Sustainable Practices for Arid Climates: Evaluating Combined Mulches with Biostimulant in Combating Soil Salinity and Cowpea Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site
2.2. Design
- -
- T1: un-mulched without foliar application (CH0);
- -
- T2: un-mulched with foliar by bulk chitosan at 250 mg/L (CH1);
- -
- T3: un-mulched with nano-sized chitosan at 125 mg/L (CH2);
- -
- T4: un-mulched with nano-sized chitosan at 62.5 mg/L (CH3);
- -
- T5: white plastic mulches (30 μm) with CH0;
- -
- T6: white plastic mulches (30 μm) with CH1;
- -
- T7: white plastic mulches (30 μm) with CH2;
- -
- T8: white plastic mulches (30 μm) with CH3;
- -
- T9: rice straw mulches (15 cm) with CH0;
- -
- T10: rice straw mulches (15 cm) with CH1;
- -
- T11: rice straw mulches (15 cm) with CH2;
- -
- T12: rice straw mulches (15 cm) with CH3;
- -
- T13: sawdust mulches (15 cm) with CH0;
- -
- T14: sawdust mulches (15 cm) with CH1;
- -
- T15: sawdust mulches (15 cm) with CH2;
- -
- T16: sawdust mulches (15 cm) with CH3.
2.3. Bulk Chitosan Characterization and Chitosan Nanoparticles’ Synthesis
2.4. Cultural Practices
2.5. Parameters Assessed
2.6. Data Processing
3. Results
3.1. Soil Properties
3.2. Plant Growth and Yield
3.2.1. Vegetative Growth Parameters
3.2.2. Yield and Its Parameters
3.2.3. Macro Nutrients Content in Cowpeas Seed
3.3. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 14. [Google Scholar] [CrossRef] [PubMed]
- Basak, N.; Rai, A.K.; Sundha, P.; Chandra, P.; Bedwal, S.; Patel, S.; Yadav, R.K.; Sharma, P.C. Soil management for salt-affected soil. In Agricultural Soil Sustainability and Carbon Management; Academic Press: Cambridge, MA, USA, 2023; pp. 99–128. [Google Scholar] [CrossRef]
- Bannari, A.; Al-Ali, Z.M. Assessing climate change impact on soil salinity dynamics between 1987–2017 in arid landscape using Landsat TM, ETM+ and OLI data. Remote Sens. 2020, 12, 2794. [Google Scholar] [CrossRef]
- Bratovcic, A. Different Approaches to Reduce Salinity in Salt-Affected Soils and Enhancing Salt Stress Tolerance in Plants. Agric. Sci. 2024, 15, 830–847. [Google Scholar] [CrossRef]
- Omar, M.M.; Shitindi, M.J.; Massawe, B.H.J.; Fue, K.G.; Meliyo, J.L.; Pedersen, O. Salt-affected soils in Tanzanian agricultural lands: Type of soils and extent of the problem. Sustain. Environ. 2023, 9, 2205731. [Google Scholar] [CrossRef]
- Caon, L.; Watson, J.; Gomes da Silva, C.; Vargas, R.; Khechimi, W.; Bottigliero, F.; Verbeke, I. The Multi-Faced Role of Soil in the Near East and North Africa—Policy Brief, Soil Salinity; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; pp. 1–8. Available online: http://www.fao.org/3/ca7123en/ca7123en.pdf (accessed on 12 October 2024).
- Aboelsoud, H.M.; AbdelRahman, M.A.E.; Kheir, A.M.S.; Eid, M.S.M.; Ammar, K.A.; Khalifa, T.H.; Scopa, A. Quantitative Estimation of Saline-Soil Amelioration Using Remote Sensing Indices in Arid Land for Better Management. Land 2022, 11, 1041. [Google Scholar] [CrossRef]
- Donald, L.S.; Balwant, S.; Matthew, G.S. Chapter 10. The Chemistry of Saline and Sodic Soils. In Environmental Soil Chemistry, 3rd ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 411–438. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Bilal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Shaygan, M.; Baumgartl, T. Reclamation of Salt-Affected Land: A Review. Soil Syst. 2022, 6, 61. [Google Scholar] [CrossRef]
- Hameed, A.; Ahmed, M.Z.; Hussain, T.; Aziz, I.; Ahmad, N.; Gul, B.; Nielsen, B.L. Effects of salinity stress on chloroplast structure and function. Cells 2021, 10, 2023. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, L.; Rupasinghe, T.W.; Roessner, U.; Barkla, B.J. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. Plant Physiol. 2022, 189, 805–826. [Google Scholar] [CrossRef]
- Sahab, S.; Suhani, I.; Srivastava, V.; Chauhan, P.S.; Singh, R.P.; Prasad, V. Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Sci. Total Environ. 2021, 764, 144164. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Statistical Databases; Food and Agriculture Organization of the United Nations: Wiesbaden, Germany, 2021; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 October 2024).
