Phenolic Compounds of Six Unexplored Asteraceae Species from Asia: Comparison of Wild and Cultivated Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Liquid Chromatography–Mass Spectrometry (LS–MS) Profiling and Quantification
2.4. Statistical Analysis
3. Results and Discussion
3.1. Artemisia jacutica (Yakut wormwood)
3.2. Carduus nutans subsp. leiophyllus (Thoermer’s Thistle, Abducted Thistle)
3.3. Cirsium heterophyllum (Diversifolious Thistle)
3.4. Echinops davuricus (Dahurian Globe Thistle)
3.5. Ixeris chinensis subsp. versicolor (Variegated Ixeris)
3.6. Lactuca sibirica (Siberian Lettuce)
3.7. New Asian Asteraceae Species for Cultivation: What’s Next?
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kor, L.; Homewood, K.; Dawson, T.P. Sustainability of wild plant use in the Andean community of South America. Ambio 2021, 50, 1681–1697. [Google Scholar] [CrossRef]
- Ticktin, T. The ecological implications of harvesting non-timber forest products. J. Appl. Ecol. 2004, 41, 11–21. [Google Scholar] [CrossRef]
- Cruz-Garcia, G.S.; Price, L.L. Gathering of wild food plants in anthropogenic environments across the seasons: Implications for poor and vulnerable farm households. Ecol. Food. Nutr. 2014, 53, 363–389. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Kučera, T.; Jarošík, V. Plant species richness of nature reserves: The interplay of area, climate and habitat in a central European landscape. Glob. Ecol. Biogeogr. 2002, 11, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Wambugu, P.W.; Nyamongo, D.O.; Kirwa, E.C. Role of seed banks in supporting ecosystem and biodiversity conservation and restoration. Diversity 2023, 15, 896. [Google Scholar] [CrossRef]
- Hodge, W.H.; Erlanson, C.O. Federal plant introduction—A review. Econ. Bot. 1956, 10, 299–334. [Google Scholar] [CrossRef]
- Schaffner, U.; Smith, L.; Cristofaro, M. A review of open-field host range testing to evaluate non-target use by herbivorous biological control candidates. BioControl 2018, 63, 405–416. [Google Scholar] [CrossRef]
- Chacha, J.M.; Thirumalai, M.; Mathias, N.M.; Idawa, O.K.; Chilwea, J.P.; Kilamba, C.J.; Hussy, B.D.; Rajendran, K.; Ishaq, H. Greenhouse and open-field Tomato farming. A comparison through yield and growth parameters investigated in Dar es Salaam. Innov. Agric. 2023, 6, 1–9. [Google Scholar] [CrossRef]
- Piperno, D.R. The origins of plant cultivation and domestication in the New World tropics. Curr. Anthropol. 2011, 52, S453–S470. [Google Scholar] [CrossRef]
- Del Moral de la Vega, J.; Del Moral Martínez, J. Review of the genesis of plant pathology and its relation to the phytiatry as a necessary element in the sustainable development of agronomy. Agronomy 2023, 13, 1285. [Google Scholar] [CrossRef]
- Norris, K. Agriculture and biodiversity conservation: Opportunity knocks. Conserv. Lett. 2008, 1, 2–11. [Google Scholar] [CrossRef]
- Aseeva, T.A. Tibetan Medicine of Buryats; SO RAN: Novosibirsk, Russia, 2008; pp. 143–154. [Google Scholar]
- Razuvaeva, Y.G.; Toropova, A.A.; Salchak, S.M.; Olennikov, D.N. Coumarins of Ferulopsis hystrix: LC–MS profiling and gastroprotective and antioxidant activities of skimmin and peucenidin. Appl. Sci. 2023, 13, 9653. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Fedorov, I.A.; Kashchenko, N.I.; Chirikova, N.K.; Vennos, C. Khellactone derivatives and other phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV profile, and antiobesity potential of dihydrosamidin. Molecules 2019, 24, 2286. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Olennikov, D.N.; Chirikova, N.K. Metabolites of Geum aleppicum and Sibbaldianthe bifurca: Diversity and α-glucosidase inhibitory potential. Metabolites 2023, 13, 689. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, A.; Olas, B. The plants of the Asteraceae family as agents in the protection of human health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Michel, J.; Abd Rani, N.Z.; Husain, K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol. 2020, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, Y.K.; Mishra, A.K.; Nongbet, A.; Chakrabartty, I.; Mahanta, S.; Sarma, B.; Panda, J.; Panda, S.K. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front. Pharmacol. 2023, 14, 1153600. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Faridchehr, A. Constituents and biological activities of selected genera of the Iranian Asteraceae family. J. Herb. Med. 2021, 25, 100405. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind. Crops Prod. 2015, 76, 604–615. [Google Scholar] [CrossRef]
- Konovalov, D.A. Polyacetylene compounds of plants of the Asteraceae family (review). Pharm. Chem. J. 2014, 48, 613–631. [Google Scholar] [CrossRef]
- Anenkhonov, O.A. Key to Plants of Buryatia; BNC: Ulan-Ude, Russia, 2001; pp. 513–567. [Google Scholar]
- Araújo, C.A.; Morgado, C.S.A.; Gomes, A.K.C.; Gomes, A.C.C.; Simas, N.C. Asteraceae family: A review of its allelopathic potential and the case of Acmella oleracea and Sphagneticola trilobata. Rodriguésia 2021, 72, e01622020. [Google Scholar] [CrossRef]
- Kusman, I.T.; Pradini, G.W.; Ma’ruf, I.F.; Fauziah, N.; Berbudi, A.; Achadiyani, A.; Wiraswati, H.L. The potentials of Ageratum conyzoides and other plants from Asteraceae as an antiplasmodial and insecticidal for malaria vector: An article review. Infect. Drug Resist. 2023, 7, 7109–7138. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I. Marigold metabolites: Diversity and separation methods of Calendula genus phytochemicals from 1891 to 2022. Molecules 2022, 27, 8626. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Krishna, A.; Kumar, V.; Krishna, S.; Singh, K.; Gupta, M.; Singh, S. Chemistry and biology of industrial crop Tagetes species: A review. J. Essent. Oil Res. 2015, 28, 1–14. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Vasilieva, A.G.; Gadimli, A.I.; Isaev, J.I.; Vennos, C. Caffeoylquinic acids and flavonoids of fringed sagewort (Artemisia frigida Willd.): HPLC-DAD-ESI-QQQ-MS profile, HPLC-DAD quantification, in vitro digestion stability, and antioxidant capacity. Antioxidants 2019, 8, 307. [Google Scholar] [CrossRef] [PubMed]
