Saffron In Vitro Propagation: An Innovative Method by Temporary Immersion System (TIS), Integrated with Machine Learning Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Sterilization, and In Vitro Establishment
2.2. Preparation of In Vitro Cultures in Temporary Immersion System and Semisolid Medium
2.3. Statistical Analysis
2.4. Modeling Procedure
2.4.1. Multilayer Perceptron
2.4.2. Gaussian Process
2.4.3. Random Forest
2.4.4. Support Vector Machines
3. Results and Discussion
3.1. In Vitro Propagation of Saffron
3.2. Machine Learning Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- Khawar, M.K.; Yildirim, M.U.; Sarihan, E. Ex vitro macropropagation of saffron (Crocus sativus L.) corms. In Saffron: The Age-Old Panacea in a New Light; Sarwat, M., Sumaiya, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 45–56. [Google Scholar]
- Yildirim, M.U.; Sarihan, E.O.; Khawar, K.M. Ethnomedicinal and traditional usage of saffron (Crocus sativus L.) in Turkey. In Saffron: The Age-Old Panacea in a New Light; Sarwat, M., Sumaiya, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 21–31. [Google Scholar]
- Menia, M.; Sadaf Iqbal, I.; Zahida, I.R.; Tahir, I.S.; Kanth, I.R.; Aashq Hussian, I.; Iqbal, S.; Hussian, A. Production technology of saffron for enhancing productivity. J. Pharmacogn. Phytochem. 2018, 7, 1033–1039. [Google Scholar]
- Taheri-Dehkordi, A.; Naderi, R.; Martinelli, F.; Salami, S.A. A robust workflow for indirect somatic embryogenesis and cormlet production in saffron (Crocus sativus L.) and its wild allies; C. caspius and C. speciosus. Heliyon 2020, 6, e05841. [Google Scholar] [CrossRef]
- Chib, S.; Thangaraj, A.; Kaul, S.; Dhar, M.K.; Kaul, T. Development of a system for efficient callus production, somatic embryogenesis and gene editing using CRISPR/Cas9 in Saffron (Crocus sativus L.). Plant Methods 2020, 16, 47. [Google Scholar] [CrossRef]
- Lagram, K.; Ben, M.; Caid, E.; El Aaouam, S.; Lachheb, M.; El, A.; Serghini, M.A. In vitro shoot regeneration and development of microcorms of moroccan saffron (Crocus sativus L.). Atlas J. Plant Biol. 2016, 50–55. [Google Scholar] [CrossRef]
- Sevindik, B.; Mendi, Y.Y. Somatic embryogenesis in Crocus sativus L. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2016; Volume 1359, pp. 351–357. [Google Scholar]
- Yang, B.M.; Huang, Y.L.; Xu, W.J.; Bao, L.X. Explant selection and cluster buds induction in vitro of saffron (Crocus sativus L.). Agric. Sci. Technol. Commun 2015, 2, 106–108. [Google Scholar]
- Renau-Morata, B.; Moyá, L.; Nebauer, S.G.; Seguí-Simarro, J.M.; Parra-Vega, V.; Gómez, M.D.; Molina, R.V. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Ind. Crops Prod. 2013, 46, 97–104. [Google Scholar] [CrossRef]
- Berthouly, M.; Etienne, H. Temporary immersion system: A new concept for use liquid medium in mass propagation. In Liquid Culture Systems for In Vitro Plant Propagation; Hvoslef-Eide, A.K., Preil, W., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 165–195. [Google Scholar]
- Yan, H.; Yang, L.; Li, Y. Improved growth and quality of Dioscorea fordii Prain et Burk and Dioscorea alata plantlets using a temporary immersion system. Afr. J. Biotechnol. 2011, 10, 19444–19448. [Google Scholar]
