De Novo Regeneration of Cannabis sativa cv. Cheungsam and Evaluation of Secondary Metabolites of Its Callus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimization of Sterilization Methods for the Generation of Pathogen-Free Seedlings
2.2. Callus, Shoot, and Root Induction from Cotyledon and Leaf Explants
2.3. GC–MS Measurement of Secondary Metabolites in Callus Cultures
2.4. Data Analysis
3. Results
3.1. Preparation of Pathogen-Free Seedlings
3.2. In Vitro Callogenesis from Leaf and Cotyledon Explants
3.3. De Novo Shoot Morphogenesis from Callus
3.4. De Novo Root Morphogenesis from Callus-Derived Shoots
3.5. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hesami, M.; Pepe, M.; Baiton, A.; Jones, A.M.P. Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol. Adv. 2023, 62, 108074. [Google Scholar] [CrossRef] [PubMed]
- Aloo, S.O.; Kwame, F.O.; Oh, D.-H. Identification of possible bioactive compounds and a comparative study on in vitro biological properties of whole hemp seed and stem. Food Biosci. 2023, 51, 102329. [Google Scholar] [CrossRef]
- Eliwa, G.I.; El-Dengawy, E.-R.F.; Gawish, M.S.; Yamany, M.M. Comprehensive study on in vitro propagation of some imported peach rootstocks: In vitro explant surface sterilization and bud proliferation. Sci. Rep. 2024, 14, 5586. [Google Scholar] [CrossRef] [PubMed]
- Okomo Aloo, S.; Park, S.; Oh, D.-H. Impacts of germination and lactic acid bacteria fermentation on anti-nutrients, bioactive compounds, and selected functional properties of industrial hempseed (Cannabis sativa L.). Food Chem. 2023, 428, 136722. [Google Scholar] [CrossRef] [PubMed]
- Okomo Aloo, S.; Park, S.; Martins Oyinloye, T.; Oh, D.-H. Rheological properties, biochemical changes, and potential health benefits of dehulled and defatted industrial hempseeds after fermentation. Food Chem. 2024, 439, 138086. [Google Scholar] [CrossRef]
- Jeon, Y.; Kim, T.; Kwon, H.; Kim, J.-K.; Park, Y.-T.; Ham, J.; Kim, Y.-J. Cannabidiol Enhances Cabozantinib-Induced Apoptotic Cell Death via Phosphorylation of p53 Regulated by ER Stress in Hepatocellular Carcinoma. Cancers 2023, 15, 3987. [Google Scholar] [CrossRef]
- Fordjour, E.; Manful, C.F.; Sey, A.A.; Javed, R.; Pham, T.H.; Thomas, R.; Cheema, M. Cannabis: A multifaceted plant with endless potentials. Front. Pharmacol. 2023, 14, 1200269. [Google Scholar] [CrossRef] [PubMed]
- Gabotti, D.; Locatelli, F.; Cusano, E.; Baldoni, E.; Genga, A.; Pucci, L.; Consonni, R.; Mattana, M. Cell Suspensions of Cannabis sativa (var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity. Molecules 2019, 24, 4056. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.B.; McKinney, A.E.; Holmes, A.E. Minor Cannabinoids: Biosynthesis, Molecular Pharmacology and Potential Therapeutic Uses. Front. Pharmacol. 2021, 12, 777804. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, S.M.; Shin, J.H.; Choi, H.W. Availability of Hydrogen Peroxide Solutions as a Germination Liquid Medium for Contamination-free in vitro Seedling Development of Cannabis sativa. Hortic. Sci. Technol. 2022, 40, 605–613. [Google Scholar] [CrossRef]
- Hesami, M.; Pepe, M.; Monthony, A.S.; Baiton, A.; Phineas Jones, A.M. Modeling and optimizing in vitro seed germination of industrial hemp (Cannabis sativa L.). Ind. Crops Prod. 2021, 170, 113753. [Google Scholar] [CrossRef]