- Razuvaeva, Y.G.; Markova, K.V.; Toropova, A.A.; Kashchenko, N.I.; Olennikov, D.N. Chemical constituents, neuroprotective and antioxidant potential of Klasea centauroides leaves. Appl. Sci. 2023, 13, 860. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Tsyrenzhapov, A.V. Phenylpropanoids from Parasenecio hastatus (Compositae) and their wound-healing activity. Russ. J. Bioorg. Chem. 2021, 47, 1411–1417. [Google Scholar] [CrossRef]
- Olennikov, D.N. The ethnopharmacological uses, metabolite diversity, and bioactivity of Rhaponticum uniflorum (Leuzea uniflora): A comprehensive review. Biomolecules 2022, 12, 1720. [Google Scholar] [CrossRef] [PubMed]
- Bohm, B.A.; Stuessy, T.F. Flavonoids of the Sunflower Family (Asteraceae); Springer: Wien, Austria, 2001; p. 840. [Google Scholar] [CrossRef]
- Vestena, A.S.; Meirelles, G.d.C.; Zuanazzi, J.A. Taxonomic significance of coumarins in species from the subfamily Mutisioideae, Asteraceae. Phytochem. Rev. 2023, 22, 85–112. [Google Scholar] [CrossRef]
- Jaiswal, R.; Kiprotich, J.; Kuhnert, N. Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry 2011, 72, 781–790. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018, 23, 250. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef] [PubMed]
- Shishmarev, V.M.; Shichmareva, T.M. Recourses of Medicinal Plants of Transbaikalia; BSC SD RAS: Ulan-Ude, Russia, 2017; pp. 32–104. [Google Scholar]
- Shishmarev, V.M.; Shichmareva, T.M.; Aseeva, T.A. Recommendations for Introduction of Medicinal Plants in Buryatia Republic; BSC SD RAS: Ulan-Ude, Russia, 2018; pp. 28–95. [Google Scholar]
- Olennikov, D.N.; Kashchenko, N.I. Green waste from cucumber (Cucumis sativus L.) cultivation as a source of bioactive flavonoids with hypolipidemic potential. Agronomy 2023, 13, 2410. [Google Scholar] [CrossRef]
- Liu, Y.; Muema, F.W.; Zhang, Y.-L.; Guo, M.-Q. Acyl quinic acid derivatives screened out from Carissa spinarum by SOD-affinity ultrafiltration LC–MS and their antioxidative and hepatoprotective activities. Antioxidants 2021, 10, 1302. [Google Scholar] [CrossRef] [PubMed]
- Ouattara, B.; Angenot, L.; Guissou, P.; Fondu, P.; Dubois, J.; Frédérich, M.; Jansen, O.; van Heugen, J.-C.; Wauters, J.-N. Monique Tits. LC/MS/NMR analysis of isomeric divanilloylquinic acids from the root bark of Fagara zanthoxyloides Lam. Phytochemistry 2004, 65, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Lee, J.W.; Jang, H.; Kim, J.G.; Lee, M.K.; Hong, J.T.; Lee, M.S.; Hwang, B.Y. Quinic acid esters from Erycibe obtusifolia with antioxidant and tyrosinase inhibitory activities. Nat. Prod. Res. 2021, 35, 3026–3032. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. Caffeoylglucaric acids and other phenylpropanoids of the Siberian Leonurus species. Chem. Nat. Compd. 2016, 52, 780–782. [Google Scholar] [CrossRef]
- Vendramin, V.; Viel, A.; Vincenzi, S. Caftaric acid isolation from unripe grape: A “green” alternative for hydroxycinnamic acids recovery. Molecules 2021, 26, 1148. [Google Scholar] [CrossRef]
- Schnitzler, M.; Petereit, F.; Nahrstedt, A. Trans-Aconitic acid, glucosylflavones and hydroxycinnamoyltartaric acids from the leaves of Echinodorus grandiflorus ssp. aureus, a Brazilian medicinal plant. Rev. Brasil. Farmacogn. 2007, 17, 149–154. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. Spinacetin, a new caffeoylglucoside, and other phenolic compounds from Gnaphalium uliginosum. Chem. Nat. Compd. 2015, 51, 1085–1090. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I. New acylated apigenin derivatives from the ligulate flowers of Matricaria chamomoilla. Chem. Nat. Compd. 2016, 52, 996–999. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I. New flavonoids and turkesterone-2-O-cinnamate from leaves of Rhaponticum uniflorum. Chem. Nat. Compd. 2019, 55, 256–264. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Gadimli, A.I.; Isaev, J.I.; Kashchenko, N.I.; Prokopyev, A.S.; Katayeva, T.N.; Chirikova, N.K.; Vennos, C. Caucasian Gentiana species: Untargeted LC-MS metabolic profiling, antioxidant and digestive enzyme inhibiting activity of six plants. Metabolites 2019, 9, 271. [Google Scholar] [CrossRef]
- Olennikov, D.N. New flavonoids from Artemisia frigida. Chem. Nat. Compd. 2020, 56, 623–627. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.-W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Beszterda, M.; Frański, R. Elucidation of glycosylation sites of kaempferol di-O-glycosides from methanolic extract of the leaves of Prunus domestica subsp. syriaca. Rapid Commun. Mass Spectrom. 2021, 35, e9100. [Google Scholar] [CrossRef]
- Krenn, L.; Miron, A.; Pemp, E.; Petr, U.; Kopp, B. Flavonoids from Achillea nobilis L. Z. Naturforsch. C 2003, 58, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I. New isorhamnetin glucosides and other phenolic compounds from Calendula officinalis. Chem. Nat. Compd. 2013, 49, 833–840. [Google Scholar] [CrossRef]
- Elejalde-Palmett, C.; Dugé de Bernonville, T.; Glevarec, G.; Pichon, O.; Papon, N.; Courdavault, V.; St-Pierre, B.; Giglioli-Guivarc’h, N.; Lanoue, A.; Besseau, S. Characterization of a spermidine hydroxycinnamoyltransferase in Malus domestica highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. J. Exp. Bot. 2015, 66, 7271–7285. [Google Scholar] [CrossRef]
- Batorova, S.M.; Yakovlev, G.P.; Aseeva, T.A. Reference-Book of Traditional Tibetan Medicine Herb; Nauka: Novosibirsk, Russia, 2013; pp. 60–221. [Google Scholar]
