Metabolome Comparison of Sichuan Dried Orange Peels (Chenpi) Aged for Different Years
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Chuan Chenpi
2.2. Physiochemical Analysis
2.3. Metabolomics Analysis
2.3.1. Sample Preparation and Extraction
2.3.2. Ultra-Performance Liquid Chromatography (UPLC) Conditions
2.3.3. Electrospray Ionisation Quadrupole Linear Ion Trap Tandem Mass Spectrometry (ESI-Q TRAP-MS/MS)
3. Results
3.1. Effect of Storage Time on Peel Morphology and Phenolic Compounds of Citrus reticulata cv. Dahongpao Orange Peels
3.2. Metabolomics Statistics of Chuan Chenpi Metabolites during Different Storage Periods
3.3. Differential Metabolic Profiles of Chuan Chenpi Dried Peels Subjected to 1, 5 and 10 Years of Storage
3.3.1. Metabolome Changes between CR1 and CR10
3.3.2. Metabolome Changes between CR1 and CR5
3.3.3. Metabolome Changes between CR5 and CR10
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, X.; Sun, S.; Guo, Y.; Liu, Y.; Yang, D.; Li, G.; Lü, S. Citri reticulatae Pericarpium (Chenpi): Botany, ethnopharmacology, phytochemistry, and pharmacology of a frequently used traditional Chinese medicine. J. Ethnopharmacol. 2018, 220, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tao, H.; Cao, Y.; Ho, C.-T.; Jin, S.; Huang, Q. Prevention of obesity and type 2 diabetes with aged citrus peel (Chenpi) extract. J. Agric. Food Chem. 2016, 64, 2053–2061. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, J.; Zhang, X.; Zhao, D.-g.; Ma, Y.-y.; Li, D.; Ho, C.-T.; Huang, Q. Aged citrus peel (Chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food Funct. 2020, 11, 2667–2678. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Cao, Y.; Ho, C.-T.; Jin, S.; Huang, Q. Aged citrus peel (Chenpi) extract reduces lipogenesis in differentiating 3T3-L1 adipocytes. J. Funct. Foods 2017, 34, 297–303. [Google Scholar] [CrossRef]
- Zhou, L.; Gu, W.; Kui, F.; Gao, F.; Niu, Y.; Li, W.; Zhang, Y.; Guo, L.; Wang, J.; Guo, Z. The mechanism and candidate compounds of aged citrus peel (Chenpi) preventing chronic obstructive pulmonary disease and its progression to lung cancer. Food Nutr. Res. 2021, 65, 7526. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.-H.; Chan, Y.-F.; Pan, M.-H.; Tung, Y.-C.; Su, Z.-Y. Aged citrus peel (Chenpi) prevents acetaminophen-induced hepatotoxicity by epigenetically regulating Nrf2 pathway. Am. J. Chin. Med. 2019, 47, 1833–1851. [Google Scholar] [CrossRef] [PubMed]
- Falduto, M.; Smedile, F.; Zhang, M.; Zheng, T.; Zhu, J.; Huang, Q.; Weeks, R.; Ermakov, A.M.; Chikindas, M.L. Anti-obesity effects of Chenpi: An artificial gastrointestinal system study. Microb. Biotechnol. 2022, 15, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Gao, Z.; Wang, C.; Ma, J.; Li, G.; Fu, F.; Guo, J.; Shan, Y. Effects of different treatment methods of dried citrus peel (Chenpi) on intestinal microflora and short-chain fatty acids in healthy mice. Front. Nutr. 2021, 8, 702559. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Kou, X.; Wang, L.; Ji, R.; Ma, C.; Wang, H. Effective hydroxylation of tangeretin from Citrus Peel (Chenpi) by edible acids and its improvement in antioxidant and anti-lipase activities. LWT 2019, 116, 108469. [Google Scholar] [CrossRef]
- Sun, X.; Deng, H.; Shan, B.; Shan, Y.; Huang, J.; Feng, X.; Tang, X.; Ge, Y.; Liao, P.; Yang, Q. Flavonoids contribute most to discriminating aged Guang Chenpi (Citrus reticulata ‘Chachi’) by spectrum-effect relationship analysis between LC-Q-Orbitrap/MS fingerprint and ameliorating spleen deficiency activity. Food Sci. Nutr. 2023, 11, 7039–7060. [Google Scholar] [CrossRef]