- Yang, S.-H.; Yeh, D.-M. In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid medium and temporary immersion systems. Plant Cell Tissue Organ Cult. 2008, 93, 201–207. [Google Scholar] [CrossRef]
- De Carlo, A.; Tarraf, W.; Lambardi, M.; Benelli, C. Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agronomy 2021, 11, 2414. [Google Scholar] [CrossRef]
- Pérez-Alonso, N.; Jiménez, E.; de Feria, M.; Capote, A.; Barbón, R.; Quiala, E.; Chávez, M. Effect of inoculum density and immersion time on the production of potato microtubers in temporary immersion systems and field studies. Biotecnol. Veg. 2007, 7, 149–154. [Google Scholar]
- Businge, E.; Trifonova, A.; Schneider, C.; Rödel, P.; Egertsdotter, U. Evaluation of a new temporary immersion bioreactor system for micropropagation of cultivars of Eucalyptus, birch and fir. Forests 2017, 8, 196. [Google Scholar] [CrossRef]
- Ruffoni, B.; Savona, M. The temporary immersion system (T.I.S.) for the improvement of micropropagation of ornamental plants. Acta Hortic. 2005, 683, 445–454. [Google Scholar] [CrossRef]
- Elazab, D.; Capuana, M.; Ozudogru, E.A.; Anichini, M.; Lambardi, M. Use of liquid culture with the electis bioreactor for faster recovery of blackberry (Rubus fruticosus L.) shoots from conservation at 4 °C. Horticulturae 2023, 9, 680. [Google Scholar] [CrossRef]
- Vives, K.; Andújar, I.; Lorenzo, J.C.; Concepción, O.; Hernández, M.; Escalona, M. Comparison of different in vitro micropropagation methods of Stevia rebaudiana B. including temporary immersion bioreactor (BIT®). Plant Cell Tissue Organ Cult. 2017, 131, 195–199. [Google Scholar] [CrossRef]
- Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G. Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. Vitr. Cell. Dev. Biol. Plant 2016, 52, 154–160. [Google Scholar] [CrossRef]
- Nongdam, P.; Beleski, D.G.; Tikendra, L.; Dey, A.; Varte, V.; EL Merzougui, S.; Pereira, V.M.; Barros, P.R.; Vendrame, W.A. Orchid micropropagation using conventional semi-solid and temporary immersion systems: A review. Plants 2023, 12, 1136. [Google Scholar] [CrossRef] [PubMed]
- Gatti, E.; Sgarbi, E.; Ozudogru, E.A.; Lambardi, M. The effect of PlantformTM bioreactor on micropropagation of Quercus robur in comparison to a conventional in vitro culture system on gelled medium, and assessment of the microenvironment influence on leaf structure. Plant Biosyst. 2017, 151, 1129–1136. [Google Scholar] [CrossRef]
- Vidal, N.; Blanco, B.; Cuenca, B. A temporary immersion system for micropropagation of axillary shoots of hybrid chestnut. Plant Cell Tissue Organ Cult. 2015, 123, 229–243. [Google Scholar] [CrossRef]
- Benelli, C.; De Carlo, A. In vitro multiplication and growth improvement of Olea europaea L. cv Canino with temporary immersion system (PlantformTM). 3 Biotech 2018, 8, 317. [Google Scholar] [CrossRef]
- Georgiev, V.; Schumann, A.; Pavlov, A.; Bley, T. Temporary immersion systems in plant biotechnology. Eng. Life Sci. 2014, 14, 607–621. [Google Scholar] [CrossRef]
- Şimşek, Ö.; Sekerci, A.D.; Isak, M.A.; Bulut, F.; Izgü, T.; Tütüncü, M.; Dönmez, D. Optimizing micropropagation and rooting protocols for diverse lavender genotypes: A synergistic approach integrating machine learning techniques. Horticulturae 2024, 10, 52. [Google Scholar] [CrossRef]
- Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N.; Grossmann, G.; Stumptner, M.; Kuusk, A. Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Syst. Appl. 2023, 216, 119456. [Google Scholar] [CrossRef]
- Demirel, F.; Uğur, R.; Popescu, G.C.; Demirel, S.; Popescu, M. Usage of machine learning algorithms for establishing an effective protocol for the in vitro micropropagation ability of black chokeberry (Aronia melanocarpa (Michx.) Elliott). Horticulturae 2023, 9, 1112. [Google Scholar] [CrossRef]
- Sadat-Hosseini, M.; Arab, M.M.; Soltani, M.; Eftekhari, M.; Soleimani, A.; Vahdati, K. Predictive modeling of Persian walnut (Juglans regia L.) in vitro proliferation media using machine learning approaches: A comparative study of ANN, KNN and GEP models. Plant Methods 2022, 18, 48. [Google Scholar] [CrossRef]
- Lozano-Milo, E.; Landin, M.; Gallego, P.P.; García-Pérez, P. Machine learning deciphers genotype and ammonium as key factors for the micropropagation of Bryophyllum sp. medicinal plants. Horticulturae 2022, 8, 987. [Google Scholar] [CrossRef]
- Özcan, E.; Atar, H.H.; Ali, S.A.; Aasim, M. Artificial neural network and decision tree–based models for prediction and validation of in vitro organogenesis of two hydrophytes—Hemianthus callitrichoides and Riccia fluitans. Vitr. Cell. Dev. Biol. Plant 2023, 59, 547–562. [Google Scholar] [CrossRef]
- Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, H.; Mirzaie-Asl, A.; Abdollahi, M.R.; Tohidfar, M. Enhancing petunia tissue culture efficiency with machine learning: A pathway to improved callogenesis. PLoS ONE 2023, 18, e0293754. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Şimşek, Ö. Machine learning offers insights into the impact of in vitro drought stress on strawberry cultivars. Agriculture 2024, 14, 294. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Y.; Li, G.; Jiang, G.; Tao, B. Probability analysis for grasp planning facing the field of medical robotics. Meas. J. Int. Meas. Confed. 2019, 141, 227–234. [Google Scholar] [CrossRef]
- Aasim, M.; Katırcı, R.; Akgur, O.; Yildirim, B.; Mustafa, Z.; Nadeem, M.A.; Baloch, F.S.; Karakoy, T.; Yılmaz, G. Machine learning (ML) algorithms and artificial neural network for optimizing in vitro germination and growth indices of industrial hemp (Cannabis sativa L.). Ind. Crops Prod. 2022, 181, 114801. [Google Scholar] [CrossRef]
- Sharma, K.D.; Rathour, R.; Sharma, R.; Goel, S.; Sharma, T.R.; Singh, B.M. In vitro cormlet development in Crocus sativus. Biol. Plant. 2008, 52, 709–712. [Google Scholar] [CrossRef]
- Zeybek, E.; Önde, S.; Kaya, Z. Improved in vitro micropropagation method with adventitious corms and roots for endangered saffron. Cent. Eur. J. Biol. 2012, 7, 138–145. [Google Scholar] [CrossRef]
- Mahmoud, K.B.; Rebaii, J.; Jemai, N.; Jedidi, E. In vitro micropropagation attempts of the high value spice saffron (Crocus sativus L.). Rev. Des. Régions Arid. 2020, 727–734. Available online: https://www.researchgate.net/publication/352056079_In_vitro_micropropagation_attempts_of_the_high_value_spice_saffron_Crocus_sativus_L (accessed on 29 April 2024).
