Tomato Brown Rugose Fruit Virus Is Transmissible through a Greenhouse Hydroponic System but May Be Inactivated by Cold Plasma Ozone Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and ToBRFV Inoculum Source
2.2. Initial Screening of Water Samples Collected from Greenhouses and Bioassay Assessing ToBRFV Infectivity on Tomato Plants
2.3. Secondary Test to Assess ToBRFV Infectivity in Water Samples under Long-Term Storage
2.4. Serological Test Using Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Quantitative Real-Time PCR
2.6. Quantitative Immunocapture Real-Time PCR
2.7. Cold Plasma-Generated Ozone Treatment on ToBRFV Inoculum Prepared from Freshly Collected ToBRFV-Infected Tomato Tissue
3. Results
3.1. ToBRFV Detected in Runoff Water Solutions Collected from Commercial Greenhouses Induce Virus Infection in Inoculated Tomato Seedlings
3.2. Secondary Test of ToBRFV Infectivity in Selected Water Samples through Serial Dilution
3.3. Assessing the Dilution Endpoint of the Inoculum Prepared from ToBRFV-Infected Tomato Tissue for Its Ability to Trigger Virus Infection in Tomato Plants
3.4. Efficacy of Cold Plasma-Generated Ozone Treatment against the Infectivity of ToBRFV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ofori, P.A.; Owusu-Nketia, S.; Opoku-Agyemang, F.; Agbleke, D.; Naalamle Amissah, J. Greenhouse tomato production for sustainable food and nutrition security in the tropics. In Tomato—From Cultivation to Processing Technology; Viskelis, P., Urbonavičienė, D., Viskelis, J., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Minor, T.; Baskins, S.; Bond, J.K. Imported Greenhouse Tomatoes from Mexico Illustrate the Growing Diversity in Fresh-Market Tomatoes. 2019. Available online: https://www.ers.usda.gov/amber-waves/2019/may/imported-greenhouse-tomatoes-from-mexico-illustrate-the-growing-diversity-in-fresh-market-tomatoes/ (accessed on 18 March 2024).
- Salem, N.; Mansour, A.; Ciuffo, M.; Falk, B.W.; Turina, M. A new tobamovirus infecting tomato crops in Jordan. Arch. Virol. 2016, 161, 503–506. [Google Scholar] [CrossRef]
- Luria, N.; Smith, E.; Reingold, V.; Bekelman, I.; Lapidot, M.; Levin, I.; Elad, N.; Tam, Y.; Sela, N.; Abu-Ras, A.; et al. A new Israeli tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS ONE 2017, 12, e0170429. [Google Scholar] [CrossRef]
- EPPO Global Database. 2024. Available online: https://gd.eppo.int/taxon/TOBRFV/distribution (accessed on 18 March 2024).
- Salem, N.M.; Jewehan, A.; Aranda, M.A.; Fox, A. Tomato brown rugose fruit virus pandemic. Annu. Rev. Phytopathol. 2023, 61, 137–164. [Google Scholar] [CrossRef]
- Fidan, H.; Sarikaya, P.; Calis, O. First report of Tomato brown rugose fruit virus on tomato in Turkey. New Dis. Rep. 2019, 39, 18. [Google Scholar] [CrossRef]
- Ghorbani, A.; Rostami, A.; Seifi, S.; Izadpanah, K. First report of Tomato brown rugose fruit virus in greenhouse tomato in Iran. New Dis. Rep. 2021, 44, e12040. [Google Scholar] [CrossRef]
- Sabra, A.; Al-Saleh, M.A.; Al-Shahwan, I.M.; Amer, M.A. First report of Tomato brown rugose fruit virus infecting the tomato crop in Saudi Arabia. Plant Dis. 2022, 106, 1310. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-Y.; Ma, H.-Y.; Han, S.-L.; Geng, C.; Tian, Y.-P.; Li, X.-D. First report of Tomato brown rugose fruit virus infection tomato in China. Plant Dis. 2019, 103, 2973. [Google Scholar] [CrossRef]