- Bennetau-Pelissero, C. Plant Proteins from Legumes. In Bioactive Molecules in Food. Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–43. [Google Scholar] [CrossRef]
- Akter, M.; Mahmud, A.; Akter, M.; Siddiqui, M.N.; Khan, M.A.R. Dissecting the salt tolerance potential of cowpea genotypes based on morpho-physiology and yield-related attributes. Ann. Appl. Biol. 2022, 180, 428–437. [Google Scholar] [CrossRef]
- Tavares, D.S.; Sant’Anna-Santos, B.F.; Gomes, M.P. Unleashing the Power of Fungi: Utilizing the Arbuscular Mycorrhizal Fungi Rhizophagus clarus to Mitigate Salinity Stress and Boost Cowpea Bean Productivity for Food Security. Stresses 2024, 4, 393–410. [Google Scholar] [CrossRef]
- Devkota, K.P.; Devkota, M.; Rezaei, M.; Oosterbaan, R. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated dry lands. Agric. Syst. 2022, 198, 103390. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Pan, H.J.; Zhang, K.Y.; Sun, W.; Wang, X.J.; Gao, H. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur. J. Soil Biol. 2015, 70, 23–30. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Demo, A.H.; Asefa Bogale, G. Enhancing crop yield and conserving soil moisture through mulching practices in dryland agriculture. Front. Agron. 2024, 6, 1361697. [Google Scholar] [CrossRef]
- Kishore, G.; Babu, B.M.; Mattaparti, L.D. Influence of plastic mulching and irrigation levels on soil temperature, moisture and water use efficiency of tomato crop (Solanum lycopersicum). Int. J. Plant Soil Sci. 2022, 34, 277–282. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; Wang, X.; Yao, C.; Wang, Y.; Wang, Z.; Zhou, W.; Chen, E.; Chen, W. Effect of straw mulching and deep burial mode on water and salt transport regularity in saline soils. Water 2023, 15, 3227. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Wang, P.Y.; Xiong, X.B.; Wang, Y.B.; Zhou, R.; Tao, H.Y.; Grace, U.A.; Wang, N.; Xiong, Y.C. Environmental risk of multi-year polythene film mulching and its green solution in arid irrigation region. J. Hazard. Mater. 2022, 435, 128981. [Google Scholar] [CrossRef] [PubMed]
- Dewi, S.K.; Han, Z.M.; Bhat, S.A.; Zhang, F.; Wei, Y.; Li, F. Effect of plastic mulch residue on plant growth performance and soil properties. Environ. Pollut. 2024, 343, 123254. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Chen, Q.; Wu, L.; Yang, H.; Xu, J.; Zhang, Y. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil Tillage Res. 2020, 198, 104535. [Google Scholar] [CrossRef]
- Zhao, Y.; Pang, H.; Wang, J.; Huo, L.; Li, Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Research 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Fernández, C. Effects of post-fire application of straw mulch strips on soil erosion, soil moisture and vegetation regeneration in European dry heathlands in NW Spain. Ecol. Eng. 2023, 196, 107095. [Google Scholar] [CrossRef]
- Paunović, S.M.; Milinković, M.; Pešaković, M. Effect of sawdust and foil mulches on soil properties, growth and yield of black currant. Erwerbs Obstbau 2020, 62, 429–435. [Google Scholar] [CrossRef]
- Abiodun, F.O.; Isola, J.O.; Smart, M.O. Influence of Sawdust Mulch on Soil Properties, Growth and Yield Performance of Okra Abelmoschus esculentus (l.) Moench in an alfisol. FUTY J. Environ. 2022, 16, 12–22. [Google Scholar]