- Hesami, M.; Adamek, K.; Pepe, M.; Jones, A.M.P. Effect of Explant Source on Phenotypic Changes of In Vitro Grown Cannabis Plantlets over Multiple Subcultures. Biology 2023, 12, 443. [Google Scholar] [CrossRef]
- Pepe, M.; Hesami, M.; Jones, A.M.P. Machine Learning-Mediated Development and Optimization of Disinfection Protocol and Scarification Method for Improved In Vitro Germination of Cannabis Seeds. Plants 2021, 10, 2397. [Google Scholar] [CrossRef] [PubMed]
- Leifert, C.; Cassells, A.C. Microbial hazards in plant tissue and cell cultures. In Vitr. Cell. Dev. Biol.-Plant 2001, 37, 133–138. [Google Scholar] [CrossRef]
- Srivastava, V.; Nerwal, D.K.; Kandan, A.; Akhtar, J.; Sharma, N.; Kiran, R.; Bansal, S.; Agrawal, A. Management of microbial contaminants in the In Vitro Gene Bank: A case study of taro [Colocasia esculenta (L.) Schott]. In Vitr. Cell. Dev. Biol.-Plant 2021, 57, 152–163. [Google Scholar] [CrossRef]
- Niedz, R.P.; Bausher, M.G. Control of In vitro contamination of explants from greenhouse- and field-grown trees. In Vitr. Cell. Dev. Biol.-Plant 2002, 38, 468–471. [Google Scholar] [CrossRef]
- Taghinasab, M.; Jabaji, S. Cannabis Microbiome and the Role of Endophytes in Modulating the Production of Secondary Metabolites: An Overview. Microorganisms 2020, 8, 355. [Google Scholar] [CrossRef] [PubMed]
- Dumigan, C.R.; Deyholos, M.K. Cannabis Seedlings Inherit Seed-Borne Bioactive and Anti-Fungal Endophytic Bacilli. Plants 2022, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- Comeau, D.; Novinscak, A.; Joly, D.L.; Filion, M. Spatio-Temporal and Cultivar-Dependent Variations in the Cannabis Microbiome. Front. Microbiol. 2020, 11, 491. [Google Scholar] [CrossRef] [PubMed]
- Punja, Z.K.; Scott, C. Organically grown cannabis (Cannabis sativa L.) plants contain a diverse range of culturable epiphytic and endophytic fungi in inflorescences and stem tissues. Botany 2023, 101, 255–269. [Google Scholar] [CrossRef]
- Monthony, A.S.; Kyne, S.T.; Grainger, C.M.; Jones, A.M.P. Recalcitrance of Cannabis sativa to de novo regeneration; a multi-genotype replication study. PLoS ONE 2021, 16, e0235525. [Google Scholar] [CrossRef]
- Hesami, M.; Pepe, M.; de Ronne, M.; Yoosefzadeh-Najafabadi, M.; Adamek, K.; Torkamaneh, D.; Jones, A.M.P. Transcriptomic Profiling of Embryogenic and Non-Embryogenic Callus Provides New Insight into the Nature of Recalcitrance in Cannabis. Int. J. Mol. Sci. 2023, 24, 14625. [Google Scholar] [CrossRef]
- Raspor, M.; Motyka, V.; Kaleri, A.R.; Ninković, S.; Tubić, L.; Cingel, A.; Ćosić, T. Integrating the Roles for Cytokinin and Auxin in De Novo Shoot Organogenesis: From Hormone Uptake to Signaling Outputs. Int. J. Mol. Sci. 2021, 22, 8554. [Google Scholar] [CrossRef]
- Lardon, R.; Geelen, D. Natural Variation in Plant Pluripotency and Regeneration. Plants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Chun, S.C.; Gopal, J.; Iyyakannu, S.; Muthu, M. An analytical retrospection of mass spectrometric tools established for plant tissue culture: Current endeavours and future perspectives. Trends Anal. Chem. 2020, 126, 115843. [Google Scholar] [CrossRef]
- Carla Guimarães Sobrinho, A.; Silva Corpes, R.; Isabel Portilho dos Santos, K.; Maria Menezes Barra, I.; Kiyoshi Miyagawa, H.; Silva Santos, A. Untargeted GC-MS Metabolomics applied to wild leaves and callus produced by plant tissue culture of Hibiscus sabdariffa L. Arab. J. Chem. 2022, 15, 104103. [Google Scholar] [CrossRef]