- Alfaro-Fernández, A.; Castillo, P.; Sanahuja, E.; Rodríguez-Salido, M.C.; Font, M.I. First report of Tomato brown rugose fruit virus in tomato in Spain. Plant Dis. 2021, 105, 515. [Google Scholar] [CrossRef] [PubMed]
- Beris, D.; Malandraki, I.; Kektsidou, O.; Theologidis, I.; Vassilakos, N.; Varveri, C. First report of Tomato brown rugose fruit virus infecting tomato in Greece. Plant Dis. 2020, 104, 2035. [Google Scholar] [CrossRef]
- Eichmeier, A.; Hejlova, M.; Orsagova, H.; Frejilchova, L.; Hakalova, E.; Tomankova, K.; Linhartova, S.; Kulich, P.; Cermak, V.; Cechova, J. Characterization of tomato brown rugose fruit virus (ToBRFV) detected in Czech Republic. Diversity 2023, 15, 301. [Google Scholar] [CrossRef]
- Hamborg, Z.; Blystad, D.-R. First report of Tomato brown rugose fruit virus in tomato in Norway. Plant Dis. 2022, 106, 2004. [Google Scholar] [CrossRef] [PubMed]
- Hasan, Z.M.; Salem, N.M.; Ismail, I.D.; Akel, E.H.; Ahmad, A.Y. First report of Tomato brown rugose fruit virus on greenhouse tomato in Syria. Plant Dis. 2022, 106, 772. [Google Scholar] [CrossRef]
- Mahillon, M.; Kellenberger, I.; Dubuis, N.; Brodard, J.; Bunter, M.; Weibel, J.; Sandrini, F.; Schumpp, O. First report of Tomato brown rugose fruit virus in tomato in Switzerland. New Dis. Rep. 2022, 45, 12065. [Google Scholar] [CrossRef]
- Menzel, W.; Knierim, D.; Winter, S.; Hamacher, J.; Heupel, M. First report of Tomato brown rugose fruit virus infecting tomato in Germany. New Dis. Rep. 2019, 39, 1. [Google Scholar] [CrossRef]
- Orfanidou, C.G.; Cara, M.; Merkuri, J.; Papadimitriou, K.; Katis, N.I.; Maliogka, V.I. First report of Tomato brown rugose fruit virus in tomato in Albania. J. Plant Pathol. 2022, 104, 855. [Google Scholar] [CrossRef]
- Panno, S.; Caruso, A.G.; Davino, S. First report of Tomato brown rugose fruit virus on tomato crops in Italy. Plant Dis. 2019, 103, 1443. [Google Scholar] [CrossRef]
- Skelton, A.; Buxton-Kirk, A.; Ward, R.; Harju, V.; Frew, L.; Fowkes, A.; Long, M.; Negus, A.; Forde, S.; Adams, I.; et al. First report of Tomato brown rugose fruit virus in tomato in the United Kingdom. New Dis. Rep. 2019, 40, 12. [Google Scholar] [CrossRef]
- Skelton, A.; Gentit, P.; Porcher, L.; Visage, M.; Fowkes, A.; Adams, I.P.; Harju, V.; Webster, G.; Pufal, H.; McGreig, S.; et al. First report of Tomato brown rugose fruit virus in tomato in France. New Dis. Rep. 2022, 45, e12061. [Google Scholar] [CrossRef]
- Van de Vossenberg, B.T.K.H.; Visser, M.; Bruinsma, M.; Koenraadt, H.M.S.; Westenberg, M. Real-time tracking of Tomato brown rugose fruit virus outbreaks in the Netherlands using Nextstrain. PLoS ONE 2020, 15, e0234671. [Google Scholar] [CrossRef]
- Camacho-Beltrán, E.; Pérez-Villarreal, A.; Leyva-López, N.E.; Rodríguez-Negrete, E.A.; Ceniceros-Ojeda, E.A.; Méndez-Lozano, J. Occurrence of Tomato brown rugose fruit virus infecting tomato crops in Mexico. Plant Dis. 2019, 103, 1440. [Google Scholar] [CrossRef]
- Cambrón-Crisantos, J.M.; Rodríguez-Mendoza, J.; Valencia-Luna, J.B.; Alcasio-Rangel, S.; García-Ávila, C.J.; López-Buenfil, J.A.; Ochoa-Martínez, D.L. First report of tomato brown rugose fruit virus (ToBRFV) in Michoacan, Mexico. Rev. Mex. Fitopatol. 2018, 37, 185–192. [Google Scholar]