- Khalifa, T.; Abdel-Kader, N.I.; Elbagory, M.; Ahmed, M.E.; Saber, E.A.; Omara, A.E.; Mahdy, R.M. Investigating the influence of eco-friendly approaches on saline soil traits and growth of common bean plants (Phaseolus vulgaris L.). PeerJ 2024, 12, e17828. [Google Scholar] [CrossRef]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Shahena, S.; Rajan, M.; Chandran, V.; Mathew, L. Conventional methods of fertilizer release. In Controlled Release Fertilizers for Sustainable Agriculture; Lewu, F.B., Volova, T., Thomas, S., Rakhimol, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–24. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M. Foliar Fertilization: A Potential Strategy for Improving Plant Salt Tolerance. Crit. Rev. Plant Sci. 2023, 43, 94–115. [Google Scholar] [CrossRef]
- Martínez-Lorente, S.E.; Martí-Guillén, J.M.; Pedreño, M.Á.; Almagro, L.; Sabater-Jara, A.B. Higher Plant-Derived Biostimulants: Mechanisms of Action and Their Role in Mitigating Plant Abiotic Stress. Antioxidants 2024, 13, 318. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xing, R.; Liu, S.; Li, P. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. J. Agric. Food Chem. 2020, 68, 12203–12211. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Mujtaba, M.; Ur Rahman, M.; Shalmani, A.; Ahmad, H.; Anwar, T.; Tianchan, D.; Wang, X. The Multifunctional Role of Chitosan in Horticultural Crops; A review. Molecules 2018, 23, 872. [Google Scholar] [CrossRef] [PubMed]
- Dima, J.B.; Sequeiros, C.; Zaritzky, N. Chitosan from marine crustaceans: Production, characterization and applications. In Biological Activities and Application of Marine Polysaccharides; IntechOpen: London, UK, 2017; pp. 39–56. [Google Scholar] [CrossRef]
- Bandara, S.; Du, H.; Carson, L.; Bradford, D.; Kommalapati, R. Agricultural and biomedical applications of chitosan based nanomaterials. Nanomaterials 2020, 10, 1903. [Google Scholar] [CrossRef] [PubMed]
- Khader, E.H.; Mohammed, T.J.; Albayati, T.M.; Saady, N.M.C.; Zendehboudi, S. Green nanocatalyst for the photocatalytic degradation of organic pollutants in petroleum refinery wastewater: Synthesis, characterization, and optimization. J. Mol. Struct. 2024, 1304, 137688. [Google Scholar] [CrossRef]
- Román-Doval, R.; Torres-Arellanes, S.P.; Tenorio-Barajas, A.Y.; Gómez-Sánchez, A.; Valencia-Lazcano, A.A. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers 2023, 15, 2867. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Dwivedi, P. Chitosan Based Nanoformulation for Sustainable Agriculture with Special Reference to Abiotic Stress: A Review. J. Polym. Environ. 2022, 30, 1264–1283. [Google Scholar] [CrossRef]
- Balusamy, S.R.; Rahimi, S.; Sukweenadhi, J.; Sunderraj, S.; Shanmugam, R.; Thangavelu, L.; Mijakovic, I.; Perumalsamy, H. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr. Polym. 2022, 284, 119189. [Google Scholar] [CrossRef]
- Le, T.T. Effects of chitosan on plant tolerance to salt stress. VNUHCM J. Eng. Technol. 2024, 7, 2149–2155. [Google Scholar] [CrossRef]