- El-Naggar, H.M.; Shehata, A.M.; Morsi, M.-A.A. Micropropagation and GC–MS analysis of bioactive compounds in bulbs and callus of white squill. In Vitr. Cell. Dev. Biol.-Plant 2023, 59, 154–166. [Google Scholar] [CrossRef]
- Rashid, A.; Ali, V.; Khajuria, M.; Faiz, S.; Gairola, S.; Vyas, D. GC–MS based metabolomic approach to understand nutraceutical potential of Cannabis seeds from two different environments. Food Chem. 2021, 339, 128076. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.-Y.; Li, S.-H.; Ma, W.; Wu, D.-T.; Li, H.-B.; Xiao, A.-P.; Liu, L.-L.; Zhu, F.; Gan, R.-Y. Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: An updated review. Trends Anal. Chem. 2022, 149, 116554. [Google Scholar] [CrossRef]
- Micalizzi, G.; Vento, F.; Alibrando, F.; Donnarumma, D.; Dugo, P.; Mondello, L. Cannabis sativa L.: A comprehensive review on the analytical methodologies for cannabinoids and terpenes characterization. J. Chromatogr. A 2021, 1637, 461864. [Google Scholar] [CrossRef]
- Nahar, L.; Gavril, G.-L.; Sarker, S.D. Application of gas chromatography in the analysis of phytocannabinoids: An update (2020–2023). Phytochem. Anal. 2023, 34, 903–924. [Google Scholar] [CrossRef] [PubMed]
- Nahar, L.; Guo, M.; Sarker, S.D. Gas chromatographic analysis of naturally occurring cannabinoids: A review of literature published during the past decade. Phytochem. Anal. 2020, 31, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life 2023, 13, 706. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.M.; Sánchez-Carnerero Callado, C.; Priego-Capote, F.; Ferreiro-Vera, C. Untargeted characterization of extracts from Cannabis sativa L. cultivars by gas and liquid chromatography coupled to mass spectrometry in high resolution mode. Talanta 2020, 208, 120384. [Google Scholar] [CrossRef]
- Abadie, C.; Lalande, J.; Tcherkez, G. Exact mass GC-MS analysis: Protocol, database, advantages and application to plant metabolic profiling. Plant Cell Environ. 2022, 45, 3171–3183. [Google Scholar] [CrossRef]
- Oliveira, J.P.S.; Hakimi, O.; Murgu, M.; Koblitz, M.G.B.; Ferreira, M.S.L.; Cameron, L.C.; Macedo, A.F. Tissue culture and metabolome investigation of a wild endangered medicinal plant using high definition mass spectrometry. Plant Cell Tissue Organ Cult. 2018, 134, 153–162. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. In Vitr. Cell. Dev. Biol.-Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Jones, I.A.; Joshi, L.T. Biocide Use in the Antimicrobial Era: A Review. Molecules 2021, 26, 2276. [Google Scholar] [CrossRef] [PubMed]
- Katalinić, I.; Smojver, I.; Morelato, L.; Vuletić, M.; Budimir, A.; Gabrić, D. Evaluation of the Photoactivation Effect of 3% Hydrogen Peroxide in the Disinfection of Dental Implants: In Vitro Study. Biomedicines 2023, 11, 1002. [Google Scholar] [CrossRef] [PubMed]
- Nazir, F.; Fariduddin, Q.; Khan, T.A. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 2020, 252, 126486. [Google Scholar] [CrossRef]
- Wojtyla, Ł.; Lechowska, K.; Kubala, S.; Garnczarska, M. Different Modes of Hydrogen Peroxide Action During Seed Germination. Front. Plant Sci. 2016, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Li, J.; Wang, X.; Wang, C. Crosstalk between Hydrogen Sulfide and Other Signal Molecules Regulates Plant Growth and Development. Int. J. Mol. Sci. 2020, 21, 4593. [Google Scholar] [CrossRef]