- Mereu, A.; Dorsaf, K.; Scarpa, G. In vitro culture of saffron: Hormones influence on the development of new shoots and callus. Plant Cell Biotechnol. Mol. Biol. 2019, 20, 511–520. [Google Scholar]
- Ahmad, M.; Zaffar, G.; Habib, M.; Arshid, A.; Dar, N.A.; Dar, Z.A. Saffron (Crocus sativus L.) in the light of biotechnological approaches: A review. Sci. Res. Essays 2014, 9, 13–18. [Google Scholar]
- Gantait, S.; Vahedi, M. In vitro regeneration of high value spice Crocus sativus L.: A concise appraisal. J. Appl. Res. Med. Aromat. Plants 2015, 2, 124–133. [Google Scholar] [CrossRef]
- Tahiri, A.; Mazri, M.A.; Karra, Y.; Ait Aabd, N.; Bouharroud, R.; Mimouni, A. Propagation of saffron (Crocus sativus L.) through tissue culture: A review. J. Hortic. Sci. Biotechnol. 2023, 98, 10–30. [Google Scholar] [CrossRef]
- Salami, S.A. Tissue culture techniques for saffron improvement. In The Saffron Genome. Compendium of Plant Genomes; Vakhlu, J., Ambardar, S., Salami, S.A., Kole, C., Eds.; Springer: Cham, Switzerland, 2022; pp. 195–220. [Google Scholar]
- Devi, K.; Sharma, M.; Singh, M.; Singh Ahuja, P. In vitro cormlet production and growth evaluation under greenhouse conditions in saffron (Crocus sativus L.)—commercially important crop. Eng. Life Sci. 2011, 11, 189–194. [Google Scholar] [CrossRef]
- Yasmin, S.; Nehvi, F.A.; Wani, S.A. Tissue culture as an alternative for commercial corm production in saffron: A heritage crop of Kashmir. Afr. J. Biotechnol. 2013, 12, 3940–3946. [Google Scholar]
- Teixeira da Silva, J.A. Disinfection of explants for saffron (Crocus sativus) tissue culture. Environ. Exp. Biol. 2016, 14, 183–198. [Google Scholar] [CrossRef]
- Raja, W.; Zaffer, G.; Wani, S.A. In vitro microcorm formation in saffron (Crocus sativus L.). Acta Hortic. 2007, 739, 291–296. [Google Scholar] [CrossRef]
- Soukrat, S.; Benlhabib, O.; Alfaiz, C.; Lage, M. Boosting saffron (Crocus sativus L.) micro-propagation through in vitro corm production. Acta Hortic. 2017, 1184, 87–95. [Google Scholar] [CrossRef]
- Lagram, K.; El Merzougui, S.; Boudadi, I.; Ben El Caid, M.; El Boullani, R.; El Mousadik, A.; Serghini, M.A. In vitro shoot formation and enrooted mini-corm production by direct organogenesis in saffron (Crocus sativus L.). Vegetos 2023. Available online: https://link.springer.com/article/10.1007/s42535-023-00639-9 (accessed on 29 April 2024). [CrossRef]
- Datta, S.K.; Chakrabarty, D.; Janakiram, T. Low cost tissue culture: An overview. J. Plant Sci. Res. 2017, 33, 181–199. [Google Scholar]
- Naik, R.; Bhushan, A.; Gupta, R.K.; Walia, A.; Gaur, A. Low cost tissue culture technologies in vegetables: A review. Int. J. Biochem. Res. Rev. 2020, 29, 66–78. [Google Scholar] [CrossRef]
- Sota, V.; Benelli, C.; Çuko, B.; Papakosta, E.; Depaoli, C.; Lambardi, M.; Kongjika, E. Evaluation of ElecTIS bioreactor for the micropropagation of Malus sylvestris (L.) Mill., an important autochthonous species of Albania. Hortic. Sci. 2021, 48, 12–21. [Google Scholar] [CrossRef]
- Lambardi, M.; Roncasaglia, R.; Previati, A.; De Carlo, A.; Dradi, G.; Da Re, F.; Calamai, L. In vitro slow growth storage of fruit rootstocks inside gas-tight or gas-permeable containers. Acta Hortic. 2006, 725, 483–488. [Google Scholar] [CrossRef]
- Ozudogru, E.A.; Benelli, C.; Dradi, G.; Lambardi, M. Effect of culture container and carbohydrate content on in vitro slow growth storage of the cherry rootstock ‘Gisela®5’. Acta Physiol. Plant. 2017, 39, 2–9. [Google Scholar] [CrossRef]