- Tabassum, M.; Noreen, Z.; Aslam, M.; Shah, A.N.; Usman, S.; Waqas, A.; Alsherif, E.A.; Korany, S.M.; Nazim, M. Chitosan modulated antioxidant activity, inorganic ions homeostasis and endogenous melatonin to improve yield of Pisum sativum L. accessions under salt stress. Sci. Hortic. 2024, 323, 112509. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mohaseb, M.I.; Nashwa, M.; Shaban, K.A. Evaluation of Methods of Adding Chitosan and Potassium Silicate on Some Soil Fertility and Cowpea (Vigna ungiculata) Plant Productivity. Asian J. Soil Sci. Plant Nutr. 2024, 10, 1–13. [Google Scholar] [CrossRef]
- García-Carrasco, M.; Valdez-Baro, O.; Cabanillas-Bojórquez, L.A.; Bernal-Millán, M.J.; Rivera-Salas, M.M.; Gutiérrez-Grijalva, E.P.; Heredia, J.B. Potential agricultural uses of micro/nano encapsulated chitosan: A review. Macromol 2023, 3, 614–635. [Google Scholar] [CrossRef]
- Sari, K.; Abraha, K.; Suharyadi, E. Effect of milling time on microstructures of nano-sized chitosan. J. Phys. Conf. Ser. 2019, 1170, 012058. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. Methods Mol. Biol. 2011, 697, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. American Society of Agronomy; Soil Science Society of America: Madison, WI, USA, 1982; p. 1159. [Google Scholar] [CrossRef]
- Sheldrick, B.H.; Wang, C. Particle-size Distribution. In Soil Sampling and Methods of Analysis, Canadian Society of Soil Science; Carter, M.R., Ed.; Lewis Publishers: Ann Arbor, MI, USA, 1993; pp. 499–511. [Google Scholar]
- Campbell, D.J. Determination and use of soil bulk density in relation to soil compaction. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994; Volume 11, pp. 113–139. ISBN 0167-4137. [Google Scholar]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; ASA Monograph: London, UK, 1986; Volume 9, pp. 635–662. [Google Scholar]
- Vieira, F.C.S.; Nahas, E. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol. Res. 2005, 160, 97–202. [Google Scholar] [CrossRef]
- Peterburgski, A.V. Hand Book of Agronomic Chemistry; Kolos Publishing House: Moscow, Russia, 1968; pp. 29–86. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentic Hall Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Snell, F.D.; Snell, C.T. Colorimetric Methods of Analysis; Van, D., Ed.; Nostranad Company Inc.: New York, NY, USA, 1967; pp. 551–552. [Google Scholar]
- Haque, M.A.; Jahiruddin, M.; Clarke, D. Effect of plastic mulch on crop yield and land degradation in south coastal saline soils of Bangladesh. Int. Soil Water Conserv. Res. 2018, 6, 317–324. [Google Scholar] [CrossRef]
- Caboň, M.; Galvánek, D.; Detheridge, A.P.; Griffith, G.W.; Maráková, S.; Adamčík, S. Mulching has negative impact on fungal and plant diversity in Slovak oligotrophic grasslands. Basic Appl. Ecol. 2021, 52, 24–37. [Google Scholar] [CrossRef]
- Divya, K.; Vijayan, S.; George, T.K.; Jisha, M.S. Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym. 2017, 18, 221–230. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Xie, M.; Zhao, F.; Doughty, R. Increasing temperature can modify the effect of straw mulching on soil C fractions, soil respiration, and microbial community composition. PLoS ONE 2020, 15, e0237245. [Google Scholar] [CrossRef]
- Sen, S.K.; Chouhan, D.; Das, D.; Ghosh, R.; Mandal, P. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Int. J. Biol. Macromol. 2020, 145, 108–123. [Google Scholar] [CrossRef]
- El-Kader, A.; Sabry, H.; Mohamed, M.M.; Ahmed, H.K.; Sheta, M.H. Mulching effect on evaporation from the soil surface and water use efficiency of cowpea crop. Al Azhar J. Agric. Res. 2023, 48, 347–357. [Google Scholar] [CrossRef]
