Fruit Sorting Based on Maturity Reduces Internal Disorders in Vapor Heat-Treated ‘B74’ Mango
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1: Harvest Maturity (DMC) Effects on IDs of ‘B74’ Mango Fruit
2.1.1. Fruit Source
2.1.2. Fruit Harvest
2.1.3. Treatments
2.1.4. Disinfestation Treatment (Vapor Heat Treatment, VHT)
2.1.5. Internal Disorder Assessment
2.1.6. Starch Iodine Staining
2.1.7. Experiment Design and Data Analysis
2.2. Experiment 2: Effects of Maturity Stage on IDs of ‘B74’ Mango Fruit
2.2.1. Fruit Source and Treatments
2.2.2. Starch Iodine Staining
2.2.3. Experiment Design and Data Analysis
2.3. Experiment 3: Effect of Fruit Maturity (Sorted Based on Density) on IDs of ‘B74’ Mango Fruit with Controlled Atmosphere Storage
2.3.1. Fruit Source and Treatments
2.3.2. Experiment Design and Data Analysis
3. Results
3.1. Experiment 1: Harvest Maturity (DMC) Effects on IDs of ‘B74’ Mango Fruit
3.1.1. Incidence and Severity of Internal Disorders
3.1.2. Starch Iodine Staining
3.2. Experiment 2: Effects of Maturity Stages on IDs of ‘B74’ Mango Fruit
3.2.1. Fruit Maturity
3.2.2. Incidence and Severity of Internal Disorders
3.2.3. Starch Iodine Staining
3.3. Experiment 3: Effect of Fruit Maturity (Sorted Based on Density) on IDs of ‘B74’ Mango Fruit
3.3.1. Fruit Weight and Maturity
3.3.2. Incidence and Severity of Disorders
4. Discussion
4.1. Flesh Cavity with White Patches
4.2. Flesh Browning
4.3. Temperature Conditioning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heather, N.; Corcoran, R.; Heard, T. Quarantine Disinfestation Measures for Australian Mangoes. In Proceedings of the III International Mango Symposium 291, Darwin, Australia, 24–29 September 1989. [Google Scholar]
- Joyce, D.C.; Hockings, P.D.; Mazucco, R.A.; Shorter, A.J.; Brereton, I.M. Heat treatment injury of mango fruit revealed by nondestructive magnetic resonance imaging. Postharvest Biol. Technol. 1993, 3, 305–311. [Google Scholar] [CrossRef]
- Jacobi, K.K.; MacRae, E.A.; Hetherington, S.E. Postharvest heat disinfestation treatments of mango fruit. Sci. Hortic. 2001, 89, 171–193. [Google Scholar] [CrossRef]
- Esguerra, E.B.; Brena, S.R.; Reyes, M.U.; Lizada, M.C. Physiological breakdown in vapor heat-treated ‘Carabao’ mango. In Proceedings of the Symposium on Tropical Fruit in International Trade, Honolulu, HI, USA, 4–9 June 1990; p. 269. [Google Scholar]
- Ullah, M.A.; Joyce, D.C.; Khanal, A.; Joyce, P.A.; White, N.A.; Macnish, A.J.; Webb, R.I. Mineral nutrition and internal defects in vapour heat treated mango fruit. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Plant Nutrition, Fertilization, Soil Management, Angers, France, 14–20 August 2022; p. 1375. [Google Scholar]
- Jha, S.N.; Narsaiah, K.; Sharma, A.D.; Singh, M.; Bansal, S.; Kumar, R. Quality parameters of mango and potential of non-destructive techniques for their measurement—A review. J. Food Sci. Technol. 2010, 47, 1–14. [Google Scholar] [CrossRef]
- Khanal, A. Relationship Between Fruit Maturity and Internal Disorders of Vapour Heat Treated ‘B74’ Mango Fruit. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 8 March 2024. [Google Scholar]
- Khanal, A.; Joyce, D.C.; Ullah, M.A.; Irving, D.E.; Macnish, A.J.; Joyce, P.A.; White, N.A.; Hoffman, E.W.; Webb, R.I. Fruit maturity and vapour heat treatment influence flesh cavity with white patches disorder in Calypso mango. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Postharvest Technologies to Reduce Food Losses, Angers, France, 14–20 August 2022; p. 1364. [Google Scholar]
- Khanal, A.; Ullah, M.A.; Joyce, P.; White, N.; Macnish, A.; Hoffman, E.; Irving, D.; Webb, R.; Joyce, D. Impact of Fruit Maturity on Internal Disorders in Vapor Heat Treated Mango Cv. “B74”. Sustainability 2024, 16, 5472. [Google Scholar] [CrossRef]
