Yellow Pitahaya (Selenicereus megalanthus Haw.) Growth and Ripening as Affected by Preharvest Elicitors (Salicylic Acid, Methyl Salicylate, Methyl Jasmonate, and Oxalic Acid): Enhancement of Yield, and Quality at Harvest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Treatments, and Experimental Design
2.2. Measurement of Fruit Growth, Crop Yield, Fruit Weight, Pulp, and Skin Percentage
2.3. Measurement of Quality Traits
2.4. Statistical Analysis
3. Results
3.1. Fruit Growth, Crop Yield, and Fruit Weight Subsection
3.2. Quality Parameters: Pulp and Skin Percentage, Fruit Firmness, TSS, and TA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trujillo, D. Micoorganismos Asociados a la Pudrición Blanda del Tallo y Manchado del Fruto en el Cultivo de Pitahaya Amarilla. Bachelor’s Thesis, Universidad Central del Ecuador, Quito, Ecuador, 2014. [Google Scholar]
- Ministerio de Agricultura Ganaderia y Pesca (MAG). Primer Censo de Pitahaya. Available online: https://www.agricultura.gob.ec/en-palora-morona-santiago-se-realiza-el-primer-censo-de-pitahaya/ (accessed on 29 February 2024).
- Sotomayor, A.; Pitizaca, S.; Sánchez, M.; Burbano, A.; Díaz, A.; Nicolalde, J.; Viera, W.; Caicedo, C.; Vargas, Y. Physical chemical evaluation of pitahaya fruit (Selenicereus megalanthus) in different development stages. Enfoque UTE 2019, 10, 89–96. [Google Scholar] [CrossRef]
- Rabelo, J.M.; Cruz, M.C.M.; Alves, D.A.; Lima, J.E.; Reis, L.A.C.; Santos, N.C. Reproductive phenology of yellow pitaya in a high-altitude tropical region in Brazil. Acta Sci. Agron. 2020, 42, e43335. [Google Scholar] [CrossRef]
- Nerd, A.; Mizrahi, Y. Fruit development and ripening in yellow pitaya. J. Am. Soc. Hortic. Sci. 1998, 123, 560–562. [Google Scholar] [CrossRef]
- Dag, A.; Mizrahi, Y. Effect of pollination method on fruit set and fruit characteristics in the vine cactus Selenicereus megalanthus (“yellow pitaya”). J. Hortic. Sci. Biotechnol. 2005, 80, 618–622. [Google Scholar] [CrossRef]
- Kumar, S.; Issac, R.; Prabha, M. Functional and health-promoting bioactivities of dragon fruit. Drug Invent. Today 2018, 10, 3307–3310. [Google Scholar]
- Díaz, Y.L.; Torres-Valenzuela, L.S.; Serna-Jiménez, J.A.; Sotelo, L.I. Encapsulation effect on spray drying of yellow pitahaya biocomponents of functional interest. Inform. Tecnol. 2017, 28, 23–34. [Google Scholar]
- Sanín, A.; Navia, D.P.; Serna-Jiménez, J.A. Functional foods from crops on the Northern Region of the South American Andes: The importance of blackberry, yacon, açai, yellow pitahaya and the application of its biocompounds. Int. J. Fruit Sci. 2020, 20, S1784–S1804. [Google Scholar] [CrossRef]
- Serrano, M.; Valero, D. Role of tree elicitor treatment on crop yield and pomegranate fruit quality parameters and bioactive compounds. Acta Hortic. 2022, 134, 18. [Google Scholar] [CrossRef]
- Lastochkina, O.; Aliniaeifard, S.; SeifiKalhor, M.; Bosacchi, M.; Maslennikova, D.; Lubyanova, A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. Horticulturae 2022, 8, 910. [Google Scholar] [CrossRef]
- Chen, C.; Sun, C.; Wang, Y.; Gong, H.; Zhang, A.; Yang, Y.; Guo, F.; Cui, K.; Fan, X.; Li, X. The preharvest and postharvest application of salicylic acid and its derivatives on storage of fruit and vegetables: A review. Sci. Hortic. 2023, 312, 111858. [Google Scholar] [CrossRef]