- Ray, S.R.; Bhuiyan, M.J.H.; Hossain, M.A.; Hasan, A.K.; Sharmin, S. Chitosan ameliorates growth and biochemical attributes in mung bean varieties under saline condition. Res. Agric. Livest. Fish. 2016, 3, 45–51. [Google Scholar] [CrossRef]
- Tartoura, S.; Ahmed, H.M.I.; El Sayed, S.S.M. Optimization of Cowpea Productivity and Seed Quality under Soil Natural Salinity Stress Using some Different Protective Treatments. J. Plant Prod. 2021, 12, 711–718. [Google Scholar] [CrossRef]
Soil pH 1 | EC (dS/m) 2 | ESP |
8.70 | 8.04 | 16.66 |
Soil organic carbon (g/kg) | Soil moisture content (%) | Soil bulk density (g/cm3) |
0.530 | 29.51 | 1.36 |
Available N (g/kg) | Available P (g/kg) | Available K (g/kg) |
18.62 | 8.63 | 180.49 |
Bacterial counts (CFU × 107 g−1 dry soil) | Fungal counts (CFU × 104 g−1 dry soil) | |
3.67 | 2.46 |
(a) | ||||||||||||
Parameters | Soil pH | EC (dS/m) | ESP | SMC (%) | BD (g/cm3) | Organic Carbon (g/kg) | ||||||
Treatments | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
T1 | 8.72 a | 8.74 a | 8.08 a | 7.90 a | 16.72 a | 16.64 a | 31.38 e | 31.08 e | 1.38 a | 1.39 a | 0.591 i | 0.572 g |
T2 | 8.67 ab | 8.63 b | 7.97 a | 7.76 ab | 16.64 a | 16.48 ab | 30.91 ef | 30.52 ef | 1.37 a | 1.37 ab | 0.648 fgh | 0.657 defg |
T3 | 8.62 abc | 8.57 bc | 7.95 ab | 7.71 b | 16.61 a | 16.40 abc | 30.65 f | 30.24 ef | 1.36 b | 1.36 bc | 0.656 efgh | 0.671 cdef |
T4 | 8.58 cd | 8.50 cd | 7.94 ab | 7.69 b | 16.51 ab | 16.36 abc | 30.31 f | 30.70 f | 1.35 bc | 1.34 cd | 0.665 defgh | 0.686 bcde |
T5 | 8.60 bcd | 8.57 bc | 7.32 e | 6.96 gh | 15.81 ef | 15.83 defgh | 38.89 a | 39.67 a | 1.35 cd | 1.34 de | 0.620 hi | 0.575 fg |
T6 | 8.53 cde | 8.45 de | 7.22 e | 6.82 hi | 15.71 f | 15.65 fgh | 38.67 ab | 39.34 a | 1.34 cd | 1.32 def | 0.680 cdef | 0.698 bcde |
T7 | 8.48 efg | 8.38 ef | 7.20 e | 6.76 i | 15.67 f | 15.56 gh | 38.36 ab | 39.23 a | 1.34 de | 1.32 efg | 0.690 cdef | 0.713 abcd |
T8 | 8.45 efg | 8.36 ef | 7.19 e | 6.74 i | 15.56 f | 15.51 h | 38.09 b | 38.91 a | 1.33 ef | 1.32 efg | 0.699 cde | 0.730 abcd |
T9 | 8.57 cd | 8.52 bcd | 7.77 bc | 7.47 c | 16.29 bc | 16.09 cde | 35.24 d | 36.13 c | 1.32 fg | 1.31 fg | 0.630 ghi | 0.607 efg |
T10 | 8.46 efg | 8.34 fg | 7.67 cd | 7.31 cde | 16.17 cd | 15.91 defg | 35.37 d | 35.71 cd | 1.32 fg | 1.31 fg | 0.696 cde | 0.697 bcde |
T11 | 8.45 efg | 8.32 fg | 7.65 cd | 7.23 def | 16.12 cd | 15.82 defgh | 35.21 d | 35.36 cd | 1.31 gh | 1.30 gh | 0.707 bcd | 0.714 abcd |
T12 | 8.42 g | 8.3 fg | 7.63 cd | 7.21 def | 16.01 de | 15.78 efgh | 34.95 d | 35.10 d | 1.31 h | 1.30 gh | 0.718 bc | 0.729 abcd |
T13 | 8.53 def | 8.46 de | 7.66 cd | 7.35 cd | 16.34 bc | 16.17 bcd | 36.79 c | 37.97 b | 1.29 i | 1.28 hi | 0.674 cdefg | 0.660 defg |
T14 | 8.46 efg | 8.33 fg | 7.57 d | 7.20 def | 16.23 cd | 15.97 def | 36.63 c | 37.92 b | 1.29 i | 1.27 ij | 0.747 ab | 0.759 abc |
T15 | 8.43 fg | 8.29 fg | 7.54 d | 7.15 ef | 16.18 cd | 15.88 defg | 36.44 c | 37.68 b | 1.28 i | 1.26 ij | 0.761 a | 0.777 ab |
T16 | 8.40 g | 8.25 g | 7.51 d | 7.11 fg | 16.08 cd | 15.83 defgh | 36.20 c | 37.35 b | 1.27 j | 1.25 j | 0.771 a | 0.792 a |
p values | ** | ** | * | ** | * | * | ** | ** | ** | ** | ** | ** |