- Dylenova, E.P.; Zhigzhitzhapova, S.V.; Goncharova, D.B.; Tykheev, Z.A.; Chimitov, D.G.; Radnaeva, L.D. Artemisia jacutica Drob. essential oil as a source of chamazulene: Primary introduction and component analysis. Foods Raw Mater. 2023, 11, 243–250. [Google Scholar] [CrossRef]
- Ruiz, A.; Mardones, C.; Vergara, C.; von Baer, D.; Gómez-Alonso, S.; Gómez, M.V.; Hermosín-Gutiérrez, I. Isolation and structural elucidation of anthocyanidin 3,7-β-O-diglucosides and caffeoyl-glucaric acids from calafate berries. J. Agric. Food Chem. 2014, 62, 6918–6925. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Zhou, X.; Yu, L.; Wu, A.; Yang, L.; Chen, J.; Tang, X.; Zou, W.; Wu, J.; Zhu, L. A Rapid and sensitive UHPLC–MS/MS method for determination of chlorogenic acid and its application to distribution and neuroprotection in rat brain. Pharmaceuticals 2023, 16, 178. [Google Scholar] [CrossRef] [PubMed]
- Roumy, V.; Hennebelle, T.; Zamblé, A.; Yao, J.D.; Sahpaz, S.; Bailleul, F. Characterisation and identification of spermine and spermidine derivatives in Microdesmis keayana and Microdesmis puberula roots by electrospray ionisation tandem mass spectrometry and high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry. Eur. J. Mass Spectrom. 2008, 14, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2010, 49, 101–109. [Google Scholar] [CrossRef]
- Saunoriūtė, S.; Ragažinskienė, O.; Ivanauskas, L.; Marksa, M.; Laužikė, K.; Raudonė, L. Phenolic diversity and antioxidant Activity of Artemisia abrotanum L. and Artemisia absinthium L. during vegetation stages. Separations 2023, 10, 545. [Google Scholar] [CrossRef]
- El-Askary, H.; Handoussa, H.; Badria, F.; El-Khatib, A.H.; Alsayari, A.; Linscheid, M.W.; Motaal, A. Characterization of hepatoprotective metabolites from Artemisia annua and Cleome droserifolia using HPLC/PDA/ESI/MS-MS. Rev. Bras. Farmacogn. 2019, 29, 213–220. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Jin, Y.; Nan, T.; Zhao, Y.; Huang, L.; Yuan, Y. New evidence for Artemisia absinthium as an alternative to classical antibiotics: Chemical analysis of phenolic compounds, screening for antimicrobial activity. Int. J. Mol. Sci. 2023, 24, 12044. [Google Scholar] [CrossRef]
- Ma, C.M.; Nakamura, N.; Hattori, M. Inhibitory effects on HIV-1 protease of tri-p-coumaroylspermidine from Artemisia caruifolia and related amides. Chem. Pharm. Bull. 2001, 49, 915–917. [Google Scholar] [CrossRef]
- Zhelev, I.; Merdzhanov, P.; Angelova-Romova, M.; Zlatanov, M.; Antova, G.; Dimitrova-Dyulgerova, I.; Stoyanova, A. Lipid composition of Carduus thoermeri Weinm., Onopordum acanthium L. and Silybum marianum L., growing in Bulgaria. Bulg. J. Agricult. Sci. 2014, 20, 622–627. [Google Scholar]
- Petkova, N.; Mihaylova, D.; Denev, P.; Krastanov, A. Evaluation of biological active substances in flower heads of Carduus thoermeri Weinm. Rom. Biotechnol. Lett. 2015, 20, 10592–10599. [Google Scholar]
- Slavov, I.; Mihaylova, D.; Dimitrova, I. Phenolic acids, flavonoid profile and antioxidant activity of Carduus thoermeri Weinm. extract. Oxid. Commun. 2014, 37, 247–253. [Google Scholar]
- Ma, C.Y.; Zhu, K.X.; Yang, D.M.; Yang, J.S.; Yu, D.Q. Studies on chemical constituents of Veronica linariifolia Pall. ex Link. sub. dilatata (Nakai et Kitagawa) Hong. Acta Pharmacol. Sin. 1991, 26, 203–208. [Google Scholar]
- Xie, W.D.; Li, P.L.; Jia, Z.J. A new flavone glycoside and other constituents from Carduus crispus. Pharmazie 2005, 60, 233–236. [Google Scholar]
- Bain, J.F.; Desrochers, A.M. Flavonoids of Carduus nutans and C. acanthoides. Biochem. Syst. Ecol. 1988, 16, 265–268. [Google Scholar] [CrossRef]
- Jordon-Thaden, I.E.; Louda, S.M. Chemistry of Cirsium and Carduus: A role in ecological risk assessment for biological control of weeds? Biochem. Syst. Ecol. 2003, 31, 1353–1396. [Google Scholar] [CrossRef]
- Ogurtsova, L.N.; Syuzeva, Z.F. Flavonoids of Cirsium heterophyllum. Chem. Nat. Compd. 1974, 10, 90. [Google Scholar] [CrossRef]
- Aggarwal, G.; Kaur, G.; Bhardwaj, G.; Mutreja, V.; Sohal, H.S.; Nayik, G.A.; Bhardwaj, A.; Sharma, A. Traditional uses, phytochemical composition, pharmacological properties, and the biodiscovery potential of the genus Cirsium. Chemistry 2022, 4, 1161–1192. [Google Scholar] [CrossRef]
- Iwashina, T.; Mizuno, T.; Devkota, H.P. Further identification of flavonoids deposited in the National Museum of Nature and Science in Japan—Flavonoids isolated from Cirsium taxa and Carduus nutans (Asteraceae). Bull. Natl. Mus. Nat. Sci. 2020, 46, 195–214. [Google Scholar]
- Bitew, H.; Hymete, A. The genus Echinops: Phytochemistry and biological activities: A review. Front. Pharmacol. 2019, 10, 1234. [Google Scholar] [CrossRef]
- Dong, L.I.; Ning, L.I.; Wan, X.I.; Peng, Z.H.; Zhong-jun, M.A.; Xian, L.I. Chemical constituents of the root of Echinops grijisii Hance. Shenyang Yao Ke Da Xue Xue Bao 2008, 8, 007. [Google Scholar]
- Abdallah, H.M.; Ezzat, S.M.; Dine, R.S.; Abdel-Sattar, E.; Abdel-Naim, A.B. Protective effect of Echinops galalensis against CCl4-induced injury on the human hepatoma cell line (Huh7). Phytochem. Lett. 2013, 6, 73–78. [Google Scholar]
- Ram, S.; Roy, R.; Singh, B.; Singh, R.; Pandey, V. An acylflavone glucoside of Echinops echinatus flowers. Planta Med. 1996, 62, 187. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhang, Y.; Qu, H.; Fan, X. Systematic characterisation of secondary metabolites from Ixeris sonchifolia by the combined use of HPLC-TOFMS and HPLC-ITMS. Phytochem. Anal. 2010, 22, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Masike, K.; Tugizimana, F.; Ndlovu, N.; Smit, E.; du Preez, L.; Dubery, I.; Madala, E. Deciphering the influence of column chemistry and mass spectrometry settings for the analyses of geometrical isomers of L-chicoric acid. J. Chromatogr. B 2017, 1052, 73–81. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; He, C.-N.; Chew, E.-H. Studies on the chemical constituents and biological activities of Ixeris. Chem. Biodiv. 2013, 10, 1373–1391. [Google Scholar] [CrossRef]