- Xu, C.; Hu, Y. The molecular regulation of cell pluripotency in plants. Abiotech 2020, 1, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, T.P.; Steinmacher, D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. Plants 2024, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Chaohua, C.; Gonggu, Z.; Lining, Z.; Chunsheng, G.; Qing, T.; Jianhua, C.; Xinbo, G.; Dingxiang, P.; Jianguang, S. A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind. Crops Prod. 2016, 83, 61–65. [Google Scholar] [CrossRef]
- Galán-Ávila, A.; Gramazio, P.; Ron, M.; Prohens, J.; Herraiz, F.J. A novel and rapid method for Agrobacterium-mediated production of stably transformed Cannabis sativa L. plants. Ind. Crops Prod. 2021, 170, 113691. [Google Scholar] [CrossRef]
- Monthony, A.S.; Page, S.R.; Hesami, M.; Jones, A.M.P. The Past, Present and Future of Cannabis sativa Tissue Culture. Plants 2021, 10, 185. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Giebelhaus, R.T.; Victor, J.M.R.; Murch, S.J.; Saxena, P.K. The Morphoregulatory Role of Thidiazuron: Metabolomics-Guided Hypothesis Generation for Mechanisms of Activity. Biomolecules 2020, 10, 1253. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.M.; Khan, T.; Khan, M.A.; Ullah, N. The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnol. Appl. Biochem. 2022, 69, 2624–2640. [Google Scholar] [CrossRef] [PubMed]
- Dewir, Y.H.; Nurmansyah; Naidoo, Y.; Teixeira da Silva, J.A. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018, 37, 1451–1470. [Google Scholar] [CrossRef]
- Quareshy, M.; Prusinska, J.; Li, J.; Napier, R. A cheminformatics review of auxins as herbicides. J. Exp. Bot. 2017, 69, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Hesami, M.; Baiton, A.; Alizadeh, M.; Pepe, M.; Torkamaneh, D.; Jones, A.M.P. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int. J. Mol. Sci. 2021, 22, 5671. [Google Scholar] [CrossRef]
- Efferth, T. Biotechnology Applications of Plant Callus Cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
- Bielach, A.; Hrtyan, M.; Tognetti, V.B. Plants under Stress: Involvement of Auxin and Cytokinin. Int. J. Mol. Sci. 2017, 18, 1427. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.K.P. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur. J. Med. Chem. 2020, 188, 111953. [Google Scholar] [CrossRef]
- Merkler, D.J.; Leahy, J.W. Binding-based proteomic profiling and the fatty acid amides. Trends Res. 2018, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Syed, R.U.; Moni, S.S.; Alfaisal, R.H.; Alrashidi, R.H.; Alrashidi, N.F.; Wadeed, K.M.; Alshammary, F.N.; Habib, A.M.; Alharbi, F.M.; ur Rehman, Z.; et al. Spectral characterization of the bioactive principles and antibacterial properties of cold methanolic extract of Olea europaea from the Hail region of Saudi Arabia. Arab. J. Chem. 2022, 15, 104006. [Google Scholar] [CrossRef]
- Gondor, O.K.; Pál, M.; Janda, T.; Szalai, G. The role of methyl salicylate in plant growth under stress conditions. J. Plant Physiol. 2022, 277, 153809. [Google Scholar] [CrossRef]
- Singewar, K.; Fladung, M.; Robischon, M. Methyl salicylate as a signaling compound that contributes to forest ecosystem stability. Trees 2021, 35, 1755–1769. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Bytešníková, Z.; Cané, C.; Richtera, L.; Vallejos, S. New trends in methyl salicylate sensing and their implications in agriculture. Biosens. Bioelectron. 2023, 223, 115008. [Google Scholar] [CrossRef]