- Gianguzzi, V.; Sottile, F. Temporary immersion system as an innovative approach for in vitro propagation of Sorbus domestica L. Horticulturae 2024, 10, 164. [Google Scholar] [CrossRef]
- Blázquez, S.; Piqueras, A.; Sema, M.D.; Casas, J.L.; Fernández, J.A. Somatic embryogenesis in saffron: Optimisation through temporary immersion and polyamine metabolism. Acta Hortic. 2004, 650, 269–276. [Google Scholar] [CrossRef]
- Ilczuk, A.; Winkelmann, T.; Richartz, S.; Witomska, M.; Serek, M. In vitro propagation of Hippeastrum × chmielii Chm. Influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell Tissue Organ Cult. 2005, 83, 339–346. [Google Scholar] [CrossRef]
- Ptak, A. Leucojum aestivum L. in vitro bulbs induction and acclimatization. Cent. Eur. J. Biol. 2014, 9, 1011–1021. [Google Scholar] [CrossRef]
- Ruffoni, B.; Savona, M.; Barberini, S. Biotechnological support for the development of new Gladiolus hybrids. Floric. Ornam. Biotechnol. 2012, 6, 45–52. [Google Scholar]
- Lian, M.L.; Chakrabarty, D.; Paek, K.Y. Bulblet formation from bulbscale segments of Lilium using bioreactor system. Biol. Plant. 2003, 46, 199–203. [Google Scholar] [CrossRef]
- Seon, J.H.; Kim, Y.S.; Son, S.H.; Paek, K.Y. The fed-batch culture system using bioreactor for the bulblets production of oriental lilies. Acta Hortic. 2000, 520, 53–59. [Google Scholar] [CrossRef]
- Barberini, S.; Savona, M.; Ruffoni, B. Temporary immersion culture of Lilium bulbiferum. Acta Hortic. 2011, 900, 377–384. [Google Scholar] [CrossRef]
- Lian, M.; Chakrabarty, D.; Paek, K.Y. Growth and uptake of sucrose and mineral ions by bulblets of Lilium oriental hybrid “Casablanca” during bioreactor culture. J. Hortic. Sci. Biotechnol. 2002, 77, 253–257. [Google Scholar] [CrossRef]
- Mirmasoumi, M.; Bakhshaie, M. Effects of liquid, temporary immersion bioreactor and solid culture systems on micropropagation of Lilium ledebourii via bulblet microscales—An endangered valuable plant with ornamental potential. Prog. Biol. Sci. 2015, 5, 169–180. [Google Scholar]
- Nesi, B.; Lazzereschi, S.; Pecchioli, S.; Grassotti, A.; Burchi, G.; Cardarelli, M.; Cardona Suarez, C.M.; Colla, G. Development, selection and propagation of interspecific hybrids of Lilium. Acta Hortic. 2014, 1027, 155–164. [Google Scholar] [CrossRef]
- Wongket, A.; Pumisutapon, P. Effect of feeding frequency and period in temporary immersion system on microtuberization of potato. In Proceedings of the 24th Tri-University International Joint Seminar and Symposium 2017 Mie University, Tsu, Japan, 23–27 October 2017; pp. 123–125. [Google Scholar]
- Peña-Rojas, G.; Sanchez, H.; Barahona, I.R.; Ayme, V.A.; Segura-Turkowsky, M.; Jimenez, R.E. Alternative inputs for micropropagation of Solanum tuberosum, Ullucus tuberosus and Oxalis tuberosa in semisolid and liquid medium and temporary immersion system. Trop. Subtrop. Agroecosyst. 2020, 23, 1–15. [Google Scholar] [CrossRef]
- Al-Shareefi, M.J.H.; Abbass, J.A.; Abdulhussein, M.A.A. Effect of light sources and culture systems on microtubers production of potato (Solanum Tuberosum L.) in vitro. Int. J. Agric. Stat. Sci. 2020, 16, 679–686. [Google Scholar]
- Andriani, S.; Siregar, L.A.M.; Safni, I. Microtubers production by using Temporary Immersion System (TIS) bioreactor to potato varieties. IOP Conf. Ser. Earth Environ. Sci. 2021, 886, 012005. [Google Scholar] [CrossRef]