- Ling, K.-S.; Tian, T.; Gurung, S.; Salati, R.; Gilliard, A. First report of Tomato brown rugose fruit virus infecting tomato in the United States. Plant Dis. 2019, 103, 1439. [Google Scholar] [CrossRef]
- Sarkes, A.; Fu, H.; Geindel, D.; Harding, M.; Feng, J. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for the detection of Tomato brown rugose fruit virus (ToBRFV). PLoS ONE 2020, 15, e0230403. [Google Scholar] [CrossRef]
- Obregón, V.G.; Ibañez, J.M.; Lattar, T.E.; Juszczak, S.; Growth-Helms, D. First report Tomato brown rugose fruit virus in tomato in Argentina. New Dis. Rep. 2023, 48, e12203. [Google Scholar] [CrossRef]
- Amer, M.A.; Mahmoud, S.Y. First report of tomato brown rugose fruit virus on tomato in Egypt. New. Dis. Rep. 2020, 41, 24. [Google Scholar] [CrossRef]
- New Zealand: ToBRFV Detected in Small Seed Lot. 2021. Available online: www.hortidaily.com/article/9281236/new-zealand-tobrfv-detected-in-small-seed-lot/ (accessed on 18 March 2024).
- Zhang, S.; Griffiths, J.S.; Marchand, G.; Bernards, M.A.; Wang, A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. Mol. Plant. Pathol. 2022, 23, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Davino, S.; Caruso, A.G.; Bertacca, S.; Barone, S.; Panno, S. Tomato brown rugose fruit virus: Seed transmission rate and efficiency of different seed disinfection treatments. Plants 2020, 9, 1615. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.M.; Sulaiman, A.; Samarah, N.; Turina, M.; Vallino, M. Location of mechanical transmission of tomato brown rugose fruit virus in tomato seeds. Plant Dis. 2022, 106, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Chanda, B.; Gilliard, A.; Jaiswal, N.; Ling, K.-S. Comparative analysis of host range, ability to infect tomato cultivars with Tm-22 gene and real-time RT-PCR detection of tomato brown rugose fruit virus. Plant Dis. 2021, 105, 3643–3652. [Google Scholar] [CrossRef] [PubMed]
- Chanda, B.; Shamimuzzaman, M.; Gilliard, A.; Ling, K.-S. Effectiveness of disinfectants against the spread of tobamoviruses: Tomato brown rugose fruit virus and Cucumber green mottle mosaic virus. Virol. J. 2021, 18, 7. [Google Scholar] [CrossRef]
- Klap, C.; Luria, N.; Smith, E.; Bakelman, E.; Belausov, E.; Laskar, O.; Lachman, O.; Gal-On, A.; Dombrovsky, A. The potential risk of plant-virus disease initiation by infected tomatoes. Plants 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Levitzky, N.; Smith, E.; Lachman, O.; Luria, N.; Mizrahi, Y.; Bakelman, H.; Sela, N.; Laskar, O.; Milrot, E.; Dombrovsky, A. The bumblebee Bombus terrestris carries a primary inoculum of Tomato brown rugose fruit virus contributing to disease spread in tomatoes. PLoS ONE 2019, 14, e0210871. [Google Scholar] [CrossRef] [PubMed]
- Panno, S.; Caruso, A.G.; Barone, S.; Lo Bosco, G.; Rangel, E.A.; Davino, S. Spread of tomato brown rugose fruit virus in Sicily and evaluation of the spatiotemporal dispersion in experimental conditions. Agronomy 2020, 10, 834. [Google Scholar] [CrossRef]
- Dey, K.K.; Velez-Climent, M.; Soria, P.; Batuman, O.; Mavrodieva, V.; Wei, G.; Zhou, J.; Adkins, S.; McVay, J. First report of Tomato brown rugose fruit virus infecting tomato in Florida, USA. New Dis. Rep. 2021, 44, e12028. [Google Scholar] [CrossRef]