- Esquerra, E.B.; Lizada, M.C. The postharvest behaviour and quality of “Carabao” mangoes subjected to vapor heat treatment. ASEAN Food J. 1990, 5, 6–11. [Google Scholar]
- Anwar, R.; Malik, A.U. Hot water treatment affects ripening quality and storage life of mango (Mangifera indica L.). Pak. J. Agric. Sci. 2007, 44, 304–311. [Google Scholar]
- Ullah, M.A. Preharvest factors affecting internal disorders in ‘B74’ mango. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 6 October 2023. [Google Scholar]
- Ullah, M.A.; Kiloes, A.M.; Aziz, A.A.; Joyce, D.C. Impact of factors contributing to internal disorders of mango (Mangifera indica L.) fruit—A systematic literature review. Sci. Hortic. 2024, 331, 113150. [Google Scholar] [CrossRef]
- Brecht, J.K.; Sargent, S.A.; Kader, A.A.; Mitcham, E.J.; Maul, F.; Brecht, P.E.; Menocal, O. Mango Postharvest Best Management Practices Manual; Brecht, J.K., Ed.; Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2020; Volume 2020. [Google Scholar]
- Jacobi, K.K.; MacRae, E.A.; Hetherington, S.E. Effect of fruit maturity on the response of “Kensington” mango fruit to heat treatment. Aust. J. Exp. Agric. 2001, 41, 793–803. [Google Scholar] [CrossRef]
- Carvalho, C.P.; Velásquez, M.A.; Van Rooyen, Z. Determination of the minimum dry matter index for the optimum harvest of “Hass” avocado fruits in Colombia. Agron. Colomb. 2014, 32, 399–406. [Google Scholar] [CrossRef]
- Kinhal, V. Using Dry Matter as a Measure of Maturity and Quality in Mangos. 2019. Available online: https://felixinstruments.com/blog/using-dry-matter-as-a-measure-of-maturity-quality-in-mangos/ (accessed on 19 August 2020).
- Joyce, D.C.; Shorter, A.J. High-temperature Conditioning Reduces Hot Water Treatment Injury of “Kensington Pride” Mango Fruit. HortScience 1994, 29, 1047–1051. [Google Scholar] [CrossRef]
- Jacobi, K.; Giles, J.; MacRae, E.; Wegrzyn, T. Conditioning ‘Kensington’ Mango with Hot Air Alleviates Hot Water Disinfestation Injuries. HortScience 1995, 30, 562–565. [Google Scholar] [CrossRef]
- Klein, J.D.; Lurie, S. Heat Treatments for Improved Postharvest Quality of Horticultural Crops. HortTechnology 1992, 2, 316–320. [Google Scholar] [CrossRef]
- Hofman, P.J.; Holmes, R.; Barker, L. B74 Mango Quality Assessment Manual; Agri-Science Queensland: Brisbane, Australia, 2010. [Google Scholar]
- Franck, C.; Lammertyn, J.; Ho, Q.T.; Verboven, P.; Verlinden, B.; Nicolaï, B.M. Browning disorders in pear fruit. Postharvest Biol. Technol. 2007, 43, 1–13. [Google Scholar] [CrossRef]
- Lau, O. Effect of growing season, harvest maturity, waxing, low O2 and elevated CO2 on flesh browning disorders in “Braeburn” apples. Postharvest Biol. Technol. 1998, 14, 131–141. [Google Scholar] [CrossRef]
- Elgar, H.J.; Lallu, N.; Watkins, C.B. Harvest Date and Crop Load Effects on a Carbon Dioxide–related Storage Injury of ‘Braeburn’ Apple. HortScience 1999, 34, 305–309. [Google Scholar] [CrossRef]
- Ferguson, I.; Volz, R.; Woolf, A. Preharvest factors affecting physiological disorders of fruit. Postharvest Biol. Technol. 1999, 15, 255–262. [Google Scholar] [CrossRef]
- Lammertyn, J.; Aerts, M.; Verlinden, B.E.; Schotsmans, W.; Nicolaı, B.M. Logistic regression analysis of factors influencing core breakdown in ‘Conference’ pears. Postharvest Biol. Technol. 2000, 20, 25–37. [Google Scholar] [CrossRef]
- Boag, T.S.; Johnson, G.I.; Izard, M.; Murray, C.; Fitzsimmons, K.C. Physiological responses of mangoes cv. Kensington Pride to gamma irradiation treatment as affected by fruit maturity and ripeness. Ann. Appl. Biol. 1990, 116, 177–187. [Google Scholar] [CrossRef]
- Felix Instruments. Mango Model Building Standard Operating Procedure (SOP). 2018. Available online: https://felixinstruments.com/static/media/uploads/mango_data-collection_sop.pdf (accessed on 4 July 2022).