- Ren, Y.; McGillen, M.R.; Daële, V.; Casas, J.; Mellouki, A. The fate of methyl salicylate in the environment and its role as signal in multitrophic interactions. Sci. Total Environ. 2020, 749, 141406. [Google Scholar] [CrossRef]
- Yeasmin, F.; Choi, H.W. Natural Salicylates and Their Roles in Human Health. Int. J. Mol. Sci. 2020, 21, 9049. [Google Scholar] [CrossRef] [PubMed]
- Srbinovska, A.; Conchione, C.; Menegoz Ursol, L.; Lucci, P.; Moret, S. Occurrence of n-Alkanes in Vegetable Oils and Their Analytical Determination. Foods 2020, 9, 1546. [Google Scholar] [CrossRef] [PubMed]
- Mitra, P.; Das, S.; Barik, A. Leaf waxes from Lathyrus sativus: Short-range attractant and stimulant for nymph laying in a viviparous insect. Chemoecology 2020, 30, 117–129. [Google Scholar] [CrossRef]
- Shi, M.; Han, J.; Wang, G.; Wang, J.; Han, Y.; Cui, L. A long-term investigation of the variation in leaf wax n-alkanes responding to climate on Dongling Mountain, north China. Quat. Int. 2021, 592, 67–79. [Google Scholar] [CrossRef]
- Ceccopieri, M.; Scofield, A.L.; Almeida, L.; Araújo, M.P.; Hamacher, C.; Farias, C.O.; Soares, M.L.G.; Carreira, R.S.; Wagener, A.L.R. Carbon isotopic composition of leaf wax n-alkanes in mangrove plants along a latitudinal gradient in Brazil. Org. Geochem. 2021, 161, 104299. [Google Scholar] [CrossRef]
- Rojas-Vargas, J.; Castelán-Sánchez, H.G.; Pardo-López, L. HADEG: A Curated Hydrocarbon Aerobic Degradation Enzymes and Genes Database. Comput. Biol. Chem. 2023, 107, 107966. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; An, Z. Leaf wax n-alkane carbon isotope values vary among major terrestrial plant groups: Different responses to precipitation amount and temperature, and implications for paleoenvironmental reconstruction. Earth-Sci. Rev. 2020, 202, 103081. [Google Scholar] [CrossRef]
- Aguiar, J.; Gonçalves, J.L.; Alves, V.L.; Câmara, J.S. Relationship between Volatile Composition and Bioactive Potential of Vegetables and Fruits of Regular Consumption—An Integrative Approach. Molecules 2021, 26, 3653. [Google Scholar] [CrossRef] [PubMed]
- Chacon, F.T.; Raup-Konsavage, W.M.; Vrana, K.E.; Kellogg, J.J. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022, 10, 3142. [Google Scholar] [CrossRef]
- Zager, J.J.; Lange, I.; Srividya, N.; Smith, A.; Lange, B.M. Gene Networks Underlying Cannabinoid and Terpenoid Accumulation in Cannabis. Plant Physiol. 2019, 180, 1877–1897. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, K.; Li, H.; Wang, X.; Wang, W.; Wang, K.; Ge, M. Long-chain alkanes in the atmosphere: A review. J. Environ. Sci. 2022, 114, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, P.; Lucardi, R.D.; Su, Z.; Li, S. Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs. Toxins 2020, 12, 35. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
Tissue Used | TDZ (mg/L) | NAA (mg/L) | Callogenesis Response (%) | Amount of Callus (g) |
---|---|---|---|---|
Leaf | 0.0 | 0.0 | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
1.0 | 0.5 | 92.80 ± 1.46 a | 6.87 ± 0.12 a | |
1.0 | 1.0 | 80.03 ± 0.90 b | 4.90 ± 0.61 b | |
1.0 | 1.5 | 73.67 ± 1.18 c | 3.23 ± 0.30 c | |
1.0 | 2.0 | 66.40 ± 5.73 c | 1.73 ± 0.32 c | |
Cotyledon | 0.0 | 0.0 | 0.00 ± 0.00 d | 0.00 ± 0.00 c |
1.0 | 0.5 | 88.37 ± 1.77 a | 4.87 ± 0.45 a | |
1.0 | 1.0 | 78.67 ± 1.45 b | 2.93 ± 0.30 b | |