- Lu, M.-C.; Chiu, H.-F.; Lin, C.-P.; Shen, Y.-C.; Venkatakrishnan, K.; Wang, C.-K. Anti- Helicobacter pylori effect of various extracts of Ixeris chinensis on inflammatory markers in human gastric epithelial AGS cells. J. Herb. Med. 2018, 11, 60–70. [Google Scholar] [CrossRef]
- Lee, J.; Scagel, C.F. Chicoric acid: Chemistry, distribution, and production. Front. Chem. 2013, 1, 40. [Google Scholar] [CrossRef]
- Koriem, K.M.M. Caftaric acid: An overview on its structure, daily consumption, bioavailability and pharmacological effects. Bioint. Res. Appl. Chem. 2020, 10, 5616–5623. [Google Scholar] [CrossRef]
- Yang, M.; Wu, C.; Zhang, T.; Shi, L.; Li, J.; Liang, H.; Lv, X.; Jing, F.; Qin, L.; Zhao, T. Chicoric acid: Natural occurrence, chemical synthesis, biosynthesis, and their bioactive effects. Front. Chem. 2022, 10, 888673. [Google Scholar] [CrossRef]
- Lebeda, A.; Dolezalová, I.; Feráková, V.; Astley, D. Geographical distribution of wild Lactuca species (Asteraceae, Lactuceae). Bot. Rev. 2004, 70, 328–356. [Google Scholar] [CrossRef]
- Budantsev, A.L. Plant Resourses of Russia; KMK: Moscow, Russia, 2013; Volume 5, pp. 11–142. [Google Scholar]
- Wei, T.; van Treuren, R.; Liu, X.; Zhang, Z.; Chen, J.; Liu, Y.; Liu, H. Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nature Gen. 2021, 53, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, W.; Michalska, K. Lignans and sesquiterpenoids from Lactuca sibirica. Fitoterapia 2008, 79, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Michalska, K.; Kisiel, W. Root constituents of Lactuca sibirica and a comparison of metabolite profiles of L. sibirica and L. tatarica. Acta Soc. Bot. Polon. 2009, 78, 25–27. [Google Scholar] [CrossRef]
- Abdel Bar, F.M.; Abdel Fatah, N.H.; Amen, Y.; Halim, A.F.; Saad, H.E.A. Genus Lactuca (Asteraceae): A comprehensive review. Rec. Nat. Prod. 2023, 17, 201–231. [Google Scholar] [CrossRef]
- Stojakowska, A.; Malarz, J.; Szewczyk, A. Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol. Plant. 2012, 34, 291–298. [Google Scholar] [CrossRef]
- Stojakowska, A.; Michalska, K.; Kłeczek, N.; Malarz, J.; Beharav, A. Phenolics and terpenoids from a wild edible plant Lactuca orientalis (Boiss.) Boiss.: A preliminary study. J. Food Comp. Anal. 2018, 69, 20–24. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, C.; Liu, J. Nature spermidine and spermine alkaloids: Occurrence and pharmacological effects. Arab. J. Chem. 2022, 15, 104367. [Google Scholar] [CrossRef]
- DuPont, M.S.; Mondin, Z.; Williamson, G.; Price, K.R. Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J. Agric. Food Chem. 2000, 48, 3957–3964. [Google Scholar] [CrossRef]
- Nikzad, N.; Parastar, H. Evaluation of the effect of organic pollutants exposure on the antioxidant activity, total phenolic and total flavonoid content of lettuce (Lactuca sativa L.) using UV–Vis spectrophotometry and chemometrics. Microchem. J. 2021, 170, 106632. [Google Scholar] [CrossRef]
- Mampholo, B.M.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. J. Food Qual. 2016, 39, 805–815. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Sy, A.A.; Gloer, J.B. Spermidine and flavonoid conjugates from peanut (Arachis hypogaea) flowers. J. Agric. Food Chem. 2008, 56, 2960–2969. [Google Scholar] [CrossRef]
- Yang, Z.; Dong, F.; Baldermann, S.; Murata, A.; Tu, Y.; Asai, T.; Watanabe, N. Isolation and identification of spermidine derivatives in tea (Camellia sinensis) flowers and their distribution in floral organs. J. Sci. Food Agric. 2012, 92, 2128–2132. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.K.; Rashid, R.; Fatima, N.; Mahmood, S.; Mir, S.; Khan, S.; Jabeen, N.; Murtaza, G. Pharmacological activities of protocatechuic acid. Acta Pol. Pharm. 2015, 72, 643–650. [Google Scholar]
- Yüksel, M.; Yıldar, M.; Başbuğ, M.; Çavdar, F.; Çıkman, O.; Akşit, H.; Aslan, F.; Akşit, D. Does protocatechuic acid, a natural antioxidant, reduce renal ischemia reperfusion injury in rats? Ulus Travma Acil Cerrahi Derg 2017, 23, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Semaming, Y.; Pannengpetch, P.; Chattipakorn, S.C.; Chattipakorn, N. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evid. Based Complement. Alternat. Med. 2015, 2015, 593902. [Google Scholar] [CrossRef]
- Khalil, H.E.; Abdelwahab, M.F.; Ibrahim, H.-I.M.; AlYahya, K.A.; Altaweel, A.A.; Alasoom, A.J.; Burshed, H.A.; Alshawush, M.M.; Waz, S. Cichoriin, a biocoumarin, mitigates oxidative stress and associated adverse dysfunctions on high-fat diet-induced obesity in rats. Life 2022, 12, 1731. [Google Scholar] [CrossRef]
- Khalil, H.E.; Abdelwahab, M.F.; Ibrahim, H.-I.M.; AlYahya, K.A.; Mohamed, A.A.; Radwan, A.S.; Waz, S. Mechanistic insights into the ameliorative effect of cichoriin on diabetic rats—Assisted with an in-silico approach. Molecules 2022, 27, 7192. [Google Scholar] [CrossRef] [PubMed]
- Seregheti, T.M.Q.; Pinto, A.P.R.; Gonçalves, M.d.C.; Antunes, A.D.S.; Almeida, W.A.d.S.; Machado, R.S.; Silva, J.N.; Ferreira, P.M.P.; Pessoa, C.; Dos Santos, V.M.R. Antiproliferative and photoprotective activities of the extracts and compounds from Calea fruticosa. Braz. J. Med. Biol. Res. 2020, 53, e9375. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Feng, Z.; Yang, Y.; Zhang, P. Glucaric acids from Leonurus japonicus. Fitoterapia 2015, 107, 85–89. [Google Scholar] [CrossRef]
- Dudek, M.K.; Dudkowski, Ł.; Bazylko, A.; Kaźmierski, S.; Kiss, A.K. Caffeic acid derivatives isolated from the aerial parts of Galinsoga parviflora and their effect on inhibiting oxidative burst in human neutrophils. Phytochem. Lett. 2016, 16, 303–310. [Google Scholar] [CrossRef]