- Giménez, M.J.; Valverde, J.M.; Valero, D.; Guillén, F.; Martínez-Romero, D.; Serrano, M.; Castillo, S. Quality and antioxidant properties in sweet cherries as affected by preharvest salicylic and. Acetylsalicylic acids treatments. Food Chem. 2014, 160, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Giménez, M.J.; Valverde, J.M.; Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Serrano, M.; Moral, J.; Castillo, S. Methyl salicylate treatments of sweet cherry trees improve fruit quality at harvest and during storage. Sci. Hortic. 2015, 197, 665–673. [Google Scholar] [CrossRef]
- Valverde, J.M.; Giménez, M.J.; Guillén, F.; Valero, D.; Martínez-Romero, D.; Serrano, M. Methyl salicylate treatments of sweet cherry trees increase antioxidant systems in fruit at harvest and during storage. Postharvest Biol. Technol. 2015, 109, 106–113. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Serrano, M.; Guillén, F. Preharvest salicylate treatments enhance antioxidant compounds, color and crop yield in low pigmented-table grape cultivars and preserve quality traits during storage. Antioxidants 2020, 9, 832. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Zapata, P.J. Methyl jasmonate effects on table grape ripening, vine yield, berry quality and bioactive compounds depend on applied concentration. Sci. Hortic. 2019, 247, 380–389. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; Zapata, P.J.; Valero, D.; García-Viguera, C.; Castillo, S.; Serrano, M. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.). J. Agric. Food Chem. 2014, 62, 3432–3437. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Giménez, M.J.; Valverde, J.M.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Serrano, M.; Valero, D.; Zapata, P.J. Preharvest application of oxalic acid improved pomegranate fruit yield, quality, and bioactive compounds at harvest in a concentration-dependent manner. Agronomy 2020, 10, 1522. [Google Scholar] [CrossRef]
- Kenanoğlu, B.B.; Mertoğlu, K.; Sülüşoğlu Durul, M.; Korkmaz, N.; Çolak, A.M. Maternal Environment and Priming Agents Effect Germination and Seedling Quality in Pitaya under Salt Stress. Horticulturae 2023, 9, 1170. [Google Scholar] [CrossRef]
- NTC 3554; Norma Técnica Colombiana. Frutas Frescas. Pitahaya amarilla. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 1996; pp. 1–14.
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality, 1st ed.; CRC-Taylor & Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Ortiz, S.A.; Takahashi, L.S.A. Physical and chemical characteristics of pitaya fruits at physiological maturity. Genet. Mol. Res. 2015, 14, 14422–14439. [Google Scholar] [CrossRef]
- Serrano, M.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M.; Valero, D. Changes in hydrophilic and lipophilic antioxidant activity and related bioactive compounds during postharvest storage of yellow and purple plum cultivars. Postharvest Biol. Technol. 2009, 51, 354–363. [Google Scholar] [CrossRef]