- Hofman, P. Development of Best Practice Pre and Postharvest Protocols for Production of Calypso Mango: Phase 2; Project Number: MG06005; Sunshine Horticultural Services Pty. Ltd.: Buderim, Australia, 2011. [Google Scholar]
- Reid, M.; Padfield, C.; Watkins, C.; Harman, J. Starch iodine pattern as a maturity index for Granny Smith apples. N. Z. J. Agric. Res. 1982, 25, 229–237. [Google Scholar] [CrossRef]
- Kapse, B.M.; Katrodia, J. Ripening Behaviour of ‘Kesar’ Mangoes in Relation to Specific Gravity. In Proceedings of the V International Mango Symposium 455, Tel Aviv, Israel, 1–6 September 1996. [Google Scholar]
- Fuchs, Y.; Pesis, E.; Zauberman, G. Changes in amylase activity, starch and sugars contents in mango fruit pulp. Sci. Hortic. 1980, 13, 155–160. [Google Scholar] [CrossRef]
- Maul, F.; Brecht, J.K.; Nunes, M.C. Time-Temperature Combinations That Induce Chilling Injury of Mangoes; National Mango Board: Orlando, FL, USA, 2012; pp. 1–21. [Google Scholar]
- Miguel, A.C.; Durigan, J.F.; Barbosa, J.C.; Morgado, C.M. Qualidade de mangas cv. Palmer após armazenamento sob baixas temperaturas. Rev. Bras. De Frutic. 2013, 35, 398–408. [Google Scholar] [CrossRef]
- Brecht, J.; Schaffer, B.; Crane, J.; Vargas, A.; Li, Y. Mango Internal Discoloration (“Cutting Black” or “Corte Negro”); National Mango Board: Orlando, FL, USA, 2019; pp. 1–88. [Google Scholar]
- Costa, J.D.; Figueiredo Neto, A.; Olivier, N.C.; Irmão, M.A.; Costa, M.D.; Gomes, J.P. Road transport vibration stress impact on “Palmer” mangoes quality and shelflife. Rev. Bras. De Frutic. 2021, 43, e-641. [Google Scholar] [CrossRef]
- Gabriëls, S.H.; Mishra, P.; Mensink, M.G.; Spoelstra, P.; Woltering, E.J. Non-destructive measurement of internal browning in mangoes using visible and near-infrared spectroscopy supported by artificial neural network analysis. Postharvest Biol. Technol. 2020, 166, 111206. [Google Scholar] [CrossRef]
- Posé, S.; Paniagua, C.; Matas, A.J.; Gunning, A.P.; Morris, V.J.; Quesada, M.A.; Mercado, J.A. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends Food Sci. Technol. 2019, 87, 47–58. [Google Scholar] [CrossRef]
- Crisosto, C.H. Apple: Internal Browning. 1995. Available online: https://postharvest.ucdavis.edu/disorders/apple-internal-browning (accessed on 10 March 2021).
