Molecular and Physiological Responses of Toona ciliata to Simulated Drought Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Measurement of Physiological Indexes
2.3. RNA Extraction and Library Construction
2.4. Data Filtering and Reference Genome Comparison
2.5. Differentially Expressed Genes
2.6. Co-Expression Network Analysis
2.7. Quantification and Validation of Gene Expression Levels
3. Results
3.1. Physiological Response of Toona ciliata under Drought Stress
3.2. Transcriptomic Analysis of Leaves of Toona ciliata Seedlings under Simulated Drought Stress
3.3. Analysis of Differential Gene Enrichment
3.4. Cluster Analysis of Shared Pathways
3.5. Transcription Factors
3.6. Co-Expression Network Analysis
3.7. Quantitative Real-Time PCR Verification
4. Discussion
4.1. The Effects of Drought Stress on the Leaves Physiology of Toona ciliata
4.2. Effects of Drought Stress on Photosynthesis of Toona ciliata Leaves
4.3. The Effects of Drought Stress on Transcription Factors in Toona ciliata Leaves
4.4. Effects of Drought Stress on Plant Hormone Signal Transduction in Toona ciliata Leaves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.F. Physiological and Structural Changes in the Root System of Seeds and Seedlings of Amorpha fruticosa under PEG-6000 Stress; Northeast Forestry University: Harbin, China, 2014. [Google Scholar]
- Rabara, R.C.; Tripathi, P.; Reese, R.N.; Rushton, D.L.; Alexander, D.; Timko, P.; Shen, Q.J.; Rushton, P.J. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement. BMC Genom. 2015, 16, 484. [Google Scholar]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. Gournal Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef]
- Maritim, T.K.; Kamunya, S.M.; Mireji, P.; Mwendia, C.; Muoki, R.C.; Cheruiyot, E.K.; Wachira, F.N. Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. Gournal Hortic. Sci. Biotechnol. 2015, 90, 395–400. [Google Scholar] [CrossRef]
- Zhao, X.X.; Huang, L.K.; Zhang, X.Q.; Li, Z.; Peng, Y. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress. Molecules 2014, 19, 13564–13576. [Google Scholar] [CrossRef]
- Zhu, J. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Li, M.; Chen, Y.; Zhou, Q.P.; Liu, W.H.; Liang, G.L.; Jia, Z.F. Important physiological changes due to drought stress on oat. Front. Ecol. Evol. 2021, 9, 644726. [Google Scholar] [CrossRef]
- Nna, M.; Zhao, G.Q.; Li, J.; Chai, J.K. Correlation analysis and evaluation of yield and quality of introduced Avena sativa varieties in the semi-arid region of Northwest China. Acta Agrestia Sin. 2018, 26, 125–133. [Google Scholar]
- Wang, S.C.; Zou, Y.J.; Ma, F.W. Effects of drought stress on leaf anatomical structure, micromorphological features and chloroplast ultrastructure of three species of apple Genus. Agric. Res. Arid. Areas 2014, 32, 15–23. [Google Scholar]
- Efeoolu, B.; Ekmekci, Y.; Cicek, N. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 2009, 75, 34–42. [Google Scholar] [CrossRef]
- Zhang, W.X.; Tian, M.Y.; Nong, L.Q.; Zhu, Y.; You, J. Overview of research on physiological and biochemical mechanisms of drought resistance in plants. South China Agric. 2016, 10, 51–53. [Google Scholar]
- Munne-Bosch, S.; Penuelas, J. Photo-and antioxidative protection, and a role for salicylic acid during drought and recovery in fieldgrown Phillyrea angustifolia plants. Planta 2003, 217, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Zhao, S.G.; An, X.H. Screening of physiological adaptations and resistance indexes of Juglans regia under drought stress. China Fruits 2023, 84, 72–78. [Google Scholar]