- Daduo, L.; Chao, C.; Rongwei, L. Protective effect of flavonoids from pericarpium Citri reticulatae (Chenpi) against oxidative stress induced by exhaustive exercise. Afr. J. Microbiol. Res. 2011, 5, 50–56. [Google Scholar]
- Yang, M.; Jiang, Z.; Wen, M.; Wu, Z.; Zha, M.; Xu, W.; Zhang, L. Chemical variation of Chenpi (Citrus peels) and corresponding correlated bioactive compounds by LC-MS metabolomics and multibioassay analysis. Front. Nutr. 2022, 9, 825381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, Z.; Yang, Y.; Pan, S.; Yin, J.; Yu, X. Rapid identification of the storage age of dried tangerine peel using a hand-held near infrared spectrometer and machine learning. J. Near Infrared Spectrosc. 2022, 30, 31–39. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, W.; Qian, M.; Wen, Z.; Bai, W.; Zeng, X.; Wang, H.; Xian, Y.; Dong, H. Recent advances in the authentication (geographical origins, varieties and aging time) of tangerine peel (Citri reticulatae pericarpium): A review. Food Chem. 2024, 442, 138531. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Wu, L.; Zhao, J.; Guan, Q.; Zeng, H.; Zong, M.; Fu, M.; Du, C. Classification of Pericarpium Citri reticulatae (Chenpi) age using surface-enhanced Raman spectroscopy. Food Chem. 2023, 408, 135210. [Google Scholar] [CrossRef] [PubMed]
- Li, A. Tangerine peel treasures for a healthy body and tasty treats. Shine: Beyond a Single Story, 25 January 2022. [Google Scholar]
- Li, J.; Qiu, G.; Tang, R.; Zhang, J. Clinical study on treatment of functional dyspepsia with Pericarpium Citri reticulatae from Xinhui preserved for twenty years. J. New Chin. Med. 2011, 43, 7–10. [Google Scholar]
- Qiu, G.; Li, J.; Tang, R.; Zhang, J. Study of treatment effect used five year Xinhui Chenpi to functional dyspepsia. Chin. Arch. Tradit. Chin. Med. 2011, 29, 346–348. [Google Scholar]
- Choi, M.-Y.; Chai, C.; Park, J.H.; Lim, J.; Lee, J.; Kwon, S.W. Effects of storage period and heat treatment on phenolic compound composition in dried Citrus peels (Chenpi) and discrimination of Chenpi with different storage periods through targeted metabolomic study using HPLC-DAD analysis. J. Pharm. Biomed. Anal. 2011, 54, 638–645. [Google Scholar] [CrossRef]
- Li, F.; Lu, Y.; Li, C.; Huang, R.; Tian, E.; Tan, E.; Yang, Z.; Li, H.; Chao, Z. trnL-trnF copy number is inversely correlated with storage time of Guang Chenpi, the aged sun-dried peels of Citrus reticulata ‘Chachi’. J. Stored Prod. Res. 2022, 97, 101982. [Google Scholar] [CrossRef]
- Yue, F.; Zhang, F.; Qu, Q.; Wang, C.; Qin, Y.; Ma, L.; Jia, Y.; Ismael, M.; Jiang, Y.; Sun, T. Effects of ageing time on the properties of polysaccharide in tangerine peel and its bacterial community. Food Chem. 2023, 417, 135812. [Google Scholar] [CrossRef]
- Wang, F.; Hu, Y.; Chen, H.; Chen, L.; Liu, Y. Exploring the roles of microorganisms and metabolites in the 30-year aging process of the dried pericarps of Citrus reticulata ‘Chachi’ based on high-throughput sequencing and comparative metabolomics. Food Res. Int. 2023, 172, 113117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wen, H.; Kong, J.; Hu, Z.; Hu, Y.; Zeng, J.; Chen, X.; Zhang, H.; Chen, J.; Xu, J. Flavor characterization of Citri reticulatae Pericarpium (Citrus reticulata ‘Chachiensis’) with different aging years via sensory and metabolomic approaches. Food Chem. 2024, 443, 138616. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mao, X.; Guo, L.; Zhou, Z. Comparative Analysis of the Impact of Three Drying Methods on the Properties of Citrus reticulata Blanco cv. Dahongpao Powder and Solid Drinks. Foods 2023, 12, 2514. [Google Scholar] [CrossRef] [PubMed]