- Avni, B.; Gelbart, D.; Sufrin-Ringwald, T.; Zinger, A.; Chen, L.; Machbash, Z.; Bekelman, I.; Segoli, M.; Dombrovsky, A.; Kamenetsky, R.; et al. Tomato genetic resistance to tobamoviruses is compromised. Acta Hortic. 2021, 1316, 89–98. [Google Scholar] [CrossRef]
- Jewehan, A.; Salem, N.; Tóth, Z.; Salamon, P.; Szabó, Z. Screening of Solanum (sections Lycopersicon and Juglandifolia) germplasm for reactions to the tomato brown rugose fruit virus. J. Plant Dis. Prot. 2022, 129, 117–123. [Google Scholar] [CrossRef]
- Jewehan, A.; Salem, N.; Tóth, Z.; Salamon, P.; Szabó, Z. Evaluation of responses to tomato brown rugose fruit virus (ToBRFV) and selection of resistant lines in Solanum habrochaites and Solanum peruvianum germplasm. J. Gen. Plant Pathol. 2022, 88, 187–196. [Google Scholar] [CrossRef]
- Kabas, A.; Fidan, H.; Kucukaydin, H.; Atan, H.N. Screening of wild tomato species and interspecific hybrids for resistance/tolerance to Tomato brown rugose fruit virus (ToBRFV). Chil. J. Agric. Res. 2022, 82, 189–196. [Google Scholar] [CrossRef]
- Jaiswal, N.; Chanda, B.; Gilliard, A.; Shi, A.; Ling, K.-S. Evaluation of tomato germplasm against tomato brown rugose fruit virus and identification of resistance in Solanum pimpinellifolium. Plants 2024, 13, 581. [Google Scholar] [CrossRef]
- Zinger, A.; Lapidot, M.; Harel, A.; Doron-Faigenboim, A.; Gelbart, D.; Levin, I. Identification and mapping of tomato genome loci controlling tolerance and resistance to tomato brown rugose fruit virus. Plants 2021, 10, 179. [Google Scholar] [CrossRef]
- Samarah, N.; Sulaiman, A.; Salem, N.M.; Turina, M. Disinfection treatments eliminated tomato brown rugose fruit virus in tomato seeds. Eur. J. Plant Pathol. 2021, 159, 153–162. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Mor, N.; Gantz, S.; Lachman, O.; Smith, E. Disinfection efficacy of tobamovirus-contaminated soil in greenhouse-grown crops. Horticulturae 2022, 8, 563. [Google Scholar] [CrossRef]
- Ehlers, J.; Nourinejhad Zarghani, S.; Kroschewski, B.; Büttner, C.; Bandte, M. Cleaning of tomato brown rugose fruit virus (ToBRFV) from contaminated clothing of greenhouse employees. Horticulturae 2022, 8, 751. [Google Scholar] [CrossRef]
- Ehlers, J.; Nourinejhad Zarghani, S.; Kroschewski, B.; Büttner, C.; Bandte, M. Decontamination of tomato brown rugose fruit virus-contaminated shoe soles under practical conditions. Horticulturae 2022, 8, 1210. [Google Scholar] [CrossRef]
- Ling, K.-S.; Gilliard, A.C.; Zia, B. Disinfectants useful to manage the emerging tomato brown rugose fruit virus in greenhouse tomato production. Horticulturae 2022, 8, 1193. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, C.I.; Zamora-Macorra, E.J.; Ochoa-Martinez, D.L.; Gonzalez-Garza, R. Disinfectants effectiveness in tomato brown rugose fruit virus (ToBRFV) transmission in tobacco plants. Rev. Mex. Fitopatol. 2022, 40, 240–253. [Google Scholar] [CrossRef]
- Skelton, A.; Frew, L.; Ward, R.; Hodgson, R.; Forde, S.; McDonough, S.; Webster, G.; Chisnall, K.; Mynett, M.; Buxton-Kirk, A.; et al. Tomato brown rugose fruit virus: Survival and disinfection efficacy on common glasshouse surfaces. Viruses 2023, 15, 2076. [Google Scholar] [CrossRef] [PubMed]
