An Innovative Co-Cultivation of Microalgae and Actinomycete-Inoculated Lettuce in a Hydroponic Deep-Water Culture System for the Sustainable Development of a Food–Agriculture–Energy Nexus. Horticulturae 2024, 10, 70. https://doi.org/10.3390/horticulturae10010070
Pathom-aree W, Sensupa S, Wichaphian A, Sriket N, Kitwetch B, Pekkoh J, Sattayawat P, Lomakool S, Chromkaew Y, Srinuanpan S. An Innovative Co-Cultivation of Microalgae and Actinomycete-Inoculated Lettuce in a Hydroponic Deep-Water Culture System for the Sustainable Development of a Food–Agriculture–Energy Nexus. Horticulturae. 2024; 10(1):70. https://doi.org/10.3390/horticulturae10010070
Chicago/Turabian StylePathom-aree, Wasu, Sritip Sensupa, Antira Wichaphian, Nanthakrit Sriket, Benyapa Kitwetch, Jeeraporn Pekkoh, Pachara Sattayawat, Sureeporn Lomakool, Yupa Chromkaew, and Sirasit Srinuanpan. 2024. "An Innovative Co-Cultivation of Microalgae and Actinomycete-Inoculated Lettuce in a Hydroponic Deep-Water Culture System for the Sustainable Development of a Food–Agriculture–Energy Nexus" Horticulturae 10, no. 1: 70. https://doi.org/10.3390/horticulturae10010070
APA StylePathom-aree, W., Sensupa, S., Wichaphian, A., Sriket, N., Kitwetch, B., Pekkoh, J., Sattayawat, P., Lomakool, S., Chromkaew, Y., & Srinuanpan, S. (2024). An Innovative Co-Cultivation of Microalgae and Actinomycete-Inoculated Lettuce in a Hydroponic Deep-Water Culture System for the Sustainable Development of a Food–Agriculture–Energy Nexus. Horticulturae, 10(1), 70. https://doi.org/10.3390/horticulturae10010070