(b) | ||||||||||||
Parameters | Available N (g/kg) | Available P (g/kg) | Available K (g/kg) | Bacterial Count (CFU × 107 g−1 Dry Soil) | Fungal Count (CFU × 104 g−1 Dry Soil) | |||||||
Treatments | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
T1 | 20.19 m | 19.03 f | 9.38 de | 8.82 ef | 169.32 f | 163.92 e | 3.85 e | 3.62 e | 4.79 a | 4.75 a | ||
T2 | 21.25 l | 19.66 ef | 9.35 de | 8.59 ef | 174.39 f | 179.56 d | 4.23 ef | 4.75 d | 4.17 b | 4.40 a | ||
T3 | 22.17 k | 19.75 ef | 9.37 de | 8.22 f | 174.66 f | 179.69 d | 4.36 ef | 5.09 d | 3.88 bc | 3.48 b | ||
T4 | 22.77 j | 20.08 def | 9.06 e | 7.89 f | 177.19 f | 180.99 d | 4.58 e | 5.21 d | 3.74 cd | 3.41 b | ||
T5 | 23.65 i | 22.20 cde | 11.21 abc | 11.98 ab | 219.23 e | 228.37 c | 6.07 d | 6.43 c | 3.64 cd | 3.05 bc | ||
T6 | 24.41 h | 22.60 bcd | 10.45 bcde | 10.32 c | 224.51 de | 236.52 c | 6.23 d | 6.40 c | 3.43 de | 3.02 bc | ||
T7 | 25.18 g | 23.67 abc | 9.81 cde | 9.65 cde | 224.60 de | 236.55 c | 6.07 d | 6.62 c | 3.26 ef | 2.92 bc | ||
T8 | 25.37 g | 23.17 abc | 9.29 de | 8.98 def | 231.44 cde | 236.68 c | 6.19 d | 6.94 c | 3.14 efg | 2.83 bcd | ||
T9 | 27.45 cd | 24.49 abc | 12.11 a | 13.16 a | 237.80 bcd | 254.47 b | 7.60 c | 7.83 b | 3.11 efg | 2.97 bc | ||
T10 | 27.85 c | 25.20 ab | 12.52 ab | 12.94 a | 241.59 abc | 260.92 ab | 7.77 bc | 7.98 b | 3.04 fgh | 2.62 cd | ||
T11 | 28.58 b | 24.76 abc | 11.32 abc | 12.86 a | 241.87 abc | 261.31 ab | 7.81 bc | 7.80 b | 2.95 fghi | 2.59 cd | ||
T12 | 29.18 a | 25.47 a | 10.75 bcd | 12.20 ab | 242.74 abc | 261.69 ab | 7.89 bc | 8.34 ab | 2.86 fghij | 2.55 cd | ||
T13 | 25.91 f | 23.22 abc | 11.76 ab | 12.53 ab | 252.92 ab | 266.33 ab | 8.07 abc | 8.42 ab | 2.91 ghij | 2.64 cd | ||
T14 | 26.38 e | 23.27 abc | 11.71 ab | 12.41 ab | 254.31 a | 269.39 a | 8.12 abc | 8.28 ab | 2.71 hij | 2.48 cd | ||
T15 | 26.50 e | 24.87 abc | 10.48 bcde | 11.59 b | 254.50 a | 269.71 a | 8.36 ab | 8.52 ab | 2.63 ij | 2.44 cd | ||
T16 | 27.09 d | 23.79 abc | 8.97 de | 10.16 cd | 254.55 a | 270.90 a | 8.64 a | 8.92 a | 2.54 j | 2.22 d | ||
p values | ** | * | * | ** | ** | ** | * | ** | ** | ** |
Parameters | Plant Height (cm) | Chlorophyll Content (µg mL−1) | Leaf Areas (cm2/Plant) | Fresh Weight (g/Plant) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Branches | Roots | ||||||||||
Treatments | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
T1 | 25.50 f | 26.80 e | 26.40 f | 27.75 e | 44.52 f | 48.29 e | 4.79 j | 5.38 h | 3.89 e | 4.34 b | 0.405 f | 0.421 g |
T2 | 31.50 e | 34.06 cd | 30.80 e | 31.40 d | 53.07 e | 54.40 d | 5.41 i | 5.99 g | 4.45 cd | 4.60 b | 0.484 ef | 0.499 f |
T3 | 33.75 cd | 34.50 c | 34.00 cd | 35.05 bc | 56.30 c | 65.31 b | 6.72 g | 6.96 de | 4.92 bc | 5.13 b | 0.545 cde | 0.571 de |
T4 | 34.75 c | 35.75 c | 37.28 ab | 37.73 ab | 61.19 ab | 68.19 ab | 7.84 cde | 7.79 bc | 5.88 a | 6.11 a | 0.592 abc | 0.623 bc |
T5 | 32.85 de | 34.30 cd | 33.87 cd | 34.62 c | 54.53 ce | 60.51 c | 6.10 h | 6.34 ef | 4.93 bc | 4.93 b | 0.513 de | 0.533 ef |
T6 | 38.00 ab | 39.50 ab | 36.62 b | 37.17 b | 59.84 b | 67.35 ab | 7.64 def | 7.82 bc | 5.85 a | 6.22 a | 0.597 abc | 0.621 abc |
T7 | 38.25 ab | 40.00 ab | 37.70 ab | 38.43 ab | 61.98 ab | 68.94 ab | 8.11 bcd | 8.27 abc | 6.11 a | 6.20 a | 0.619 abc | 0.645 ab |