- Billowria, K.; Ali, R.; Rangra, N.K.; Kumar, R.; Chawla, P.A. Bioactive flavonoids: A comprehensive review on pharmacokinetics and analytical aspects. Crit. Rev. Anal. Chem. 2022, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Zhang, Y.; Guo, Z. Amide alkaloids from Scopolia tangutica. Planta. Med. 2014, 80, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Guo, S.; Zhou, J. Chemical constituents from Lycium barbarum (Solanaceae) and their chemophenetic significance. Biochem. Syst. Ecol. 2021, 97, 104292–104297. [Google Scholar] [CrossRef]
- Zamble, A.; Sahpaz, S.; Hennebelle, T. N1,N5,N10-Tris(4-hydroxycinnamoyl)spermidines from Microdesmis keayana roots. Chem. Biodivers. 2006, 3, 982–989. [Google Scholar] [CrossRef]
Comp. No. | Compound | Wild Sample | Cultivated Samples | |
---|---|---|---|---|
1st Year | 2nd Year | |||
Caffeoyl glucaric acids | ||||
Aj-1 | 3-O-Caffeoyl glucaric acid | 0.39 ± 0.00 c | 0.14 ± 0.00 a | 0.25 ± 0.00 b |
Aj-2 | 4-O-Caffeoyl glucaric acid | 0.80 ± 0.02 b | 0.34 ± 0.01 a | 0.97 ± 0.02 c |
Aj-4 | 2-O-Caffeoyl glucaric acid | 1.10 ± 0.02 b | 0.52 ± 0.01 a | 2.35 ± 0.05 c |
Aj-6 | 5-O-Caffeoyl glucaric acid | 0.76 ± 0.02 b | 0.32 ± 0.00 a | 0.93 ± 0.02 c |
Caffeoyl quinic acids | ||||
Aj-3 | 4-O-Caffeoyl quinic acid (trans-) | 0.22 ± 0.00 a | <0.01 | 0.20 ± 0.00 a |
Aj-5 | 4-O-Caffeoyl quinic acid (cis-) | 0.20 ± 0.00 b | <0.01 | 0.14 ± 0.00 a |
Aj-7 | 5-O-Caffeoyl quinic acid (trans-) | 6.64 ± 0.14 a | 2.18 ± 0.05 a | 7.35 ± 0.15 c |
Aj-8 | 3-O-Caffeoyl quinic acid (trans-) | 0.11 ± 0.00 a | <0.01 | 0.22 ± 0.00 b |
Aj-9 | 5-O-Caffeoyl quinic acid (cis-) | 0.19 ± 0.00 b | <0.01 | 0.15 ± 0.00 a |
Aj-22 | 3,4-Di-O-caffeoyl quinic acid | 0.25 ± 0.00 a | <0.01 | 0.52 ± 0.01 b |
Aj-23 | 3,5-Di-O-caffeoyl quinic acid | 7.10 ± 0.16 b | 3.29 ± 0.07 a | 8.27 ± 0.17 c |
Aj-25 | 4,5-Di-O-caffeoyl quinic acid | 0.34 ± 0.00 b | 0.25 ± 0.00 a | 0.69 ± 0.02 c |
Phenolamides | ||||
Aj-16 | Tri-O-p-coumaroyl spermine | 0.08 ± 0.00 a | – | 0.09 ± 0.00 a |
Aj-18 | Tri-O-p-coumaroyl spermine | 0.11 ± 0.00 b | <0.01 | 0.05 ± 0.00 a |
Aj-19 | Tri-O-p-coumaroyl spermine | 2.15 ± 0.05 b | 1.53 ± 0.04 a | 3.69 ± 0.07 c |
Aj-28 | Tetra-O-p-coumaroyl spermine | 0.74 ± 0.02 b | 0.39 ± 0.00 a | 0.79 ± 0.02 b |
Flavone glucosides | ||||
Aj-10 | 6-Hydroxyluteolin di-O-hexoside | 0.05 ± 0.00 a | – | <0.01 |
Aj-11 | Schaftoside | 0.11 ± 0.00 a | – | <0.01 |
Flavonol glucosides | ||||
Aj-12 | Quercetin 3-O-gentiobioside | 0.10 ± 0.00 a | – | <0.01 |
Aj-13 | Calendoflavobioside | 0.08 ± 0.00 a | – | 0.12 ± 0.00 a |
Aj-14 | Rutin | 0.25 ± 0.00 b | 0.05 ± 0.00 a | 0.39 ± 0.01 c |
Aj-15 | Calendoside II | 0.57 ± 0.01 b | 0.29 ± 0.00 a | 0.93 ± 0.02 c |
Aj-17 | Calendoside I | 0.02 ± 0.00 a | – | 0.03 ± 0.00 a |
Aj-20 | Quercetin 3-O-(2″-O-acetyl)-glucoside | 0.02 ± 0.00 a | – | <0.01 |
Aj-21 | Quercetin 3-O-(6″-O-acetyl)-glucoside | 0.18 ± 0.00 a | <0.01 | <0.01 |
Aj-24 | Quercetin 3-O-(4″-O-acetyl)-glucoside | 0.08 ± 0.00 a | n.d. | <0.01 |
Aj-26 | Isorhamnetin 3-O-(2″-O-acetyl)-glucoside | 0.10 ± 0.00 a | <0.01 | <0.01 |
Aj-27 | Isorhamnetin 3-O-(6″-O-acetyl)-glucoside | 0.12 ± 0.00 a | <0.01 | <0.01 |
Flavonoid aglycones | ||||
Aj-29 | Cirsiliol | 0.27 ± 0.00 a | <0.01 | <0.01 |
Aj-30 | Axyllarin | 0.56 ± 0.01 b | 0.34 ± 0.01 a | 0.39 ± 0.00 a |
Aj-31 | Cirsilineol | 1.81 ± 0.04 b | 0.51 ± 0.01 a | 0.59 ± 0.01 a |
Aj-32 | Chrysosplenetin | 1.18 ± 0.03 b | 0.29 ± 0.00 a | 0.32 ± 0.00 a |
Subtotal caffeoyl glucaric acids | 3.05 | 1.32 | 4.50 | |
Subtotal caffeoyl quinic acids | 15.05 | 5.72 | 17.54 | |
Total caffeic acid derivatives | 18.10 | 7.04 | 22.04 | |
Total phenolamides | 3.08 | 1.92 | 4.62 | |
Subtotal flavone glucosides | 0.16 | – | <0.01 | |
Subtotal flavonol glucosides | 1.52 | 0.34 | 1.47 | |
Subtotal flavonoid aglycones | 3.82 | 1.14 | 1.30 | |
Total flavonoids | 5.50 | 1.48 | 2.77 | |
Total phenolic compounds | 26.68 | 10.44 | 29.43 |
Comp. No. | Compound | Wild Sample | Cultivated Samples | |
---|---|---|---|---|
1st Year | 2nd Year | |||
Benzoic acids | ||||
Cn-1 | Protocatechuic acid O-hexoside | 0.37 ± 0.01 | – | <0.01 |
Cn-2 | Protocatechuic acid O-hexoside | 0.44 ± 0.01 | – | <0.01 |
Cn-3 | Protocatechuic acid 4-O-glucoside | 0.72 ± 0.02 b | 0.22 ± 0.00 a | 0.25 ± 0.00 a |
Hydroxycinnamoyl quinic acids | ||||
Cn-4 | 4-O-Caffeoyl quinic acid (cis-) | 1.75 ± 0.03 b | 0.92 ± 0.02 a | 2.14 ± 0.04 c |
Cn-5 | Caffeoyl quinic acid (Cn-4/7/8 isomer) | 0.45 ± 0.01 a | – | 0.69 ± 0.01 b |
Cn-6 | 4-O-p-Coumaroyl quinic acid | 0.04 ± 0.00 a | – | 0.05 ± 0.00 a |
Cn-7 | 5-O-Caffeoyl quinic acid (trans-) | 0.27 ± 0.00 a | – | 0.25 ± 0.00 a |
Cn-8 | 3-O-Caffeoyl quinic acid (trans-) | 6.82 ± 0.14 b | 3.84 ± 0.09 a | 9.97 ± 0.12 c |
Cn-9 | 4-O-Feruloyl quinic acid | 0.02 ± 0.00 a | – | 0.05 ± 0.00 b |
Cn-10 | 5-O-p-Coumaroyl quinic acid | 0.25 ± 0.00 b | – | 0.14 ± 0.00 a |
Cn-11 | 3-O-p-Coumaroyl quinic acid | 0.36 ± 0.01 b | 0.25 ± 0.00 a | 0.35 ± 0.00 b |
Cn-12 | 5-O-Feruloyl quinic acid | 0.11 ± 0.00 a | – | 0.07 ± 0.00 a |
Cn-13 | 3-O-Feruloyl quinic acid | 0.21 ± 0.00 b | 0.03 ± 0.00 a | 0.25 ± 0.00 b |
Flavone glucosides | ||||
Cn-14 | Luteolin 7-O-(2″-O-glucosyl)-glucoside | 0.46 ± 0.01 b | 0.27 ± 0.00 a | 0.33 ± 0.00 a |
Cn-15 | Luteolin O-hexoside-O-pentoside | 0.54 ± 0.01 c | 0.04 ± 0.00 a | 0.39 ± 0.01 b |
Cn-16 | Luteolin 7-O-(2″-O-(6‴-O-acetyl)-glucosyl)-glucoside | 14.10 ± 0.31 b | 5.74 ± 0.14 a | 18.79 ± 0.43 c |
Cn-17 | Luteolin di-O-hexoside-O-acetate | 0.14 ± 0.00 a | – | 0.33 ± 0.00 b |
Cn-18 | Apigenin di-O-hexoside-O-acetate | 0.29 ± 0.00 a | – | 0.35 ± 0.01 b |
Cn-19 | Apigenin di-O-hexoside-O-acetate | 0.11 ± 0.00 a | – | 0.30 ± 0.00 b |
Cn-20 | Chrysoeriol 7-O-(2″-O-(6‴-O-acetyl)-glucosyl)-glucoside | 10.87 ± 0.22 b | 5.09 ± 0.12 a | 15.53 ± 0.31 c |
Subtotal benzoic acids | 1.53 | 0.22 | 0.25 | |