- Li, K.T. Physiology and classification of fruits. In Handbook of Fruits and Fruit Processing; Sinha, N.K., Sidhu, J.S., Barta, S.J., Wu, J.S.B., Cano, M.P., Eds.; John Wiley & Sons: Oxford, UK, 2012; pp. 3–12. [Google Scholar]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; Zapata, P.J.; Valero, D.; Martínez-Romero, D.; Díaz-Mula, H.M.; Serrano, M. Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage. J. Sci. Food Agric. 2017, 98, 2742–2750. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Song, B.; Liang, Q.; Su, D.; Lu, W.; Liu, Y.; Li, Z. Molecular regulatory events of flower and fruit abscission in horticultural plants. Hortic. Plant J. 2023, 9, 867–883. [Google Scholar] [CrossRef]
- Saracoglu, O.; Ozturk, B.; Yildiz, K.; Kucuker, E. Pre-harvest methyl jasmonate treatments delayed ripening and improved quality of sweet cherry fruits. Sci. Hortic. 2017, 226, 19–23. [Google Scholar] [CrossRef]
- Faizy, A.H.; Ozturk, B.; Aglar, K.Y.; Yıldız, K. Role of methyl jasmonate application regime on fruit quality and bioactive compounds of sweet cherry at harvest and during cold storage. J. Food Process. Preserv. 2021, 45, e15882. [Google Scholar] [CrossRef]
- Baek, M.W.; Choi, H.R.; Yun Jae, L.; Kang, H.-M.; Lee, O.-H.; Jeong, C.S.; Tilahun, S. Preharvest treatment of methyl jasmonate and salicylic acid increase the yield, antioxidant activity and GABA content of tomato. Agronomy 2021, 11, 2293. [Google Scholar] [CrossRef]
- Hussein, A.S.; Ibrahim, R.A.; Eissa, M.A. Exogenous pre-harvest application of abscisic and jasmonic acids improves fruit quality by enhancing sugar synthesis and reducing acidity in pomegranate (Punica granatum L. cv. Wonderful). J. Soil Sci. Plant Nutr. 2023, 23, 2237–2246. [Google Scholar] [CrossRef]
- Asghari, M.; Merrikhi, M.; Kavoosi, B. Methyl jasmonate foliar spray substantially enhances the productivity, quality and phytochemical contents of pomegranate fruit. J. Plant Growth Regul. 2020, 39, 1153–1161. [Google Scholar] [CrossRef]
- Fekry, W.M.E.; Rashad, Y.M.; Alaraidh, I.A.; Mehany, T. Exogenous application of melatonin and methyl jasmonate as a pre-harvest treatment enhances growth of Barhi date palm trees, prolongs storability, and maintain quality of their fruits under storage conditions. Plants 2022, 11, 96. [Google Scholar] [CrossRef]
- Morillo, A.C.; Manjarres, E.H.; Pedreros, M.C. Characterization of yellow pitahaya (Selenicereus megalanthus Haw.) genotypes under two productive systems in Colombia. Braz. J. Biol. 2023, 83, e274152. [Google Scholar] [CrossRef]
- Razzaq, K.; Khan, A.S.; Malik, A.U.; Shahid, M.; Ullah, S.E. Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. LWT Food Sci. Technol. 2015, 63, 152–160. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Giménez, M.J.; Martínez-Romero, D.; Valero, D.; Zapata, P.J. Preharvest application of methyl jasmonate increases crop yield, fruit quality and bioactive compounds in pomegranate ‘Mollar de Elche’ at harvest and during postharvest storage. J. Sci. Food Agric. 2020, 100, 145–153. [Google Scholar] [CrossRef]
- Kaya, C.; Ugurlar, F.; Ashraf, M.; Ahmad, P. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiol. Biochem. 2023, 196, 431–443. [Google Scholar] [CrossRef]
- Li, N.; Han, X.; Feng, D.; Yuan, D.; Huang, L.-J. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering? Int. J. Mol. Sci. 2019, 20, 671. [Google Scholar] [CrossRef]
- Ádám, A.L.; Nagy, Z.Á.; Kátay, G.; Mergenthaler, E.; Viczián, O. Signals of Systemic Immunity in Plants: Progress and Open Questions. Int. J. Mol. Sci. 2018, 19, 1146. [Google Scholar] [CrossRef]