- Cantre, D.; Mata, C.I.; Verboven, P.; Hertog, M.L.; Nicolaï, B.M. 3-D microstructural changes in relation to the evolution of quality during ripening of mango (Mangifera indica L. cv. Carabao). J. Sci. Food Agric. 2020, 100, 5207–5221. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Chin, D. Hot Water Dipping as A Disinfestation Treatment Against the Fruit Fly Dacus aquilonis (May) (Diptera tephritidae) in Mangoes. In Proceedings of the III International Mango Symposium 291, Darwin, Australia, 24–29 September 1989. [Google Scholar]
- Mohammed, M.; Brecht, J.K. Reduction of chilling injury in ‘Tommy Atkins’ mangoes during ripening. Sci. Hortic. 2002, 95, 297–308. [Google Scholar] [CrossRef]
- Marques, J.R.; Hofman, P.J.; Giles, J.E.; Campbell, P.R. Reducing the incidence of under-skin browning in ‘Honey Gold’ mango (Mangifera indica L.) fruit. J. Hortic. Sci. Biotechnol. 2012, 87, 341–346. [Google Scholar] [CrossRef]
- Marques, J.; Hofman, P.; Macnish, A.; Joyce, D. Evaluation of temperature management and packaging options to reduce under-skin browning in ‘Honey Gold’ mango fruit. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): IV 1111, Brisbane, Australia, 17 August 2014. [Google Scholar]
- Sultana, T.; Maraz, K.M.; Ahmed, A.; Shultana, S.; Khan, R.A. Effect of Irradiation process on mango. GSC Adv. Res. Rev. 2021, 9, 108–118. [Google Scholar] [CrossRef]
- Beckett, S.J.; Evans, D.E. The effects of thermal acclimation on immature mortality in the Queensland fruit fly Bactrocera tryoni and the light brown apple moth Epiphyas postvittana at a lethal temperature. Èntomol. Exp. Et Appl. 1997, 82, 45–51. [Google Scholar] [CrossRef]
- Paull, R.E.; Armstrong, J.W. Insect Pests and Fresh Horticultural Products: Treatments and Responses; CABI: Wallingford, UK, 1994; p. 360. [Google Scholar]
Maturity (DMC %) | VHT |
---|---|
<15 | + |
15–17 | + |
>17 | + |
<15 | - |
15–17 | - |
>17 | - |
Harvest | Conditioning at 37 ± 1 °C for 12 h | VHT |
---|---|---|
Early | − | − |
Early | − | + |
Early | + | + |
Late | − | − |
Late | − | + |
Late | + | + |
Maturity | VHT | Storage for 21 Days at 11 °C |
---|---|---|
Floating | + | CA (3% O2 and 5% CO2) |
Floating | + | Control (ambient atmosphere) |
Sinking | + | CA (3% O2 and 5% CO2) |
Sinking | + | Control (ambient atmosphere) |
Maturity (DMC) | FCWP Incidence (%) | FCWP Severity (0–3) | |
---|---|---|---|
<15 (n = 60) | 12.4 ± 5.7 a | 0.2 ± 0.1 a | |
15–17 (n = 60) | 3.9 ± 2.6 b | 0.1 ± 0.1 b | |
>17 (n = 60) | 2.4 ± 2.4 b | 0.1 ± 0.1 b | |
Treatment | |||
Non-VHT (n = 90) | 0.0 ± 0.0 b | 0.0 ± 0.0 b | |
VHT (n = 90) | 12.4 ± 3.7 a | 0.2 ± 0.1 a | |
Treatment × Maturity (DMC) | |||
VHT | <15 (n = 30) | 24.6 ± 2.4 a | 0.4 ± 0.1 a |
15–17 (n = 30) | 7.7 ± 4.4 b | 0.1 ± 0.0 ab | |
>17 (n = 30) | 4.8 ± 4.8 b | 0.1 ± 0.1 b | |