- Bačnik, K.; Kutnjak, D.; Pecman, A.; Mehle, N.; Žnidarič, M.T.; Aguirre, I.G.; Ravnikar, M. Viromics and infectivity analysis reveal the release of infective plant viruses from wastewater into the environment. Water Res. 2020, 177, 115628. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, A.; Fremin, B.J.; Schmidtke, D.T.; Wolfe, M.K.; Zlitni, S.; Graham, K.E.; Brook, E.F.; Severyn, C.J.; Sakamato, K.M.; Lacayo, N.J.; et al. The tomato brown rugose fruit virus movement protein gene is a novel microbial source tracking marker. Appl. Environ. Microbiol. 2023, 89, e0058323. [Google Scholar] [CrossRef]
- Rothman, J.; Whiteson, K. Sequencing and variant detection of eight abundant plant-infecting tobamoviruses across southern California wastewater. Microbiol. Spectr. 2022, 10, e0305022. [Google Scholar] [CrossRef]
- Sherchan, S.P.; Malla, B.; Haramoto, E. First quantitative detection of tomato brown rugose fruit virus in wastewater in Louisiana. Sci. Total Environ. 2023, 888, 164001. [Google Scholar] [CrossRef] [PubMed]
- Nash, D.; Ellmen, I.; Knapp, J.J.; Menon, R.; Overton, A.K.; Cheng, J.; Lynch, M.D.J.; Nissimov, J.I.; Charles, T.C. A novel tiled amplicon sequencing assay targeting the tomato brown rugose fruit virus (ToBRFV) genome reveals widespread distribution in municipal wastewater treatment systems in the province of Ontario, Canada. Viruses 2024, 16, 460. [Google Scholar] [CrossRef]
- Mehle, N.; Bačnik, K.; Bajde, I.; Brodarič, J.; Fox, A.; Gutiérrez-Aguirre, I.; Kitek, M.; Kutnjak, D.; Loh, Y.L.; Carvalho Ferreira, O.M.; et al. Tomato brown rugose fruit virus in aqueous environments—Survival and significance of water-mediated transmission. Front. Plant Sci. 2023, 14, 1187920. [Google Scholar] [CrossRef]
- Baysan, A.; Lynch, E. The use of ozone in dentistry and medicine. Prim. Dent. J. 2005, 12, 47–52. [Google Scholar] [CrossRef]
- Khadre, M.A.; Yousef, A.E.; Kim, J.-G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Seridou, P.; Kalogerakis, N. Disinfection application of ozone micro- and nanobubbles. Environ. Sci. Nano 2021, 8, 3493–3510. [Google Scholar] [CrossRef]
- Sato, H.; Wananabe, Y.; Miyata, H. Virucidal effect of ozone treatment of laboratory animal viruses. Jikken Dobutsu. 1990, 39, 223–229. [Google Scholar]
- Boast, N.; Heselton, D.; Hudson, J. Apparatus and Method for Using Ozone as a Disinfectant. International Publication Number WO2005087278A1, 22 September 2005. [Google Scholar]
- Zhang, J.; Zheng, C.; Xiao, G.; Zhou, Y.; Gao, R. Examination of the efficacy of ozone solution disinfectant in in-activating SARS virus. Chin. J. Disinfect. 2004, 21, 27–28. [Google Scholar]
- Hu, X.; Chen, Z.; Su, Z.; Deng, F.; Chen, X.; Yang, Q.; Li, P.; Chen, Q.; Ma, J.; Guan, W.; et al. Ozone water is an effective disinfectant for SARS-CoV-2. Virol. Sin. 2021, 36, 1066–1068. [Google Scholar] [CrossRef]
- Filipić, A.; Primc, G.; Zaplotnik, R.; Mehle, N.; Gutierrez Aguirre, I.; Ravnikar, M.; Mozetič, M.; Žel, J.; Dobnik, D. Cold atmospheric plasma as a novel method for inactivation of potato virus Y in water samples. Food Environ. Virol. 2019, 11, 220–228. [Google Scholar] [CrossRef]
- Filipić, A.; Dobnik, D.; Tušek Žnidarič, M.; Žegura, B.; Štern, A.; Primc, G.; Mozetič, M.; Ravnikar, M.; Žel, J.; Aguirre, I.G. Inactivation of pepper mild mottle virus in water by cold atmospheric plasma. Front. Microbiol. 2021, 12, 618209. [Google Scholar] [CrossRef] [PubMed]