Subtotal caffeoyl quinic acids | 10.28 | 5.04 | 13.96 | |
Subtotal flavone glucosides | 26.51 | 11.14 | 36.02 | |
Total phenolic compounds | 38.32 | 16.40 | 50.23 |
Comp. No. | Compound | Wild Sample | Cultivated Samples | |||
---|---|---|---|---|---|---|
1st Year | 2nd Year | 4th Year | 6th Year | |||
Benzoic acids | ||||||
Ch-1 | Protocatechuic acid O-hexoside (Ch-2 isomer) | 0.18 ± 0.00 b | – | – | 0.10 ± 0.00 a | 0.24 ± 0.00 c |
Ch-2 | Protocatechuic acid 4-O-glucoside | 0.08 ± 0.00 b | – | <0.01 | 0.01 ± 0.00 a | 0.11 ± 0.00 b |
Hydroxycinnamoyl quinic acids | ||||||
Ch-3 | 4-O-Caffeoyl quinic acid (trans-) | 0.40 ± 0.01 b | 0.22 ± 0.00 a | 0.25 ± 0.00 a | 0.48 ± 0.01 bc | 0.47 ± 0.01 c |
Ch-4 | 4-O-Caffeoyl quinic acid (cis-) | 0.04 ± 0.00 | <0.01 | <0.01 | 0.01 ± 0.00 | 0.01 ± 0.00 |
Ch-5 | 4-O-p-Coumaroyl quinic acid | 0.01 ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 |
Ch-6 | 5-O-Caffeoyl quinic acid (trans-) | 5.21 ± 0.12 c | 2.69 ± 0.05 a | 3.17 ± 0.06 b | 7.83 ± 0.16 d | 7.54 ± 0.15 d |
Ch-7 | 3-O-Caffeoyl quinic acid (trans-) | 1.24 ± 0.03 b | 0.54 ± 0.01 a | 1.62 ± 0.03 c | 1.97 ± 0.04 d | 2.02 ± 0.04 e |
Ch-8 | 5-O-Caffeoyl quinic acid (cis-) | 0.32 ± 0.00 a | <0.01 | <0.01 | 0.25 ± 0.00 a | 0.29 ± 0.00 a |
Ch-9 | 5-O-p-Coumaroyl quinic acid | 0.49 ± 0.01 d | <0.01 | 0.06 ± 0.00 a | 0.14 ± 0.00 b | 0.32 ± 0.01 c |
Ch-11 | 3-O-p-Coumaroyl quinic acid | 0.30 ± 0.00 b | <0.01 | <0.01 | 0.04 ± 0.00 a | 0.29 ± 0.00 b |
Ch-17 | 3,4-Di-O-caffeoyl quinic acid | 0.85 ± 0.02 c | 0.20 ± 0.00 a | 0.57 ± 0.01 b | 1.14 ± 0.02 d | 1.15 ± 0.02 d |
Ch-20 | 3,5-Di-O-caffeoyl quinic acid | 1.94 ± 0.04 d | 0.69 ± 0.02 a | 0.93 ± 0.02 b | 1.76 ± 0.03 c | 1.84 ± 0.04 d |
Ch-23 | 4,5-Di-O-caffeoyl quinic acid | 1.22 ± 0.02 c | 0.52 ± 0.01 a | 0.79 ± 0.02 b | 1.41 ± 0.03 d | 1.52 ± 0.03 d |
Flavone glucosides | ||||||
Ch-10 | Schaftoside (apigenin 6-C-glucoside-8-C-arabinoside) | 1.00 ± 0.02 cd | 0.25 ± 0.00 a | 0.79 ± 0.02 b | 0.93 ± 0.02 c | 1.11 ± 0.02 d |
Ch-12 | Scolymoside (veronicastroside, luteolin 7-O-rutinoside) | 1.85 ± 0.03 b | 0.79 ± 0.02 a | 1.93 ± 0.04 b | 2.85 ± 0.05 c | 3.15 ± 0.06 d |
Ch-13 | Cynaroside (luteolin 7-O-glucoside) | 3.16 ± 0.06 c | 1.14 ± 0.02 a | 2.73 ± 0.06 b | 3.51 ± 0.07 d | 3.44 ± 0.07 d |
Ch-14 | Chrysoeriol 7-O-glucoside | 10.69 ± 0.22 b | 5.67 ± 0.11 a | 10.39 ± 0.11 b | 15.86 ± 0.32 c | 17.21 ± 0.36 d |
Ch-15 | Isorhoifolin (apigenin 7-O-rutinoside) | 1.04 ± 0.02 | 0.63 ± 0.02 | 1.27 ± 0.02 | 2.93 ± 0.06 | 3.84 ± 0.08 |
Ch-16 | Chrysoeriol 7-O-(2″-O-acetyl)-glucoside | 0.94 ± 0.02 c | <0.01 | <0.01 | 0.09 ± 0.00 a | 0.14 ± 0.00 b |
Ch-18 | Dracocephaloside (luteolin 3′-O-glucoside) | 0.05 ± 0.00 b | <0.01 | <0.01 | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
Ch-19 | Chrysoeriol 7-O-(6″-O-acetyl)-glucoside | 0.06 ± 0.00 b | <0.01 | <0.01 | 0.02 ± 0.00 a | 0.03 ± 0.00 a |
Ch-21 | Cosmosiin (apigenin 7-O-glucoside) | 0.54 ± 0.01 b | 0.63 ± 0.02 a | 0.94 ± 0.02 c | 1.64 ± 0.03 e | 1.24 ± 0.02 d |
Ch-22 | Chrysoeriol 4′-O-glucoside | 0.07 ± 0.00 b | <0.01 | <0.01 | 0.02 ± 0.00 a | 0.01 ± 0.00 a |
Ch-24 | Acacetin 7-O-glucoside | 7.71 ± 0.15 e | 2.69 ± 0.05 a | 3.14 ± 0.12 b | 3.52 ± 0.03 c | 3.93 ± 0.04 d |
Ch-25 | Luteolin 4′-O-glucoside | 0.01 ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 |
Ch-26 | Pectolinarigenin 7-O-glucoside | 1.46 ± 0.03 d | 0.93 ± 0.02 a | 1.57 ± 0.03 d | 1.50 ± 0.03 cd | 1.22 ± 0.02 b |
Subtotal benzoic acids | 0.26 | – | <0.01 | 0.11 | 0.35 | |
Subtotal hydroxycinnamoyl quinic acids | 12.02 | 4.86 | 7.39 | 15.03 | 15.45 | |
Subtotal flavone glucosides | 28.58 | 12.73 | 22.76 | 32.88 | 35.34 | |
Total phenolic compounds | 40.86 | 17.59 | 30.15 | 48.01 | 51.14 |
Comp. No. | Compound | Wild Sample | Cultivated Samples | ||||
---|---|---|---|---|---|---|---|
1st Year | 3rd Year | 5th Year | 7th Year | 9th Year | |||
Benzoic acids | |||||||
El-1 | Protocatechuic acid 4-O-glucoside | 0.39 ± 0.01 c | – | <0.01 | 0.14 ± 0.00 a | 0.22 ± 0.00 b | 0.25 ± 0.00 b |
Hydroxycinnamoyl quinic acids | |||||||
El-2 | 4-O-Caffeoyl quinic acid (trans-) | 2.14 ± 0.04 d | 0.52 ± 0.01 a | 1.18 ± 0.02 b | 2.02 ± 0.04 cd | 2.15 ± 0.04 d | 1.87 ± 0.04 c |
El-3 | 5-O-Caffeoyl quinic acid (trans-) | 28.47 ± 0.64 d | 15.93 ± 0.32 a | 25.69 ± 0.52 b | 30.89 ± 0.62 e | 29.14 ± 0.60 de | 27.63 ± 0.58 c |
El-4 | 3-O-Caffeoyl quinic acid (trans-) | 0.18 ± 0.00 d | <0.01 | 0.05 ± 0.00 a | 0.10 ± 0.00 b | 0.12 ± 0.00 bc | 0.14 ± 0.00 c |
El-5 | 5-O-Caffeoyl quinic acid (cis-) | 0.27 ± 0.00 b | <0.01 | <0.01 | 0.18 ± 0.00 a | 0.22 ± 0.00 ab | 0.25 ± 0.00 b |
El-6 | 5-O-p-Coumaroyl quinic acid | 0.33 ± 0.00 b | <0.01 | 0.35 ± 0.00 b | 0.41 ± 0.01 c | 0.32 ± 0.00 ab | 0.29 ± 0.00 a |
El-7 | 3-O-p-Coumaroyl quinic acid | 0.25 ± 0.00 a | <0.01 | <0.01 | 0.27 ± 0.00 ab | 0.25 ± 0.00 a | 0.29 ± 0.00 b |
El-12 | 3,4-Di-O-caffeoyl quinic acid | 0.45 ± 0.01 c | 0.08 ± 0.00 a | 0.12 ± 0.00 b | 0.63 ± 0.02 d | 0.69 ± 0.01 d | 0.83 ± 0.02 e |
El-15 | 3,5-Di-O-caffeoyl quinic acid | 10.11 ± 0.22 b | 6.38 ± 0.12 a | 12.69 ± 0.28 d | 14.22 ± 0.29 e | 10.82 ± 0.21 bc | 11.63 ± 0.23 c |
El-16 | 4,5-Di-O-caffeoyl quinic acid | 1.69 ± 0.03 c | 0.96 ± 0.02 a | 1.59 ± 0.03 bc | 1.76 ± 0.03 c | 1.52 ± 0.03 b | 0.90 ± 0.02 a |
Flavonol glycosides | |||||||
El-8 | Isoquercitrin (quercetin 3-O-glucoside) | 5.02 ± 0.11 d | 1.14 ± 0.02 a | 2.96 ± 0.04 b | 4.62 ± 0.10 c | 5.39 ± 0.11 de | 5.42 ± 0.11 e |
El-9 | Hyperoside (quercetin 3-O-galactoside) | 4.73 ± 0.09 c | <0.01 | <0.01 | 0.96 ± 0.02 a | 3.74 ± 0.08 b | 4.69 ± 0.07 c |
Flavone glycosides | |||||||
El-10 | Cynaroside (luteolin 7-O-glucoside) | 3.54 ± 0.07 ab | 3.29 ± 0.06 a | 3.94 ± 0.08 b | 4.73 ± 0.10 c | 5.82 ± 0.11 d | 5.12 ± 0.10 d |
El-11 | Chrysoeriol 7-O-glucoside | 0.75 ± 0.02 c | <0.01 | 0.22 ± 0.00 a | 0.31 ± 0.00 b | 0.25 ± 0.00 a | 0.39 ± 0.01 b |
