Association of Plant-Parasitic Nematodes and Soil Physicochemical Properties in Tomatoes in Turfloop, Limpopo Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Nematode Identification
2.3. Nematode Community Analysis
2.4. Soil Properties Analysis
2.5. Relationship of Nematode and Soil Variables
3. Results
3.1. Analysis of the Nematode Communities
3.2. Indices of the Nematode Communities
3.3. Correlation of Selected Soil Parameters with Nematodes
3.4. Correlation of Nematodes and Soil Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeates, G.W. Soil nematodes in terrestrial ecosystems. J. Nematol. 1979, 11, 213–229. [Google Scholar] [PubMed]
- Garcia, N.; Grenier, E.; Buisson, A.; Folcher, L. Diversity of plant parasitic nematodes characterized from fields of the French national monitoring programme for the Columbia root-knot nematode. PLoS ONE 2022, 17, e0265070. [Google Scholar] [CrossRef] [PubMed]
- Mekuria, T.M.; Meressa, B.H.; Hundesa, W.B. Prevalence of major parasitic nematodes associated with tomatoes (Solanum lycopersicum L.) in two districts of Jimma, Ethiopia. Arch. Phytopathol. Plant Prot. 2023, 56, 158–174. [Google Scholar] [CrossRef]
- Karuri, H. Nematode community response to intensive tomato production in the tropics. Rhizosphere 2023, 25, 10068. [Google Scholar] [CrossRef]
- Shokoohi, E. Impact of agricultural land use on nematode diversity and soil quality in Dalmada, South Africa. Horticulturae 2023, 9, 749. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Department of Agriculture, Forestry and Fisheries (DAFF). A Profile of South African Tomato Market Value Chain. 2019. Available online: http://webapps.daff.gov.za/AmisAdmin/upload/Tomato%20Market%20Value%20Chain%20Profile%202019.pdf (accessed on 1 January 2019).
- Whitehead, A.G.; Hemming, J. Comparison of some quantitative methods extracting small vermiform nematodes from the soil. Ann. App. Biol. 1965, 55, 25–38. [Google Scholar] [CrossRef]
- De Grisse, A. Redescription ou modifications de quelques techniques utililisées dans l’étude des nématodes phytoparasitaires. Meded. Rijksfac. Landbouwetenschappen Gent 1969, 34, 351–369. [Google Scholar]
- Siddiqi, M.R. Tylenchida Parasites of Plants and Insects, 2nd ed.; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Geraert, E. The Tylenchidae of the World: Identification of the Family Tylenchidae (Nematoda); Academia Press: Gent, Belgium, 2008. [Google Scholar]
- Geraert, E. The Dolichodoridae of the World: Identification of the Family Dolichodoridae (Nematoda); Academia Press: Gent, Belgium, 2011. [Google Scholar]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of the Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Hach. Water Analysis Handbook, 7th ed.; Hach Company Publishing: Loveland, CO, USA, 2012; p. 1796. [Google Scholar]
- Van Capelle, C.; Schrader, S.; Brunotte, J. Tillage-induced changes in the functional diversity of soil biota—A review with a focus on German data. Eur. J. Soil Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- Addinsoft PX. Data Analysis and Statistical Solution for Microsoft Excel. Paris: Addinsoft SARL. 2021. Available online: https://www.xlstat.com (accessed on 1 January 2020).