Non-VHT | <15 (n = 30) | 0.0 ±0.0 b | 0.0 ± 0.0 b |
15–17 (n = 30) | 0.0 ±0.0 b | 0.0 ± 0.0 b | |
>17 (n = 30) | 0.0 ±0.0 b | 0.0 ± 0.0 b |
Harvest/Maturity | FCWP Incidence (%) | FCWP Severity (0–3) | FB Incidence (%) | FB Severity (0–3) | |
---|---|---|---|---|---|
Early (14.5% DMC) | 26.9 ± 11.2 a | 0.3 ± 0.1 a | 0.0 ± 0.0 | 0.0 ± 0.0 | |
Late (17.4% DMC) | 8.3 ± 3.4 b | 0.1 ± 0.1 b | 2.9 ± 1.5 | 0.1 ± 0.1 | |
Treatments | |||||
Non-VHT | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 1.7 ± 1.7 | 0.0 ± 0.0 | |
VHT | 45.0 ± 11.9 a | 0.5 ± 0.2 a | 1.7 ± 1.7 | 0.0 ± 0.0 | |
Conditioning + VHT | 7.8 ± 3.0 b | 0.1 ± 0.0 b | 0.8 ± 0.8 | 0.0 ± 0.0 | |
Harvest × Treatments | |||||
Early harvest | Non-VHT | 0.0 ± 0.0 c | 0.0 ± 0.0 b | 0.0 ± 0.0 | 0.0 ± 0.0 |
VHT | 70.0 ± 7.6 a | 0.8 ± 0.1 a | 0.0 ± 0.0 | 0.0 ± 0.0 | |
Conditioning + VHT | 10.6 ± 5.2 bc | 0.1 ± 0.1 b | 0.0 ± 0.0 | 0.0 ± 0.0 | |
Late harvest | Non-VHT | 0.0 ± 0.0 c | 0.0 ± 0.0 b | 3.3 ± 3.3 | 0.0 ± 0.0 |
VHT | 20.0 ± 5.0 b | 0.2 ± 0.0 b | 3.3 ± 3.3 | 0.0 ± 0.0 | |
Conditioning + VHT | 5.0 ± 2.9 c | 0.03 ± 0.0 b | 1.7 ± 1.7 | 0.0 ± 0.0 |
Maturity | FCWP Incidence (%) | FCWP Severity (0–3) |
---|---|---|
Floating (n = 90) | 33.33 ± 3.4 | 0.3 ± 0.0 |
Sinking (n = 90) | 36.67 ± 6.6 | 0.34 ± 0.1 |
Significance | NS | NS |
Maturity | FB Incidence (%) | FB Severity (0–3) |
---|---|---|
Floating (n = 90) | 57.8 ± 11.4 | 0.6 ± 0.2 |
Sinking (n = 90) | 46.7 ± 8.4 | 0.5 ± 0.1 |
NS | NS | |
Storage conditions | ||
Control (n = 90) | 71.1 ± 5.1 a | 0.8 ± 0.1 a |
CA (n = 90) | 33.3 ± 6.7 b | 0.3 ± 0.1 b |
Maturity × storage conditions | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanal, A.; Ullah, M.A.; Joyce, P.; White, N.; Macnish, A.; Hoffman, E.; Irving, D.; Webb, R.; Joyce, D. Fruit Sorting Based on Maturity Reduces Internal Disorders in Vapor Heat-Treated ‘B74’ Mango. Horticulturae 2024, 10, 1257. https://doi.org/10.3390/horticulturae10121257
Khanal A, Ullah MA, Joyce P, White N, Macnish A, Hoffman E, Irving D, Webb R, Joyce D. Fruit Sorting Based on Maturity Reduces Internal Disorders in Vapor Heat-Treated ‘B74’ Mango. Horticulturae. 2024; 10(12):1257. https://doi.org/10.3390/horticulturae10121257
Chicago/Turabian StyleKhanal, Amit, Muhammad Asad Ullah, Priya Joyce, Neil White, Andrew Macnish, Eleanor Hoffman, Donald Irving, Richard Webb, and Daryl Joyce. 2024. "Fruit Sorting Based on Maturity Reduces Internal Disorders in Vapor Heat-Treated ‘B74’ Mango" Horticulturae 10, no. 12: 1257. https://doi.org/10.3390/horticulturae10121257
APA StyleKhanal, A., Ullah, M. A., Joyce, P., White, N., Macnish, A., Hoffman, E., Irving, D., Webb, R., & Joyce, D. (2024). Fruit Sorting Based on Maturity Reduces Internal Disorders in Vapor Heat-Treated ‘B74’ Mango. Horticulturae, 10(12), 1257. https://doi.org/10.3390/horticulturae10121257