- Luan, A.; Zhang, W.; Yang, M.; Zhong, Z.; Wu, J.; He, Y.; He, J. Unveiling the molecular mechanism involving anthocyanins in pineapple peel discoloration during fruit maturation. Food Chem. 2023, 412, 135482. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Bi, X.; Fu, X.; Li, Y.; Li, G.; Li, Y.; Liu, D.; Yang, Y.; Shi, R.; Dong, W. Comparative Metabolome Profiles and Antioxidant Potential of Four Coffea arabica L. Varieties Differing in Fruit Color. Diversity 2023, 15, 724. [Google Scholar] [CrossRef]
- De Winter, J.C. Using the Student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 2019, 18, 10. [Google Scholar]
- Bouyahya, A.; Taha, D.; Benali, T.; Zengin, G.; El Omari, N.; El Hachlafi, N.; Khalid, A.; Abdalla, A.N.; Ardianto, C.; Tan, C.S. Natural sources, biological effects, and pharmacological properties of cynaroside. Biomed. Pharmacother. 2023, 161, 114337. [Google Scholar] [CrossRef] [PubMed]
- M Calderon-Montano, J.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef] [PubMed]
- Al-Bzour, M.H.; Bsieso, Y.; Gammoh, O.; Alqudah, M.; Qnais, E.Y.; Wedyan, M.; Alqudah, A. Exploring the antinociceptive potential of homoeriodictyol in nociception models. J. Pharm. Pharmacogn. Res. 2024, 12, 615–623. [Google Scholar] [CrossRef]
- Choi, H.J.; Song, H.-H.; Lee, J.-S.; Ko, H.-J.; Song, J.-H. Inhibitory effects of norwogonin, oroxylin A, and mosloflavone on enterovirus 71. Biomol. Ther. 2016, 24, 552. [Google Scholar] [CrossRef]
- Qiu, M.; Wei, W.; Zhang, J.; Wang, H.; Bai, Y.; Guo, D.-A. A Scientometric Study to a Critical Review on Promising Anticancer and Neuroprotective Compounds: Citrus Flavonoids. Antioxidants 2023, 12, 669. [Google Scholar] [CrossRef]
- Mokdad-Bzeouich, I.; Mustapha, N.; Sassi, A.; Bedoui, A.; Ghoul, M.; Ghedira, K.; Chekir-Ghedira, L. Investigation of immunomodulatory and anti-inflammatory effects of eriodictyol through its cellular anti-oxidant activity. Cell Stress Chaperones 2016, 21, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Dorsch, W.; Müller, A.; Christoffel, V.; Stuppner, H.; Antus, S.; Gottsegen, A. Antiasthmatic acetophenones—An in vivo study on structure activity relationship. Phytomedicine 1994, 1, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, G.; Fu, X.; Liu, R.-H. Effects of aging on the phytochemical profile and antioxidative activity of Pericarpium Citri reticulatae ‘Chachiensis’. RSC Adv. 2016, 6, 105272–105281. [Google Scholar] [CrossRef]
- Tian, C.; Xu, H.; Li, J.; Han, Z. Characteristics and intestinal immunomodulating activities of water-soluble pectic polysaccharides from Chenpi with different storage periods. J. Sci. Food Agric. 2018, 98, 3752–3757. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zeng, W.; Huang, K.-E.; Li, D.-X.; Chen, W.; Yu, X.-Q.; Ke, X.-H. Discrimination of Citrus reticulata Blanco and Citrus reticulata ‘Chachi’ as well as the Citrus reticulata ‘Chachi’ within different storage years using ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach. J. Pharm. Biomed. Anal. 2019, 171, 218–231. [Google Scholar] [PubMed]
- Qin, K.; Zheng, L.; Cai, H.; Cao, G.; Lou, Y.; Lu, T.; Shu, Y.; Zhou, W.; Cai, B. Characterization of chemical composition of Pericarpium Citri reticulatae volatile oil by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry. Evid.-Based Complement. Altern. Med. 2013, 2013, 237541. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Yuan, W.; Wen, B.; Miao, Y.; Li, Y.; Li, J.; Fan, C.; Liu, M.; Wang, J.; Chen, J. Comparisons of Metabolite Composition and Antioxidant Activities in Citrus Reticulata ‘Chachi’ Extracts Using Different Solvents with Uplc-Qtof/Ms Based on a Metabolomics Approach. Ms Based on a Metabolomics Approach 2023. [Google Scholar]