- Liu, H.; Timko, M.P. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. Int. J. Mol. Sci. 2021, 22, 2914. [Google Scholar] [CrossRef]
Treatments | Pulp (%) | Skin (%) | TSS (°Brix) | TA (%) | TSS/TA | Firmness (kg cm−2) |
---|---|---|---|---|---|---|
Control | 48.78 ± 0.9 a | 51.21 ± 0.6 a | 12.59 ± 0.2 a | 1.47 ± 0.3 a | 8.56 ± 0.3 a | 7.60 ± 0.3 a |
MeSa 1 mM | 58.54 ± 1.2 b | 41.15 ± 0.8 b | 13.08 ± 0.2 a | 1.53 ± 0.3 a | 8.54 ± 0.2 a | 8.03 ± 0.5 a |
MeSa 5 mM | 55.41 ± 0.9 c | 44.56 ± 0.9 c | 10.87 ± 0.2 b | 1.47 ± 0.2 a | 7.39 ± 0.2 a | 6.60 ± 0.3 b |
MeSa 10 mM | 54.51 ± 1.1 c | 45.49 ± 1.1 c | 15.21 ± 0.4 c | 1.53 ± 0.3 a | 9.94 ± 0.3 b | 7.66 ± 0.3 a |
SA 1 mM | 51.38 ± 1.3 a | 48.60 ± 0.8 d | 13.73 ± 0.3 a | 1.83 ± 0.3 b | 7.50 ± 0.3 a | 7.76 ± 0.4 a |
SA 5 mM | 55.68 ± 1.2 c | 44.31 ± 1.1 c | 12.88 ± 0.2 a | 1.90 ± 0.2 b | 6.77 ± 0.2 a | 8.43 ± 0.4 a |
SA 10 mM | 46.67 ± 1.3 a | 53.32 ± 0.7 a | 14.42 ± 0.3 c | 2.20 ± 0.3 b | 6.55 ± 0.3 a | 7.36 ± 0.5 a |
MeJa 1 mM | 54.10 ± 1.3 c | 45.89 ± 0.8 c | 12.61 ± 0.4 a | 1.57 ± 0.3 a | 8.03 ± 0.3 a | 7.73 ± 0.4 a |
MeJa 5 mM | 54.94 ± 0.8 c | 45.05 ± 0.6 c | 10.26 ± 0.2 b | 1.93 ± 0.2 b | 5.31 ± 0.2 a | 7.80 ± 0.5 a |
MeJa 10 mM | 52.35 ± 1.2 a | 47.64 ± 0.9 d | 12.20 ± 0.3 a | 1.13 ± 0.2 a | 10.79 ± 0.3 b | 10.16 ± 0.7 c |
OA 1 mM | 55.95 ± 0.9 c | 44.14 ± 0.7 c | 10.88 ± 0.2 b | 1.30 ± 0.3 a | 8.36 ± 0.3 a | 6.73 ± 0.3 b |
OA 5 mM | 51.19 ± 1.2 a | 48.80 ± 0.8 d | 11.87 ± 0.3 a | 1.50 ± 0.4 a | 7.91 ± 0.3 a | 8.20 ± 0.5 a |
OA 10 mM | 58.92 ± 0.8 b | 41.07 ± 0.9 b | 11.79 ± 0.4 a | 1.30 ± 0.3 a | 9.06 ± 0.3 b | 7.10 ± 0.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erazo-Lara, A.E.; García-Pastor, M.E.; Padilla-González, P.A.; Serrano, M.; Valero, D. Yellow Pitahaya (Selenicereus megalanthus Haw.) Growth and Ripening as Affected by Preharvest Elicitors (Salicylic Acid, Methyl Salicylate, Methyl Jasmonate, and Oxalic Acid): Enhancement of Yield, and Quality at Harvest. Horticulturae 2024, 10, 493. https://doi.org/10.3390/horticulturae10050493
Erazo-Lara AE, García-Pastor ME, Padilla-González PA, Serrano M, Valero D. Yellow Pitahaya (Selenicereus megalanthus Haw.) Growth and Ripening as Affected by Preharvest Elicitors (Salicylic Acid, Methyl Salicylate, Methyl Jasmonate, and Oxalic Acid): Enhancement of Yield, and Quality at Harvest. Horticulturae. 2024; 10(5):493. https://doi.org/10.3390/horticulturae10050493
Chicago/Turabian StyleErazo-Lara, Alex Estuardo, María Emma García-Pastor, Pedro Antonio Padilla-González, María Serrano, and Daniel Valero. 2024. "Yellow Pitahaya (Selenicereus megalanthus Haw.) Growth and Ripening as Affected by Preharvest Elicitors (Salicylic Acid, Methyl Salicylate, Methyl Jasmonate, and Oxalic Acid): Enhancement of Yield, and Quality at Harvest" Horticulturae 10, no. 5: 493. https://doi.org/10.3390/horticulturae10050493
APA StyleErazo-Lara, A. E., García-Pastor, M. E., Padilla-González, P. A., Serrano, M., & Valero, D. (2024). Yellow Pitahaya (Selenicereus megalanthus Haw.) Growth and Ripening as Affected by Preharvest Elicitors (Salicylic Acid, Methyl Salicylate, Methyl Jasmonate, and Oxalic Acid): Enhancement of Yield, and Quality at Harvest. Horticulturae, 10(5), 493. https://doi.org/10.3390/horticulturae10050493