- Kliebenstein, D.J.; Monde, R.A.; Last, R.L. Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 1998, 118, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, W.; Zhao, J.; Meng, H.; Yang, Y.; Zheng, G.; Yuan, W. Transcriptional Regulation of the Acer truncatum B. Response to Drought and the Contribution of AtruNAC36 to Drought Tolerance. Antioxidants 2023, 12, 1339. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, H.; Zhang, Z.; Sun, H.; Li, M.J.; Shao, C.; Liang, H.; Wu, H.P.; Zhang, Y.Y. Physiological and transcriptomic analyses of roots from Panax ginseng C. A. Meyer under drought stress. Ind. Crops Prod. 2023, 191, 115858. [Google Scholar] [CrossRef]
- Singh, K.; Foley, R.C.; Onate-Sanchez, L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 2002, 5, 430–436. [Google Scholar] [CrossRef]
- Rushton, P.J.; Somssich, I.E.; Patricia, R.; Qingxi, J.S. WRKY transcription factors. Cell 2010, 2, 6. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ohtani, M.; Mitsuda, N.; Kubo, M.; Ohme-Takagi, M.; Fukuda, H.; Demura, T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in arabidopsis. Plant Cell 2010, 22, 1249–1263. [Google Scholar] [CrossRef]
- Zhao, C.; Lasses, T.; Bako, L.; Kong, D.Y.; Zhao, B.Y.; Chanda, B.S.; Bombarely, A.l.; Cruz Ramírez, A.; Scheres, B.; Brunner, A.M. XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differenti ation through conserved motifs that interact with RETINOBLASTOMA-RELATED. New Phytol. 2017, 216, 76–89. [Google Scholar] [CrossRef]
- Takada, S.; Hibara, K.; Ishida, T.; Tasaka, M. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem for mation. Development 2001, 128, 1127–1135. [Google Scholar] [CrossRef]
- Bu, Q.; Jiang, H.; Li, C.B.; Zhai, Q.; Zhang, J.; Wu, X.; Sun, J.; Xie, Q.; Li, C. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 2008, 18, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Sukiran, N.L.; Ma, J.C.; Ma, H.; Su, Z. ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis. Plant Mol. Biol. 2019, 99, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, Y.; Sui, N. Transcriptional regulation of bHLH during plant response to stress. Biochem. Biophys. Res. Commun. 2018, 503, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Liu, Y.; Chen, S.; Shityakov, S. Meta-analysis of the effects of overexpressed bZIP transcription factors in plants under drought stress. Plants 2024, 13, 337. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, Y.; He, Z.; Li, L.; Song, H.Y.; Zhang, J.; Cheng, X.; Chen, X.; Li, P.; Hu, X.; et al. A Chromosome-level genome assembly of Toona ciliata (Meliaceae). Genome Biol. Evol. 2022, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Z.; Jin, Z.Q.; Li, Z.L.; Fang, Y.P.; Xing, J.; Jin, W.B. Genetic diversity and population structure of Toona Ciliata Roem. Based on sequence-related amplified polymorphism (SRAP) markers. Forests 2015, 6, 1094–1106. [Google Scholar] [CrossRef]
- Wu, J.Y.; Li, Z.H.; Liu, Q.; Zhao, H.; Chen, C.X.; Cheng, Y.; Wang, X.J.; Liao, D.Z. Effects of drought stress on relative water content and chlorophyll content of leaf blades of Toona ciliate asexual seedlings. Chin. Agric. Sci. Bull. 2013, 29, 19–22. [Google Scholar]
- Xie, M.; Zhang, X.X.; Luo, Y.; Ma, Y.P.; Li, W.; Yang, L.X.; Liu, W.; Zhao, P.X.; Li, Z.H.; Ma, H. Application of MaxEnt model-based selection of suitable tree species in dry and hot river valleys of Yunnan province. Acta Ecol. Sin. 2024, 44, 1–19. [Google Scholar]
- Zhao, M.L.; Ren, Y.J.; Li, Z. Transcriptome profiling of Jerusalem artichoke seedlings (Helianthus tuberosus L.) under polyethylene glycol-simulated drought stress. Ind. Crops Prod. 2021, 170, 113696. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Yin, Y.; Liu, Q.; Li, N.; Li, X.; He, W.Z.; Hao, D.Y.; Liu, X.G.; Guo, C.H. Expression of AtGA2ox1 enhances drought tolerance in maize. Plant Growth Regul. 2019, 89, 203–215. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, Z.; Jin, Y.F.; Sun, H.H.; Xie, F.H.; Zhang, L. Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky Bluegrass. Int. J. Mol. Sci. 2019, 20, 1289. [Google Scholar] [CrossRef] [PubMed]