- Mahnot, N.K.; Mahanta, C.L.; Keener, K.M.; Misra, N.N. Strategy to achieve a 5-log Salmonella inactivation in tender coconut water using high voltage atmospheric cold plasma (HVACP). Food Chem. 2019, 284, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.V.; Ho, P.Q.; Pham, T.V.; Nguyen, T.V.; Kim, L. Treatment of surface water using cold plasma for domestic water supply. Environ. Eng. Res. 2019, 24, 412–417. [Google Scholar] [CrossRef]
- Patange, A.; Lu, P.; Boehm, D.; Cullen, P.J.; Bourke, P. Efficacy of cold plasma functionalized water for improving microbiological safety for fresh produce and wash water recycling. Food Microbiol. 2019, 84, 103226. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Qiu, H.; He, S.; Hong, B.; Liu, K.; Lou, F.; Li, M.; Hu, P.; Kong, H.; Song, Y.; et al. Efficient disinfection of SARS-CoV-2-like coronavirus, pseudotyped SARS-CoV-2 and other coronaviruses using cold plasms induces spike protein damage. J. Hazard. Mater. 2022, 430, 128414. [Google Scholar] [CrossRef] [PubMed]
- Büttner, C.; Nienhaus, F. Virus contamination of soils in forest ecosystems of the Federal Republic of Germany. Eur. J. For. Path. 1989, 19, 47–53. [Google Scholar] [CrossRef]
- Koenig, R. Plant viruses in rivers and lakes. Adv. Virus Res. 1986, 31, 321–333. [Google Scholar] [PubMed]
- Gosalvez, B.; Navarro, J.A.; Norca, A.; Botella, R.; Sánchez-Pina, M.A.; Pallas, V. Detection of melon necrotic spot virus in water samples and melon plants molecular methods. J. Virol. Methods 2003, 113, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Mehle, N.; Ravnikar, M. Plant viruses in aqueous environment—Survival, water mediated transmission and detection. Water Res. 2012, 46, 4902–4917. [Google Scholar] [CrossRef] [PubMed]
- Paludan, N. Spread of viruses by recirculated nutrient solutions in soilless cultures. Tidsskr. Planteavl 1985, 89, 467–474. [Google Scholar]
- Pategas, K.G.; Schuerger, A.C.; Wetter, C. Management of tomato mosaic virus in hydroponically grown pepper (Capsicum annuum). Plant Dis. 1989, 73, 570–573. [Google Scholar] [CrossRef]
- Girt, G.C.; Lakshminarayanan, A.; Huo, J.; Dormon, J.; Norman, C.; Afrough, B.; James, W.; Owens, R.J.; Naismith, J.H. The use of nanobodies in a sensitive ELISA test for SARS-CoV-2 spike 1 protein. R. Soc. Open Sci. 2021, 8, 211016. [Google Scholar] [CrossRef] [PubMed]
- Motley, M.P.; Bennett-Guerrero, E.; Fries, B.C.; Spitzer, E.D. Review of viral testing (Polymerase chain reaction) and antibody/serology testing for severe acute respiratory syndrome-coronavirus-2 for the intensivist. Crit. Care Explor. 2020, 2, e0154. [Google Scholar] [CrossRef] [PubMed]
- Mori, J.; Smith, R. Transmission of waterborne fish and plant pathogens in aquaponics, and their control with physical disinfection and filtration: A systematized review. Aquaculture 2019, 504, 380–395. [Google Scholar] [CrossRef]
- Gharbi, S.; Verhoyen, M. Sterilization UV irradiation of nutrients solution with view to avoiding viral infections transmitted by O. brassicae in hydroponic culture of lettuce. HortScience 1993, 58, 873–874. [Google Scholar]