- Aasim, M.; Katırcı, R.; Acar, A.Ş.; Ali, S.A. A comparative and practical approach using quantum machine learning (QML) and support vector classifier (SVC) for light emitting diodes mediated in vitro micropropagation of black mulberry (Morus nigra L.). Ind. Crops Prod. 2024, 213, 118397. [Google Scholar] [CrossRef]
- Kirtis, A.; Aasim, M.; Katırcı, R. Application of artificial neural network and machine learning algorithms for modeling the in vitro regeneration of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult. 2022, 150, 141–152. [Google Scholar] [CrossRef]
- Pepe, M.; Hesami, M.; Small, F.; Jones, A.M.P. Comparative analysis of machine learning and evolutionary optimization algorithms for precision micropropagation of Cannabis sativa: Prediction and validation of in vitro shoot growth and development based on the optimization of light and carbohydrate sou. Front. Plant Sci. 2021, 12, 757869. [Google Scholar] [CrossRef]
Parameter | System | Mean | df | p-Value |
---|---|---|---|---|
Microcorm number | TIS | 107.50 | 72.28 | <0.001 |
SM | 9.81 | |||
Shoot number | TIS | 11.26 | 74.36 | <0.001 |
SM | 3.07 | |||
Root number | TIS | 4.13 | 128.7 | <0.001 |
SM | 1.38 |
Culture Systems | RGR Index | ||
---|---|---|---|
Days | |||
30 | 60 | 90 | |
TIS (PlantformTM) | 1.12 | 1.15 | 1.27 |
Semisolid medium | 0.60 | 0.66 | 0.87 |
Parameter | Performance Matrices | RF | SVM | GP | MLP |
---|---|---|---|---|---|
Microcorm number | R2 | 0.81 | 0.56 | 0.67 | 0.70 |
MAE | 0.12 | 0.14 | 0.17 | 0.16 | |
RMSE | 0.16 | 0.23 | 0.21 | 0.20 | |
Shoot number | R2 | 0.75 | 0.63 | 0.71 | 0.69 |
MAE | 0.13 | 0.14 | 0.17 | 0.15 | |
RMSE | 0.17 | 0.20 | 0.19 | 0.20 | |
Root number | R2 | 0.64 | 0.51 | 0.65 | 0.78 |
MAE | 0.18 | 0.17 | 0.18 | 0.14 | |
RMSE | 0.21 | 0.21 | 0.21 | 0.18 |
Parameter | Performance Matrices | RF | SVM | GP | MLP |
---|---|---|---|---|---|
Microcorm number | R2 | 0.75 | 0.75 | 0.77 | 0.78 |
MAE | 0.11 | 0.12 | 0.11 | 0.12 | |
RMSE | 0.16 | 0.17 | 0.16 | 0.16 | |
Shoot number | R2 | 0.65 | 0.68 | 0.69 | 0.70 |
MAE | 0.14 | 0.13 | 0.14 | 0.12 | |
RMSE | 0.19 | 0.18 | 0.19 | 0.17 | |
Root number | R2 | 0.50 | 0.60 | 0.59 | 0.54 |
MAE | 0.19 | 0.17 | 0.17 | 0.18 | |
RMSE | 0.23 | 0.21 | 0.21 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarraf, W.; İzgü, T.; Şimşek, Ö.; Cicco, N.; Benelli, C. Saffron In Vitro Propagation: An Innovative Method by Temporary Immersion System (TIS), Integrated with Machine Learning Analysis. Horticulturae 2024, 10, 454. https://doi.org/10.3390/horticulturae10050454
Tarraf W, İzgü T, Şimşek Ö, Cicco N, Benelli C. Saffron In Vitro Propagation: An Innovative Method by Temporary Immersion System (TIS), Integrated with Machine Learning Analysis. Horticulturae. 2024; 10(5):454. https://doi.org/10.3390/horticulturae10050454
Chicago/Turabian StyleTarraf, Waed, Tolga İzgü, Özhan Şimşek, Nunzia Cicco, and Carla Benelli. 2024. "Saffron In Vitro Propagation: An Innovative Method by Temporary Immersion System (TIS), Integrated with Machine Learning Analysis" Horticulturae 10, no. 5: 454. https://doi.org/10.3390/horticulturae10050454
APA StyleTarraf, W., İzgü, T., Şimşek, Ö., Cicco, N., & Benelli, C. (2024). Saffron In Vitro Propagation: An Innovative Method by Temporary Immersion System (TIS), Integrated with Machine Learning Analysis. Horticulturae, 10(5), 454. https://doi.org/10.3390/horticulturae10050454