- Chaoui, A.; Mazhoudi, S.; Ghorbal, M.H.; El, F.E. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 1997, 127, 139–147. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lei, L.; Lai, J.; Zhao, H.; Song, W. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol. 2018, 18, 68. [Google Scholar] [CrossRef]
- Zhang, X.L.; Wang, R.J.; Xi, X.Q.; Feng, X.J.; Li, H. Effects of drought stress and rehydration on growth, physiological characteristics and secondary metabolite accumulation of Astragalus membranaceus seedlings. Crop J. 2024. [Google Scholar]
- Liu, Q.; Li, Z.H.; Wu, J.Y.; Chen, C.X.; Li, Y.; Wu, Z.H.; Cheng, Y.; Huang, M.J. Typical correlation analysis of physiological responses of Toona ciliata seedlings to drought stress and rehydration. J. Northwest AF Univ. 2015, 43, 35–44. [Google Scholar]
- Binott, J.J.; Owuoche, J.O.; Bartels, D. Physiological and molecular characterization of kenyan barley (Hordeum vulgare L.) seed lings for salinity and drought tolerance. Euphytica 2017, 213, 1. [Google Scholar] [CrossRef]
- Wang, J.; Lv, J.; Liu, Z.; Liu, Y.H.; Song, J.S.; Ma, Y.Q.; Ou, L.J.; Zhang, X.L.; Liang, C.L.; Wang, F.; et al. Integration of transcriptomics and metabolomics for pepper (Capsicum annuum L.) in response to heat stress. Int. Gournal Mol. Sci. 2019, 20, 5042. [Google Scholar] [CrossRef]
- Lee, H.; Cha, J.; Choi, C.; Choi, N.; Ji, H.; Park, S.R.; Lee, S.; Hwang, D. Rice WRKY11plays a role in pathogen defense and drought tolerance. Rice 2018, 11, 5–12. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Q.; Gao, T.; Wang, H.; Zhang, Z.; Liang, B.; Wei, Z.; Liu, C.; Ma, F. The mitigation effects of exogenous melatonin on replant disease in apple. J. Pineal Res. 2018, 65, e12523. [Google Scholar] [CrossRef]
- Marian, C.O.; Krebs, S.L.; Arora, R. Dehydrin variability among rhododendron species: A 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol. 2004, 161, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Zhang, Z.; Liu, X.; Wu, Q.; Chen, Q.; Liu, Q.; van Nocker, S.; Ma, F.; Li, C. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiol. Biochem. 2020, 148, 260–272. [Google Scholar] [CrossRef]
- Du, J.; Wang, S.; He, C.; Zhou, B.; Ruan, Y.; Shou, H. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J. Exp. Bot. 2017, 68, 1955–1972. [Google Scholar] [CrossRef]
- Tiwari, S.B.; Wang, X.J.; Hagen, G.; Guilfoyle, T.J. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 2001, 13, 2809–2822. [Google Scholar] [CrossRef]
- Ulmasov, T.; Murfett, J.; Hagen, G.; Guilfoyle, T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 1997, 9, 1963–1971. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhao, P.; Song, X.; Ma, Y.; Fan, L.; Xie, M.; Song, Z.; Zhang, X.; Ma, H. Molecular and Physiological Responses of Toona ciliata to Simulated Drought Stress. Horticulturae 2024, 10, 1029. https://doi.org/10.3390/horticulturae10101029
Yang L, Zhao P, Song X, Ma Y, Fan L, Xie M, Song Z, Zhang X, Ma H. Molecular and Physiological Responses of Toona ciliata to Simulated Drought Stress. Horticulturae. 2024; 10(10):1029. https://doi.org/10.3390/horticulturae10101029
Chicago/Turabian StyleYang, Linxiang, Peixian Zhao, Xiaobo Song, Yongpeng Ma, Linyuan Fan, Meng Xie, Zhilin Song, Xuexing Zhang, and Hong Ma. 2024. "Molecular and Physiological Responses of Toona ciliata to Simulated Drought Stress" Horticulturae 10, no. 10: 1029. https://doi.org/10.3390/horticulturae10101029
APA StyleYang, L., Zhao, P., Song, X., Ma, Y., Fan, L., Xie, M., Song, Z., Zhang, X., & Ma, H. (2024). Molecular and Physiological Responses of Toona ciliata to Simulated Drought Stress. Horticulturae, 10(10), 1029. https://doi.org/10.3390/horticulturae10101029