- Runia, W. Elimination of root-infecting pathogens in recirculation water from closed cultivation systems by ultra-violet radiation. Acta Hortic. 1994, 361, 361–371. [Google Scholar] [CrossRef]
Sample Source | Water Sample | Bioassay on Tomato Plant | ||
---|---|---|---|---|
Sample Name | qRT-PCR a | Symptoms | DAS-ELISA b | |
Farm #1 | V22-14 | 27.83 (+) | Yes | 0.55 (+) |
V22-15 | 26.18 (+) | Yes | 2.65 (+) | |
Farm #2 | V22-29 | 19.90 (+) | Yes | 2.56 (+) |
V22-43 | 22.97 (+) | Yes | 2.35 (+) | |
33 other water samples | 21.25 (+) to No Ct (−) | No | 0.01 (−) to 0.03 (−) | |
Farm #3 | 97 water samples | 22.62 (+) to 32.13 (−) | No | 0.01 (−) to 0.04 (+) |
Positive control | ToBRFV-infected tomato | 13.43 (+) | Yes | 2.67 (+) |
Negative control | Healthy tomato | 31.22 (−) | No | 0.01 (−) |
Sample Name Plant Sap Dilutions | V22-14 | V22-15 | V22-29 | V22-43 | ||||
---|---|---|---|---|---|---|---|---|
ELISA a | IC-qRT-PCR b | ELISA | IC-qRT-PCR | ELISA | IC-qRT-PCR | ELISA | IC-qRT-PCR | |
Undiluted | −(0/6) | −(0/6) | +(1/6) c | +(1/6) c | −(0/6) | −(0/6) | +(3/6) d | +(3/6) d |
1:10 | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) |
1:100 | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) |
1:1000 | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) | −(0/6) |
Plant Sap Dilutions | Virus Detection | Bioassay on Tomato Plants | |||
---|---|---|---|---|---|
DAS-ELISA a | IC-qRT-PCR b | Symptoms c | DAS-ELISA d | IC-qRT-PCR d | |
1:100 | 3.33 | 27.35 | Yes (3/3) | 2.02 (3/3) | 26.75 (3/3) |
1:103 | 3.32 | 27.01 | Yes (3/3) | 2.12 (3/3) | 28.52 (3/3) |
1:104 | 3.04 | 30.15 | Yes (2/3) | 2.25 (2/3) | 27.73 (2/3) |
1:105 | 1.24 | 31.32 | Yes (1/3) | 2.02 (1/3) | 26.49 (1/3) |
1:106 | 0.21 | 34.17 | No (0/3) | 0.11 (0/3) | No Ct |
1:107 | 0.03 | No Ct | No (0/3) | 0.11 (0/3) | No Ct |
1:108 | 0.01 | No Ct | No (0/3) | 0.10 (0/3) | No Ct |
1:109 | 0.01 | No Ct | No (0/3) | 0.10 (0/3) | No Ct |
1:1010 | 0.01 | No Ct | No (0/3) | 0.10 (0/3) | No Ct |
1:1011 | 0.09 | No Ct | No (0/3) | 0.10 (0/3) | No Ct |
1:1012 | 0.01 | No Ct | No (0/3) | 0.10 (0/3) | No Ct |
Positive Control e | 3.18 | 26.37 | Yes (3/3) | 2.66 (3/3) | 20.02 (3/3) |
Mock Control | 0.02 | No Ct | No (0/3) | 0.11 (0/3) | No Ct |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Gilliard, A.; Ling, K.-S. Tomato Brown Rugose Fruit Virus Is Transmissible through a Greenhouse Hydroponic System but May Be Inactivated by Cold Plasma Ozone Treatment. Horticulturae 2024, 10, 416. https://doi.org/10.3390/horticulturae10040416
Zhou J, Gilliard A, Ling K-S. Tomato Brown Rugose Fruit Virus Is Transmissible through a Greenhouse Hydroponic System but May Be Inactivated by Cold Plasma Ozone Treatment. Horticulturae. 2024; 10(4):416. https://doi.org/10.3390/horticulturae10040416
Chicago/Turabian StyleZhou, Jing, Andrea Gilliard, and Kai-Shu Ling. 2024. "Tomato Brown Rugose Fruit Virus Is Transmissible through a Greenhouse Hydroponic System but May Be Inactivated by Cold Plasma Ozone Treatment" Horticulturae 10, no. 4: 416. https://doi.org/10.3390/horticulturae10040416
APA StyleZhou, J., Gilliard, A., & Ling, K. -S. (2024). Tomato Brown Rugose Fruit Virus Is Transmissible through a Greenhouse Hydroponic System but May Be Inactivated by Cold Plasma Ozone Treatment. Horticulturae, 10(4), 416. https://doi.org/10.3390/horticulturae10040416