T8 | 39.25 a | 40.50 a | 38.80 a | 39.03 a | 63.00 a | 71.06 a | 8.92 a | 8.88 a | 6.26 a | 6.35 a | 0.656 a | 0.659 a |
T9 | 32.50 de | 34.25 cd | 30.68 d | 31.83 d | 54.23833 | 58.88 c | 5.64 hi | 6.18 efg | 4.52 cd | 4.75 b | 0.510 de | 0.530 ef |
T10 | 37.75 ab | 39.25 ab | 36.45 b | 36.95 b | 59.45 b | 67.36 a | 7.53 ef | 7.85 bc | 5.83 ab | 6.07 a | 0.605 abc | 0.607 bc |
T11 | 38.00 ab | 39.75 ab | 36.80 b | 37.70 ab | 61.31 ab | 68.24 ab | 8.05 bcd | 8.22 abc | 5.90 a | 6.11 a | 0.607 abc | 0.635 ab |
T12 | 38.75 ab | 40.00 ab | 38.38 ab | 38.88 a | 62.39 ab | 70.40 a | 8.55 ab | 8.73 ab | 6.18 a | 6.28 a | 0.645 a | 0.651 ab |
T13 | 31.90 e | 32.30 d | 30.85 cd | 31.40 d | 52.89 ce | 53.95 d | 5.53 i | 6.01 fg | 4.33 de | 4.36 b | 0.485 de | 0.498 f |
T14 | 37.20 b | 38.00 b | 36.60 b | 36.73 bc | 58.73 bc | 66.65 b | 7.31 f | 7.78 bc | 5.70 ab | 5.98 a | 0.564 bcd | 0.593 cd |
T15 | 37.75 ab | 38.25 b | 36.25 b | 37.53 ab | 59.25 b | 67.70 ab | 7.92 cde | 8.00 abc | 5.88 a | 6.02 a | 0.595 abc | 0.626 bc |
T16 | 38.75 ab | 39.50 ab | 37.90 ab | 38.12 ab | 61.65 ab | 69.26 ab | 8.24 bc | 8.72 ab | 6.16 a | 6.25 a | 0.630 ab | 0.642 ab |
p values | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Parameters | Pod Length (cm) | No. of Pods/Plant | Seed Weight (g/Plants) | Seed Yield (kg/ha) | Seed Yield (kg/ha) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Treatments | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
T1 | 10.83 g | 11.33 g | 14.67 f | 15.67 e | 16.15 f | 16.38 h | 1613.90 h | 1637.32 h | 2185.96 e | 2250.34 d |
T2 | 11.83 f | 12.75 ef | 16.17 cdef | 18.33 cd | 17.66 ef | 18.43 gh | 1764.89 gh | 1797.42 gh | 2655.91 cde | 2720.84 bcd |
T3 | 12.50 e | 13.00 ef | 17.00 bcde | 18.67 cd | 18.07 def | 17.98 fgh | 1806.44 fgh | 1841.83 fg | 2907.88 abcd | 2887.56 abc |
T4 | 13.83 cd | 14.46 cd | 18.00 abcd | 19.46 bcd | 20.33 bc | 20.78 bcde | 2031.83 bcde | 2077.60 bcde | 2865.26 abcd | 2930.73 abc |
T5 | 13.00 de | 13.83 bcd | 16.33 cdef | 19.67 bcd | 20.06 bcd | 20.39 bcdef | 2005.56 bcdef | 2038.30 cdef | 2857.88 abcd | 2921.19 abc |
T6 | 13.67 cd | 14.83 bc | 18.00 abcd | 20.25 abc | 20.59 bc | 21.36 abcd | 2058.53 abcd | 2110.42 abcde | 3222.50 ab | 3174.68 abc |
T7 | 14.69 bc | 15.58 ab | 18.67 abcd | 21.00 a | 22.11 ab | 22.50 ab | 2143.38 abc | 2182.79 abcd | 3240.66 ab | 3217.90 ab |
T8 | 16.00 a | 16.17 a | 20.00 a | 21.33 a | 22.91 a | 23.13 a | 2256.79 a | 2278.61 a | 3257.58 a | 3269.26 a |
T9 | 12.83 e | 13.23 def | 16.42 cdef | 18.00 d | 19.16 cde | 19.47 defg | 1881.82 defg | 1912.38 efg | 2697.40 bcde | 2768.23 abcd |
T10 | 13.50 cd | 14.83 bc | 17.67 bcde | 19.67 bd | 20.40 bc | 21.13 abcd | 2105.66 bc | 2136.76 abcd | 3097.98 abcd | 3110.28 abc |
T11 | 14.40 c | 15.50 ab | 18.33 abcd | 20.33 ab | 21.70 ab | 22.02 abc | 2168.75 b | 2200.57 abc | 3162.69 abc | 3191.03 abc |
T12 | 15.50 ab | 15.67 ab | 19.33 ab | 21.00 a | 22.17 ab | 22.44 ab | 2216.21 ab | 2242.65 ab | 3221.76 ab | 3235.11 ab |
T13 | 12.50 e | 12.63 f | 15.17 cdef | 18.25 cd | 19.03 cde | 18.98 efg | 1835.48 efg | 1864.04 fg | 2558.50 de | 2695.61 cd |
T14 | 13.33 de | 13.83 cd | 16.67 cdef | 19.17 bcd | 19.44 cde | 20.01 cdefg | 1942.72 cdefg | 2000.06 def | 3058.42 abcd | 3086.98 abc |