El-13 | Luteolin 5-O-glucoside | 5.57 ± 0.11 c | 2.69 ± 0.05 a | 4.22 ± 0.09 b | 4.63 ± 0.09 b | 5.58 ± 0.11 c | 5.63 ± 0.11 c |
El-14 | Dracocephaloside (luteolin 3′-O-glucoside) | 3.08 ± 0.06 b | 2.52 ± 0.06 a | 3.89 ± 0.07 c | 3.96 ± 0.08 c | 4.63 ± 0.09 e | 4.22 ± 0.08 d |
El-17 | Echitin (apigenin 7-O-(2″-O-p-coumaroyl)-glucoside) | 1.58 ± 0.03 b | 1.12 ± 0.02 a | 2.57 ± 0.06 c | 3.38 ± 0.06 d | 3.57 ± 0.07 de | 3.62 ± 0.07 e |
El-19 | Echinacin (apigenin 7-O-(6″-O-p-coumaroyl)-glucoside) | 7.37 ± 0.14 c | 2.84 ± 0.04 a | 5.33 ± 0.10 b | 7.93 ± 0.16 d | 9.11 ± 0.18 e | 9.25 ± 0.21 f |
Phenolamides | |||||||
El-18 | N1,N5,N10-Tri-O-(EEE)-p-coumaroyl-spermidine | 2.16 ± 0.04 d | 0.63 ± 0.02 a | 0.94 ± 0.02 b | 1.45 ± 0.03 c | 2.58 ± 0.05 e | 2.73 ± 0.06 e |
Subtotal benzoic acids | 0.39 | – | <0.01 | 0.14 | 0.22 | 0.25 | |
Subtotal hydroxycinnamoyl quinic acids | 43.89 | 23.87 | 41.67 | 50.48 | 45.23 | 43.83 | |
Subtotal flavonol glycosides | 9.75 | 1.14 | 2.96 | 5.58 | 9.13 | 10.11 | |
Subtotal flavone glycosides | 21.89 | 12.46 | 20.17 | 24.94 | 28.96 | 28.23 | |
Total flavonoids | 31.64 | 13.60 | 23.13 | 30.52 | 38.09 | 38.34 | |
Subtotal phenolamides | 2.16 | 0.63 | 0.94 | 1.45 | 2.58 | 2.73 | |
Total phenolic compounds | 78.08 | 38.10 | 65.74 | 82.59 | 86.12 | 85.15 |
Comp. No. | Compound | Wild Sample | Cultivated Samples | |||
---|---|---|---|---|---|---|
1st Year | 2nd Year | 3rd Year | 4th Year | |||
Hydroxycinnamoyl quinic/tartaric acids | ||||||
Ic-1 | 4-O-Caffeoyl quinic acid (trans-) | 0.02 ± 0.00 a | – | <0.01 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Ic-3 | Caftaric acid isomer | 0.09 ± 0.00 c | – | <0.01 | 0.02 ± 0.00 a | 0.05 ± 0.00 b |
Ic-4 | Caftaric acid | 5.22 ± 0.11 b | 3.86 ± 0.07 a | 5.29 ± 0.11 b | 5.93 ± 0.12 bc | 6.07 ± 0.12 c |
Ic-6 | 5-O-Caffeoyl quinic acid (trans-) | 1.95 ± 0.04 c | 0.98 ± 0.02 a | 1.78 ± 0.04 b | 2.14 ± 0.04 d | 2.23 ± 0.05 d |
Ic-7 | 3-O-Caffeoyl quinic acid (trans-) | 0.52 ± 0.01 b | <0.01 | 0.29 ± 0.00 a | 0.57 ± 0.02 bc | 0.61 ± 0.02 c |
Ic-12 | 5-O-Caffeoyl quinic acid (cis-) | 0.05 ± 0.00 b | – | <0.01 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Ic-15 | Coutaric acid | 0.07 ± 0.00 b | – | <0.01 | 0.05 ± 0.00 a | 0.06 ± 0.00 ab |
Ic-20 | Cichoric acid (di-trans isomer) | 64.84 ± 1.29 b | 35.16 ± 0.70 a | 62.82 ± 1.55 b | 78.11 ± 1.59 c | 78.03 ± 1.61 b |
Ic-21 | Cichoric acid (cis-trans isomer) | 3.23 ± 0.06 b | 0.96 ± 0.02 a | 3.52 ± 0.07 bc | 3.86 ± 0.08 c | 3.94 ± 0.08 c |
Ic-22 | p-Coumaroyl-caffeoyl-tartaric acid | 0.66 ± 0.02 ab | <0.01 | 0.56 ± 0.02 a | 0.72 ± 0.02 b | 0.94 ± 0.02 c |
Ic-23 | Feruloyl-caffeoyl-tartaric acid | 0.67 ± 0.02 b | 0.02 ± 0.00 a | 0.63 ± 0.02 b | 0.84 ± 0.02 c | 0.97 ± 0.02 d |
Coumarins | ||||||
Ic-2 | Cichoriin | 1.52 ± 0.03 b | 1.12 ± 0.02 a | 1.69 ± 0.03 b | 2.14 ± 0.05 c | 2.54 ± 0.05 d |
Flavonol glycosides | ||||||
Ic-5 | Baimaside | 0.11 ± 0.00 b | – | <0.01 | <0.01 | 0.04 ± 0.00 a |
Ic-8 | Quercetin 3-O-gentiobioside | 1.69 ± 0.03 d | 0.72 ± 0.02 a | 0.96 ± 0.02 b | 1.37 ± 0.03 c | 1.74 ± 0.04 d |
Ic-9 | Quercetin 3-O-(2″-O-arabinosyl)-glucoside | 0.63 ± 0.02 c | <0.01 | 0.23 ± 0.00 a | 0.34 ± 0.01 a | 0.52 ± 0.02 b |
Ic-10 | Kaempferol di-O-hexoside | 0.03 ± 0.00 | – | <0.01 | <0.01 | <0.01 |
Ic-11 | Peltatoside | 0.85 ± 0.02 d | 0.21 ± 0.00 a | 0.58 ± 0.02 b | 0.73 ± 0.02 c | 0.79 ± 0.02 cd |
Ic-13 | Sophoraflavonoloside | 0.27 ± 0.00 b | <0.01 | 0.14 ± 0.00 a | 0.25 ± 0.00 b | 0.39 ± 0.01 c |
Ic-14 | Kaempferol 3-O-gentiobioside | 0.20 ± 0.00 c | <0.01 | <0.01 | 0.05 ± 0.00 a | 0.09 ± 0.00 b |
Ic-16 | Calendoflavobioside | 0.12 ± 0.00 c | – | <0.01 | 0.02 ± 0.00 a | 0.07 ± 0.00 b |
Ic-17 | Rutin | 0.02 ± 0.00 | – | <0.01 | <0.01 | <0.01 |
Ic-18 | Populnin | 0.95 ± 0.02 c | 0.53 ± 0.02 a | 0.79 ± 0.02 b | 0.93 ± 0.02 c | 1.14 ± 0.02 d |
Flavone glycosides | ||||||
Ic-19 | Chrysoeriol 7-O-glucoside | 2.27 ± 0.04 d | 1.04 ± 0.02 a | 1.41 ± 0.03 b | 1.94 ± 0.04 c | 2.25 ± 0.04 d |
Subtotal hydroxycinnamoyl quinic/tartaric acids | 77.32 | 40.98 | 74.89 | 92.26 | 92.92 | |
Subtotal coumarins | 1.52 | 1.12 | 1.69 | 2.14 | 2.54 | |
Subtotal flavonol glycosides | 4.87 | 1.46 | 2.70 | 3.69 | 4.78 | |
Subtotal flavone glycosides | 2.27 | 1.04 | 1.41 | 1.94 | 2.25 | |
Total flavonoids | 9.74 | 2.16 | 4.11 | 5.63 | 7.03 | |
Total phenolic compounds | 88.58 | 44.26 | 80.69 | 100.03 | 102.49 |
Comp. No. | Compound | Wild Sample | Cultivated Samples | |||
---|---|---|---|---|---|---|
1st Year | 2nd Year | 3rd Year | 5th Year | |||
Hydroxybenzoyl quinic acids | ||||||
Ls-1 | Vanilloyl quinic acid (1-O-isomer *) | 11.63 ± 0.22 b | 8.63 ± 0.17 a | 12.58 ± 0.26 c | 15.39 ± 0.30 d | 15.28 ± 0.31 d |
Ls-5 | Vanilloyl quinic acid (4-O-isomer *) | 1.53 ± 0.03 a | <0.01 | 1.65 ± 0.03 a | 2.12 ± 0.04 b | 2.14 ± 0.04 b |
Ls-7 | Vanilloyl quinic acid (5-O-isomer *) | <0.01 | – | <0.01 | <0.01 | 0.08 ± 0.00 |
Ls-9 | Vanilloyl quinic acid (5-O-isomer *) | <0.01 | – | <0.01 | <0.01 | 0.02 ± 0.00 |
Ls-15 | Divanilloyl quinic acid (3,4-isomer *) | 0.42 ± 0.01 b | <0.01 | <0.01 | 0.14 ± 0.00 a | 0.16 ± 0.00 a |
Ls-16 | Divanilloyl quinic acid (3,5-isomer *) | <0.01 | – | <0.01 | <0.01 | <0.01 |
Ls-19 | Divanilloyl quinic acid (4,5-isomer *) | <0.01 | – | <0.01 | <0.01 | <0.01 |
Benzoic acids | ||||||
Ls-2 | Protocatechuic acid O-hexoside | 0.27 ± 0.00 c | <0.01 | 0.10 ± 0.00 a | 0.15 ± 0.00 ab | 0.19 ± 0.00 b |
Ls-3 | Protocatechuic acid O-hexoside | 0.31 ± 0.00 b | <0.01 | 0.22 ± 0.00 a | 0.31 ± 0.00 b | 0.35 ± 0.01 b |
Ls-4 | Protocatechuic acid 4-O-glucoside | <0.01 | <0.01 | <0.01 | 0.08 ± 0.00 a | 0.12 ± 0.00 a |
Hydroxycinnamoyl quinic/tartaric acids | ||||||
Ls-6 | 4-O-Caffeoyl quinic acid (trans-) | 0.08 ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 |