1.0 | 1.5 | 71.43 ± 4.77 b | 1.67 ± 0.44 b | |
1.0 | 2.0 | 57.93 ± 4.97 c | 1.50 ± 0.12 b |
Origin of Callus | TDZ (mg/L) | Response (%) | Average Number of Shoots | Average Length of Shoots (cm) |
---|---|---|---|---|
Leaf | 0.0 | 0.00 ± 0.00 e | 0.00 ± 0.00 d | 0.00 ± 0.00 e |
0.5 | 15.67 ± 0.27 a | 11.60 ± 0.59 a | 9.03 ± 0.39 a | |
1.0 | 12.33 ± 0.98 b | 7.90 ± 0.42 b | 6.13 ± 0.84 b | |
2.5 | 9.67 ± 0.98 c | 7.47 ± 0.49 b | 4.63 ± 0.44 b,c | |
5.0 | 8.17 ± 0.49 c | 4.33 ± 0.24 c | 3.30 ± 0.26 c,d | |
10.0 | 4.97 ± 0.80 d | 2.80 ± 0.17 c | 2.43 ± 0.29 d | |
Cotyledon | 0.0 | 0.00 ± 0.00 f | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
0.5 | 22.67 ± 1.19 a | 8.33 ± 1.20 a | 6.53 ± 0.48 a | |
1.0 | 10.67 ± 0.98 b | 5.67 ± 0.88 a,b | 4.57 ± 0.50 a,b | |
2.5 | 8.37 ± 0.62 c | 3.33 ± 0.88 b,c | 3.73 ± 0.39 b,c | |
5.0 | 6.03 ± 0.78 d | 2.83 ± 0.17 b,c | 3.17 ± 0.69 b,c | |
10.0 | 4.03 ± 0.42 e | 2.00 ± 0.29 c | 2.37 ± 0.19 c |
Origin of Callus | IBA (mg/L) | Response (%) | Average Number of Roots | Average Length of Roots (cm) |
---|---|---|---|---|
Leaf | 0.0 | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 c |
0.5 | 86.27 ± 0.44 b | 5.70 ± 0.92 b,c | 4.83 ± 0.32 b | |
1.0 | 82.50 ± 0.64 b | 6.70 ± 0.59 b,c | 5.23 ± 0.32 b | |
2.5 | 95.30 ± 1.14 a | 12.77 ± 1.43 a | 7.20 ± 0.64 a | |
5.0 | 77.10 ± 0.99 c | 8.70 ± 0.42 b | 5.33 ± 0.60 a,b | |
10.0 | 71.97 ± 0.42 c | 4.57 ± 0.29 c | 4.23 ± 0.12 b | |
Cotyledon | 0.0 | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
0.5 | 68.07 ± 2.87 c | 4.47 ± 0.55 c | 4.60 ± 0.95 a,b | |
1.0 | 75.43 ± 1.53 b | 7.03 ± 0.62 b | 4.83 ± 0.49 a,b | |
2.5 | 92.83 ± 2.31 a | 9.70 ± 0.59 a | 7.47 ± 0.71 a | |
5.0 | 65.37 ± 1.98 c | 4.70 ± 0.21 c | 4.17 ± 1.05 b | |
10.0 | 69.70 ± 4.14 c | 3.70 ± 0.42 c | 2.80 ± 0.17 b,c |
No. | Compound | Structure | Peak No. | Formula | Molecular Weight | Retention Time (min) | |
---|---|---|---|---|---|---|---|
1 | 9-Octadecenamide, (Z)- | 15 | C18H35NO | 281.4766 | 22.497 | ||
2 | Methyl salicylate | 3 | C8H8O3 | 152.15 | 4.706 | ||
3 | Dodecane | 2 | C12H26 | 170.33 | 4.644 | ||
4 | Tetradecane | 5 | C14H30 | 198.39 | 6.401 | ||
5 | 2,4-bis(1,1-dimethylethyl)phenol | 6 | C17H30O | 278.5 | 7.325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsan, S.M.; Kwon, D.B.; Injamum-Ul-Hoque, M.; Rahman, M.M.; Yeam, I.; Choi, H.W. De Novo Regeneration of Cannabis sativa cv. Cheungsam and Evaluation of Secondary Metabolites of Its Callus. Horticulturae 2024, 10, 1331. https://doi.org/10.3390/horticulturae10121331
Ahsan SM, Kwon DB, Injamum-Ul-Hoque M, Rahman MM, Yeam I, Choi HW. De Novo Regeneration of Cannabis sativa cv. Cheungsam and Evaluation of Secondary Metabolites of Its Callus. Horticulturae. 2024; 10(12):1331. https://doi.org/10.3390/horticulturae10121331
Chicago/Turabian StyleAhsan, S. M., Da Bin Kwon, Md. Injamum-Ul-Hoque, Md. Mezanur Rahman, Inhwa Yeam, and Hyong Woo Choi. 2024. "De Novo Regeneration of Cannabis sativa cv. Cheungsam and Evaluation of Secondary Metabolites of Its Callus" Horticulturae 10, no. 12: 1331. https://doi.org/10.3390/horticulturae10121331
APA StyleAhsan, S. M., Kwon, D. B., Injamum-Ul-Hoque, M., Rahman, M. M., Yeam, I., & Choi, H. W. (2024). De Novo Regeneration of Cannabis sativa cv. Cheungsam and Evaluation of Secondary Metabolites of Its Callus. Horticulturae, 10(12), 1331. https://doi.org/10.3390/horticulturae10121331