T15 | 14.00 c | 14.25 cd | 18.00 abcd | 19.50 bcd | 21.13 abc | 21.45 abcd | 2112.16 abc | 2143.78 abcd | 3114.25 abc | 3151.24 abc |
T16 | 15.00 b | 15.50 ab | 19.00 ab | 21.00 a | 21.87 ab | 22.18 ab | 2185.65 ab | 2217.09 abc | 3184.58 abc | 3180.97 abc |
p values | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Parameters | N% | P% | K% | Na% | ||||
---|---|---|---|---|---|---|---|---|
Treatments | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
T1 | 2.09 h | 2.14 e | 0.187 g | 0.192 f | 0.723 f | 0.726 f | 0.227 a | 0.211 a |
T2 | 2.17 efg | 2.19 cd | 0.198 f | 0.208 e | 0.733 f | 0.735 ef | 0.175 c | 0.162 b |
T3 | 2.18 efg | 2.19 cd | 0.210 e | 0.223 d | 0.742 ef | 0.744 ef | 0.169 c | 0.155 bc |
T4 | 2.21 bcde | 2.21 c | 0.222 d | 0.238 bcd | 0.751 def | 0.753 de | 0.167 c | 0.155 bc |
T5 | 2.16 fg | 2.15 de | 0.224 cd | 0.234 bcd | 0.736 f | 0.736 ef | 0.189 b | 0.171 b |
T6 | 2.20 cdef | 2.19 cd | 0.223 d | 0.227 cd | 0.740 f | 0.742 ef | 0.143 d | 0.143 c |
T7 | 2.21 bcde | 2.22 bc | 0.232 bcd | 0.239 bcd | 0.754 de | 0.751 de | 0.142 d | 0.130 c |
T8 | 2.25 ab | 2.27 ab | 0.241 ab | 0.251 ab | 0.772 c | 0.766 cd | 0.146 d | 0.131 c |
T9 | 2.17 efg | 2.15 de | 0.236 bc | 0.243 abc | 0.759 cd | 0.756 cde | 0.169 c | 0.156 bc |
T10 | 2.21 bcde | 2.24 abc | 0.232 bcd | 0.235 bcd | 0.748 de | 0.752 de | 0.136 d | 0.130 c |
T11 | 2.23 abcd | 2.26 ab | 0.241 ab | 0.247 ab | 0.769 cd | 0.773 c | 0.136 d | 0.134 c |
T12 | 2.26 a | 2.28 a | 0.250 a | 0.259 a | 0.790 b | 0.794 b | 0.137 d | 0.133 c |
T13 | 2.15 g | 2.15 de | 0.224 cd | 0.226 cd | 0.7475 | 0.749 de | 0.166 c | 0.155 bc |
T14 | 2.19 defg | 2.24 abc | 0.230 bcd | 0.235 bcd | 0.7685 | 0.770 cd | 0.140 d | 0.133 c |
T15 | 2.20 cdef | 2.24 abc | 0.236 bc | 0.244 abc | 0.790 b | 0.791 b | 0.140 d | 0.137 c |
T16 | 2.24 abc | 2.28 a | 0.242 ab | 0.253 ab | 0.811 a | 0.812 a | 0.141 d | 0.136 c |
p values | ** | * | ** | ** | ** | * | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, E.A.; Elbagory, M.; Abdel-Kader, N.I.; Ahmed, M.E.; Abd El-Rahman, L.A.; Khalifa, T.H.; Omara, A.E.-D. Sustainable Practices for Arid Climates: Evaluating Combined Mulches with Biostimulant in Combating Soil Salinity and Cowpea Cultivation. Horticulturae 2024, 10, 1213. https://doi.org/10.3390/horticulturae10111213
Saber EA, Elbagory M, Abdel-Kader NI, Ahmed ME, Abd El-Rahman LA, Khalifa TH, Omara AE-D. Sustainable Practices for Arid Climates: Evaluating Combined Mulches with Biostimulant in Combating Soil Salinity and Cowpea Cultivation. Horticulturae. 2024; 10(11):1213. https://doi.org/10.3390/horticulturae10111213
Chicago/Turabian StyleSaber, Esraa A., Mohssen Elbagory, Nasser I. Abdel-Kader, Mohamed E. Ahmed, Lamyaa A. Abd El-Rahman, Tamer H. Khalifa, and Alaa El-Dein Omara. 2024. "Sustainable Practices for Arid Climates: Evaluating Combined Mulches with Biostimulant in Combating Soil Salinity and Cowpea Cultivation" Horticulturae 10, no. 11: 1213. https://doi.org/10.3390/horticulturae10111213
APA StyleSaber, E. A., Elbagory, M., Abdel-Kader, N. I., Ahmed, M. E., Abd El-Rahman, L. A., Khalifa, T. H., & Omara, A. E. -D. (2024). Sustainable Practices for Arid Climates: Evaluating Combined Mulches with Biostimulant in Combating Soil Salinity and Cowpea Cultivation. Horticulturae, 10(11), 1213. https://doi.org/10.3390/horticulturae10111213