- Renčo, M.; Čerevková, A.; Gömöryová, E. Soil nematode fauna and microbial characteristics in an early-successional forest ecosystem. Forests 2019, 10, 888. [Google Scholar] [CrossRef]
- Fiscus, D.A.; Neher, D.A. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecol. Appl. 2002, 12, 565–575. [Google Scholar] [CrossRef]
- Nisa, R.U.; Tantray, A.Y.; Kouser, N.; Allie, K.A.; Wani, S.M.; Alamri, S.A.; Alyemeni, M.N.; Wijaya, L.; Shah, A.A. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J. Biol. Sci. 2021, 28, 3049–3059. [Google Scholar] [CrossRef] [PubMed]
- Liptzin, D.; Norris, C.E.; Cappellazzi, S.B.; Mac Bean, G.; Cope, M.; Greub, K.L.; Rieke, E.L.; Tracy, P.W.; Aberle, E.; Ashworth, A.; et al. An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biol. Bioch. 2022, 172, 108708. [Google Scholar] [CrossRef]
- Neher, D.A. Nematode communities in organically and conventionally managed agricultural soils. J. Nematol. 1999, 31, 142–154. [Google Scholar] [PubMed]
- Barros, F.M.d.R.; Pedrinho, A.; Santána, G.d.C.; Freitas, C.C.G.; Rosa, J.M.O.; Oliveira, C.M.G.d.; Rozada, C.; Marto, F.N.d.S.; Pascoalino, J.A.L.; Silva, L.A.d.; et al. Plant-parasitic nematode community and enzyme activities in soils under no-till soybean crops in Brazil. Rhizosphere 2023, 27, 100736. [Google Scholar] [CrossRef]
- McKenry, M.V. Nematodes. In Grape Pest Management, 2nd ed.; Flaherty, D.L., Christensen, L.P., Lanini, W.T., Marois, J.J., Phillips, P.A., Wilson, L.T., Eds.; University of California Division of Agricultural Science: Oakland, CA, USA, 1992; pp. 281–285. [Google Scholar]
- Quimette, D.G.; Coffey, M.D. Symplastic entry and phloem translocation of phosphonate. Pestic. Biochem. Phys. 1990, 38, 18–25. [Google Scholar]
- Santana-Gomes, S.M.; Dias-Arieira, C.R.; Roldi, M.; Dadazio, T.S.; Marini, P.M.; Barizão, D.A.O. Mineral nutrition in the control of nematodes. Afr. J. Agric. Res. 2013, 8, 2413–2420. [Google Scholar]
- Kaiser, D. Copper for Crop Production. University of Minnesota Extension. 2023. Available online: https://extension.umn.edu/micro-and-secondary-macronutrients/copper-crop-production (accessed on 1 January 2023).
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef]
- Varga, I.; Benković-Lačić, T.; Lončarić, Z.; Popović, B.; Brmež, M. Liming, phosphorus and zinc influence on soil nematode community structure at hot pepper. Hort. Sci. 2019, 46, 65–71. [Google Scholar] [CrossRef]
- Alsafran, M.; Usman, K.; Ahmed, B.; Rizwan, M.; Saleem, M.H.; Al Jabri, H. Understanding the phytoremediation mechanisms of potentially toxic elements: A proteomic overview of recent advances. Front. Plant Sci. 2022, 13, 881242. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, A.K. Zinc for crop production. University of Minnesota Extension. 2016. Available online: https://extension.umn.edu/micro-and-secondary-macronutrients/zinc-crop-production (accessed on 1 January 2016).
- San-Blas, E.; Pirela, D.; García, D.; Portillo, E. Ammonia concentration at emergence and its effects on the recovery of different species of entomopathogenic nematodes. Exp. Parasitol. 2014, 144, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Salamún, P.; Kucanová, E.; Brázová, T.; Miklisová, D.; Renčo, M.; Hanzelová, V. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH. Ecotoxicology 2014, 23, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Fancelli, A.C. Influence of nutrients in the oceans on plants. Agron. Inform. 2008, 122, 23–24. [Google Scholar]