Ls-8 | Caftaric acid | 6.73 ± 0.014 b | 4.63 ± 0.09 a | 7.69 ± 0.15 c | 8.55 ± 0.16 d | 9.27 ± 0.18 e |
Ls-10 | 5-O-Caffeoyl quinic acid (trans-) | 3.93 ± 0.07 c | 1.95 ± 0.04 a | 2.77 ± 0.05 b | 3.97 ± 0.07 c | 4.12 ± 0.08 cd |
Ls-11 | 3-O-Caffeoyl quinic acid (trans-) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Ls-13 | 5-O-Caffeoyl quinic acid (cis-) | 0.35 ± 0.00 b | <0.01 | 0.26 ± 0.00 a | 0.35 ± 0.00 b | 0.37 ± 0.00 b |
Ls-23 | 3,4-Di-O-caffeoyl quinic acid | 0.22 ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 |
Ls-26 | 3,5-Di-O-caffeoyl quinic acid | 12.06 ± 0.24 c | 5.21 ± 0.10 a | 10.59 ± 0.21 b | 14.27 ± 0.29 d | 14.06 ± 0.28 d |
Ls-27 | Cichoric acid (di-trans isomer) | 39.71 ± 0.78 b | 22.17 ± 0.45 a | 40.25 ± 0.82 b | 45.63 ± 0.91 c | 46.02 ± 0.92 c |
Ls-29 | 4,5-Di-O-caffeoyl quinic acid | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Ls-33 | Cichoric acid (cis-trans isomer) | 1.12 ± 0.02 bc | 0.63 ± 0.02 a | 0.96 ± 0.02 b | 1.14 ± 0.02 bc | 1.25 ± 0.02 c |
Ls-34 | Cichoric acid (cis-cis isomer) | 0.31 ± 0.01 b | <0.01 | <0.01 | 0.23 ± 0.00 a | 0.25 ± 0.00 ab |
Ls-35 | p-Coumaroyl-caffeoyl-tartaric acids | 1.44 ± 0.03 b | 0.50 ± 0.01 a | 1.27 ± 0.03 a | 1.42 ± 0.03 b | 1.45 ± 0.03 b |
Ls-36 | Feruloyl-caffeoyl-tartaric acid | 0.62 ± 0.02 c | 0.02 ± 0.00 a | 0.52 ± 0.02 b | 0.63 ± 0.02 c | 0.54 ± 0.02 b |
Ls-37 | p-Coumaroyl-caffeoyl-tartaric acid | 0.22 ± 0.00 c | <0.01 | <0.01 | 0.04 ± 0.00 a | 0.11 ± 0.00 b |
Flavones | ||||||
Ls-12 | Luteolin tri-O-hexoside | <0.01 | – | <0.01 | <0.01 | <0.01 |
Ls-14 | Luteolin tri-O-hexoside | <0.01 | – | <0.01 | <0.01 | <0.01 |
Ls-20 | Cynaroside (luteolin 7-O-glucoside) | 6.20 ± 0.12 d | 2.18 ± 0.04 a | 4.53 ± 0.09 b | 5.94 ± 0.06 c | 6.34 ± 0.12 d |
Ls-22 | Chrysoeriol 7-O-glucoside | 7.00 ± 0.14 d | 2.86 ± 0.05 a | 3.89 ± 0.07 b | 6.29 ± 0.14 c | 7.55 ± 0.14 e |
Ls-25 | Dracocephaloside (luteolin 3′-O-glucoside) | 0.05 ± 0.00 | – | <0.01 | <0.01 | <0.01 |
Ls-30 | Apigenin 7-O-glucuronide | 5.37 ± 0.011 d | 1.17 ± 0.02 a | 1.29 ± 0.02 a | 3.86 ± 0.07 b | 4.29 ± 0.08 c |
Ls-31 | Luteolin 4′-O-glucoside | <0.01 | – | <0.01 | <0.01 | <0.01 |
Ls-38 | Luteolin | 1.18 ± 0.02 c | 0.24 ± 0.00 a | 0.96 ± 0.02 b | 1.14 ± 0.02 bc | 1.96 ± 0.03 d |
Ls-43 | Apigenin | 1.93 ± 0.03 e | 0.20 ± 0.00 a | 1.27 ± 0.02 b | 1.52 ± 0.03 c | 1.70 ± 0.03 d |
Flavonol glycosides | ||||||
Ls-17 | Kaempferol 3-O-neohesperidoside | 0.06 ± 0.00 | – | <0.01 | <0.01 | <0.01 |
Ls-18 | Rutin (quercetin 3-O-rutinoside) | 3.14 ± 0.06 c | 0.53 ± 0.02 a | 2.14 ± 0.04 b | 4.26 ± 0.08 d | 4.57 ± 0.09 d |
Ls-21 | Nicotiflorin (kaempferol 3-O-rutinoside) | 0.05 ± 0.00 | – | <0.01 | <0.01 | <0.01 |
Ls-24 | Quercetin 3-O-(6″-O-acetyl)-glucoside | 1.88 ± 0.04 d | 0.52 ± 0.02 a | 1.14 ± 0.02 b | 1.56 ± 0.03 c | 1.60 ± 0.03 c |
Ls-28 | Quercetin 3-O-(3″-O-acetyl)-glucoside | 0.08 ± 0.00 | – | – | <0.01 | <0.01 |
Ls-32 | Quercetin 3-O-(4″-O-acetyl)-glucoside | <0.01 | – | <0.01 | <0.01 | <0.01 |
Phenolamides | ||||||
Ls-39-42 | Tetra-O-p-coumaroyl spermines | 2.75 ± 0.05 b | 1.95 ± 0.04 a | 2.89 ± 0.05 b | 3.14 ± 0.06 c | 3.55 ± 0.07 d |
Subtotal hydroxybenzoyl quinic acids | 13.58 | 8.63 | 14.23 | 17.51 | 17.68 | |
Subtotal benzoic acids | 0.58 | <0.01 | 0.32 | 0.54 | 0.66 | |
Subtotal hydroxycinnamoyl quinic/tartaric acids | 66.79 | 35.11 | 64.31 | 76.23 | 77.44 | |
Subtotal flavones | 21.73 | 6.65 | 11.94 | 18.75 | 21.84 | |
Subtotal flavonol glycosides | 5.21 | 1.05 | 3.28 | 5.82 | 6.17 | |
Total flavonoids | 26.94 | 7.70 | 15.22 | 24.57 | 28.01 | |
Total phenolamides | 2.75 | 1.95 | 2.89 | 3.14 | 3.55 | |
Total phenolic compounds | 110.64 | 53.39 | 96.97 | 121.99 | 127.34 |
Compound Groups | Species * | |||||
---|---|---|---|---|---|---|
Aj | Cn | Ch | Ed | Ic | Ls | |
Benzoates | ||||||
Hydroxybenzoic acid glucosides | √ | √ | √ | √ | ||
Hydroxybenzoyl quinic acids | √ | |||||
Coumarins | ||||||
Hydroxycoumarin O-glucosides | √ | |||||
Hydroxycinnamates | ||||||
Caffeoyl glucaric acids | √ | |||||
Caffeoyl tartaric acids | √ | √ | ||||
p-Coumaroyl tartaric acids | √ | |||||
Mixed tartaric acids | √ | √ | ||||
p-Coumaroyl quinic acids | √ | √ | √ | |||
Caffeoyl quinic acids | √ | √ | √ | √ | √ | √ |
Feruloyl quinic acids | √ | |||||
Flavonoids | ||||||
Apigenin O-glucosides | √ | √ | √ | √ | ||
Apigenin C-glucosides | √ | √ | ||||
Acacetin O-glucosides | √ | |||||
Luteolin O-glucosides | √ | √ | √ | √ | ||
Chrysoeriol O-glucosides | √ | √ | √ | √ | ||
6-Hydroxyluteolin O-glucosides | √ | |||||
Pectolinarigenin O-glucosides | √ | |||||
Kaempferol O-glucosides | √ | √ | ||||
Quercetin O-glucosides | √ | √ | √ | √ | ||
Isorhamnetin O-glucosides | √ | |||||
Flavone aglycones | √ | √ | ||||
Flavonol aglycones | √ | |||||
Phenylamines | ||||||
Tri-O-p-coumaroyl spermines | √ | |||||
Tetra-O-p-coumaroyl spermines | √ | √ | ||||
Tri-O-p-coumaroyl-spermidine | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olennikov, D.N.; Chirikova, N.K. Phenolic Compounds of Six Unexplored Asteraceae Species from Asia: Comparison of Wild and Cultivated Plants. Horticulturae 2024, 10, 486. https://doi.org/10.3390/horticulturae10050486
Olennikov DN, Chirikova NK. Phenolic Compounds of Six Unexplored Asteraceae Species from Asia: Comparison of Wild and Cultivated Plants. Horticulturae. 2024; 10(5):486. https://doi.org/10.3390/horticulturae10050486
Chicago/Turabian StyleOlennikov, Daniil N., and Nadezhda K. Chirikova. 2024. "Phenolic Compounds of Six Unexplored Asteraceae Species from Asia: Comparison of Wild and Cultivated Plants" Horticulturae 10, no. 5: 486. https://doi.org/10.3390/horticulturae10050486
APA StyleOlennikov, D. N., & Chirikova, N. K. (2024). Phenolic Compounds of Six Unexplored Asteraceae Species from Asia: Comparison of Wild and Cultivated Plants. Horticulturae, 10(5), 486. https://doi.org/10.3390/horticulturae10050486