- Zhang, J.; Wu, X.; Qiu, J.; Zhang, L.; Zhang, Y.; Qiu, X.; Huang, Z.; Xu, W. Comprehensive comparison on the chemical profile of Guang Chen Pi at different ripeness stages using untargeted and pseudotargeted metabolomics. J. Agric. Food Chem. 2020, 68, 8483–8495. [Google Scholar] [CrossRef]
- J Matos, M.; Vazquez-Rodriguez, S.; Fonseca, A.; Uriarte, E.; Santana, L.; Borges, F. Heterocyclic antioxidants in nature: Coumarins. Curr. Org. Chem. 2017, 21, 311–324. [Google Scholar] [CrossRef]
- Teodor, E.D.; Moroeanu, V.; Radu, G.L. Lignans from medicinal plants and their anticancer effect. Mini Rev. Med. Chem. 2020, 20, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, K.; Gogtay, N.J. Therapeutic nucleic acids: Current clinical status. Br. J. Clin. Pharmacol. 2016, 82, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Adamski, Z.; Blythe, L.L.; Milella, L.; Bufo, S.A. Biological activities of alkaloids: From toxicology to pharmacology. Toxins 2020, 12, 210. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-B.; Nam, Y.A.; Kim, H.S.; Hayes, A.W.; Lee, B.-M. α-Linolenic acid: Nutraceutical, pharmacological and toxicological evaluation. Food Chem. Toxicol. 2014, 70, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Białek, M.; Rutkowska, J. The importance of γ-linolenic acid in the prevention and treatment. Adv. Hyg. Exp. Med. 2015, 69, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, S.; Gu, G.; Qiu, J.; Chen, Y.; Jia, Z.; Tang, H. Comparison of the content of flavonoids, total phenols, and carotenoids and antioxidant activity in guang Citri reticulatae pericarpium during the aging time. Pharmacogn. Mag. 2020, 16, 375–381. [Google Scholar]
- Sauer, S.W.; Okun, J.G.; Hoffmann, G.F.; Koelker, S.; Morath, M.A. Impact of short-and medium-chain organic acids, acylcarnitines, and acyl-CoAs onmitochondrial energy metabolism. Biochim. Biophys. Acta (BBA)-Bioenerg. 2008, 1777, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.M.; Valentão, P.; Andrade, P.B. Organic acids of plants and mushrooms: Are they antioxidants. Funct. Plant Sci. Biotechnol. 2009, 3, 103–113. [Google Scholar]
- Oudman, I.; Clark, J.F.; Brewster, L.M. The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: A systematic review. PLoS ONE 2013, 8, e52879. [Google Scholar] [CrossRef]
- Li, K.; Xu, E. The role and the mechanism of γ-aminobutyric acid during central nervous system development. Neurosci. Bull. 2008, 24, 195–200. [Google Scholar] [CrossRef]
- Xie, J.; Deng, B.; Wang, W.; Zhang, H. Changes in sugar, organic acid and free amino acid levels and the expression of genes involved in the primary metabolism of oleocellosis in citrus peels. J. Plant Physiol. 2023, 280, 153877. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Fu, X.; Zhang, Y.; Chen, X.; Feng, T.; Xiong, C.; Nie, Q. Metabolome Comparison of Sichuan Dried Orange Peels (Chenpi) Aged for Different Years. Horticulturae 2024, 10, 421. https://doi.org/10.3390/horticulturae10040421
Zhang W, Fu X, Zhang Y, Chen X, Feng T, Xiong C, Nie Q. Metabolome Comparison of Sichuan Dried Orange Peels (Chenpi) Aged for Different Years. Horticulturae. 2024; 10(4):421. https://doi.org/10.3390/horticulturae10040421
Chicago/Turabian StyleZhang, Wenling, Xun Fu, Yan Zhang, Xingyu Chen, Tingting Feng, Chunmei Xiong, and Qingyu Nie. 2024. "Metabolome Comparison of Sichuan Dried Orange Peels (Chenpi) Aged for Different Years" Horticulturae 10, no. 4: 421. https://doi.org/10.3390/horticulturae10040421
APA StyleZhang, W., Fu, X., Zhang, Y., Chen, X., Feng, T., Xiong, C., & Nie, Q. (2024). Metabolome Comparison of Sichuan Dried Orange Peels (Chenpi) Aged for Different Years. Horticulturae, 10(4), 421. https://doi.org/10.3390/horticulturae10040421