- Ishfaq, M.; Wang, Y.; Yan, M.; Wang, Z.; Wu, L.; Li, C.; Li, X. Physiological essence of magnesium in plants and its widespread deficiency in the farming system of China. Front. Plant Sci. 2022, 13, 802274. [Google Scholar] [CrossRef]
- Kim, E.; Seo, Y.; Kim, Y.S.; Park, Y.; Kim, Y.H. Effects of soil textures on infectivity of root-knot nematodes on carrot. Plant Pathol. J. 2017, 33, 66–74. [Google Scholar] [CrossRef]
- Sasser, J.N. Identification and Host-Parasite Relationships of Certain Root-Knot Nematodes (Meloidogyne spp.); University of Maryland, Agricultural Experiment Station, Technical Bulletin: Beltsville, MD, USA, 1954; Volume 77, 31p. [Google Scholar]
- El-Saedy, M.A.M.; El-Sayed, M.E.A.; Hammad, S.E. Efficacy of boron, silicon, jojoba and four bio-products on controlling Meloidogyne incognita infecting thompson seedless grapevines. Am. Eurasian J. Agric. Environ. Sci. 2015, 15, 1710–1720. [Google Scholar]
Nematode Genus | Site 1 | Site 2 | Site 3 | P-p Class * | Nematode Lifestyle | Mass, µg |
---|---|---|---|---|---|---|
Criconema | 8.75 | 51.3 | 17.3 | 3 | Herbivores—ectoparasites | 0.659 |
Helicotylenchus | 238.8 | 230 | 152.5 | 3 | Herbivores—semi-endoparasites | 0.294 |
Meloidogyne | 0 | 22.5 | 0 | 3 | Herbivores—sedentary parasites | 86.985 |
Pratylenchus | 17.5 | 21.3 | 27.3 | 3 | Herbivores—migratory endoparasites | 0.144 |
Rotylenchus | 2.5 | 17.5 | 0 | 3 | Herbivores—semi-endoparasites | 0.872 |
Tylenchorhynchus | 2.5 | 0 | 0 | 3 | Herbivores—ectoparasites | 0.234 |
Xiphinema | 2.5 | 0 | 55.5 | 5 | Herbivores—ectoparasites | 5.515 |
Index Name | Site 1 | Site 2 | Site 3 | p Value |
---|---|---|---|---|
Sigma maturity index | 3.0 ± 0.1 | 3.0 ± 0.0 | 3.2 ± 0.4 | 0.413 |
Plant-parasitic Index | 3.0 ± 0.1 | 3.0 ± 0.0 | 3.2 ± 0.4 | 0.413 |
Total biomass, mg | 0.1 ± 0.0 | 2.1 ± 3.9 | 0.4 ± 0.6 | 0.448 |
Herbivore footprint | 35.2 ± 11.4 | 285.1 ± 481.9 | 84.5 ± 130.1 | 0.461 |
Total number, ind | 272.5 ± 65.4 | 342.5 ± 83.9 | 252.5 ± 207.4 | 0.626 |
Herbivores, % of total | 100 | 100 | 100 | - |
Sedentary parasites, % of herbivores | 0.0 | 5.1 | 0.0 | - |
Migratory endoparasites, % of herbivores | 5.8 | 6.3 | 13.3 | - |
Semi-endoparasites, % of herbivores | 89.7 | 72.4 | 66.6 | - |
Ectoparasites, % of herbivores | 4.5 | 16.2 | 20.1 | - |
P-p 3, % of herbivores * | 99.2 | 100 | 89.8 | - |
P-p 5, % of herbivores | 0.8 | 0.0 | 10.2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokoohi, E.; Masoko, P. Association of Plant-Parasitic Nematodes and Soil Physicochemical Properties in Tomatoes in Turfloop, Limpopo Province, South Africa. Horticulturae 2024, 10, 328. https://doi.org/10.3390/horticulturae10040328
Shokoohi E, Masoko P. Association of Plant-Parasitic Nematodes and Soil Physicochemical Properties in Tomatoes in Turfloop, Limpopo Province, South Africa. Horticulturae. 2024; 10(4):328. https://doi.org/10.3390/horticulturae10040328
Chicago/Turabian StyleShokoohi, Ebrahim, and Peter Masoko. 2024. "Association of Plant-Parasitic Nematodes and Soil Physicochemical Properties in Tomatoes in Turfloop, Limpopo Province, South Africa" Horticulturae 10, no. 4: 328. https://doi.org/10.3390/horticulturae10040328
APA StyleShokoohi, E., & Masoko, P. (2024). Association of Plant-Parasitic Nematodes and Soil Physicochemical Properties in Tomatoes in Turfloop, Limpopo Province, South Africa. Horticulturae, 10(4), 328. https://doi.org/10.3390/horticulturae10040328