Phytochemistry and Allelopathic Effects of Tanacetum vulgare L. (Tansy) Extracts on Lepidium sativum L. (Garden Pepper Cress) and Lactuca sativa L. (Lettuce)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Herbal Material
2.2. Preparation of Extracts for Allelopathic Test
2.3. Preparation of Tansy Extracts for Analysis of Volatile Organic Compounds (VOCs)
2.4. Preparation of Tansy Extracts for High-Performance Liquid Chromatography/Diode Array Detector/Time of Flight Mass Spectrometry (HPLC-DAD-TOF) Analysis
2.5. Gas Chromatographic Analysis of VOCs in T. vulgare Extracts (Water/Diethyl Ether)
2.5.1. Gas Chromatography (GC/FID(Flame-Ionization Detector)) Analysis
2.5.2. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
2.5.3. Identification of Individual Components
2.6. HPLC-DAD-MS (TOF) Analysis of T. vulgare Extracts
2.7. Seed Germination Bioassay
2.8. Statistical Analysis of Data
3. Results and Discussion
3.1. Compositional Data of Volatile Organic Compounds (VOCs) in T. vulgare Water/Diethyl Ether Extracts
3.2. Chemical Composition of Non-Volatile Components in T. vulgare Extracts (Water/Methanol, 1:1, v/v)
3.3. Percentage of Relative Germination (RG) and Vigor Index (VI) of Lactuca sativa and Lepidium sativum Affected by Tansy (T. vulgare) Extracts
3.4. Allelopathic Effects of Tansy Extracts on Lactuca sativa and Lepidium sativum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devrnja, N.; Anđelković, B.; Aranđelović, S.; Radulović, S.; Soković, M.; Krstić-Milošević, D.; Ristić, M.; Ćalić, D. Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts. S. Afr. J. Bot. 2017, 111, 212–221. [Google Scholar] [CrossRef]
- Ivănescu, B.; Tuchiluş, C.; Corciovă, A.; Lungu, C.; Mihai, C.T.; Gheldiu, A.-M.; Vlase, L. Antioxidant, antimicrobial and cytotoxic activity of Tanacetum vulgare, Tanacetum corymbosum and Tanacetum macrophyllum extracts. Farmacia 2018, 66, 282–288. [Google Scholar]
- Coté, H.; Boucher, M.A.; Pichette, A.; Legault, J. Anti-inflammatory, antioxidant, antibiotic and cytotoxic activities of Tanacetum vulgare L. essential oil and its constituents. Medicines 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Teterovska, R.; Sile, I.; Paulausks, A.; Kovalcuka, L.; Koka, R.; Mauriņa, B.; Bandere, D. The antioxidant activity of wild-growing plants containing phenolic compounds in Latvia. Plants 2023, 12, 4108. [Google Scholar] [CrossRef] [PubMed]
- Baranauskienė, R.; Kazernavičiūtė, R.; Pukalskienė, M.; Maždžierienė, R.; Venskutonis, P.R. Agrorefinery of Tanacetum vulgare L. into valuable products and evaluation of their antioxidant properties and phytochemical composition. Ind. Crops Prod. 2014, 60, 113–122. [Google Scholar] [CrossRef]
- Devrnja, N.; Krstić-Milošević, D.; Janošević, D.; Tešević, V.; Vinterhalter, B.; Savić, J.; Ćalić, D. In vitro cultivation of tansy (Tanacetum vulgare L.): A tool for the production of potent pharmaceutical agents. Protoplasma 2021, 258, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Ak, G.; Gevrenova, R.; Sinan, K.I.; Zengin, G.; Zheleva, D.; Mahomoodally, M.F.; Senkardes, I.; Brunetti, L.; Leone, S.; Simone, S.C.; et al. Tanacetum vulgare L. (tansy) as an effective bioresource with promising pharmacological effects from natural arsenal. Food Chem. Toxicol. 2021, 153, 112268. [Google Scholar] [CrossRef] [PubMed]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costac, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Šukele, R.; Lauberte, L.; Kovalcuka, L.; Logviss, K.; Bārzdiņa, A.; Brangule, A.; Horváth, Z.M.; Bandere, D. Chemical profiling and antioxidant activity of Tanacetum vulgare L. wild-growing in Latvia. Plants 2023, 12, 1968. [Google Scholar] [CrossRef] [PubMed]
- Babich, O.; Larina, V.; Krol, O.; Ulrikh, E.; Sukhikh, S.; Gureev, M.A.; Prosekov, A.; Ivanova, S. In vitro study of biological activity of Tanacetum vulgare extracts. Pharmaceutics 2023, 15, 616. [Google Scholar] [CrossRef]
- Aćimović, M.; Puvača, N. Tanacetum vulgare L.—A Systematic Review. Technol. Eng. Manag. J. Agron. 2020, 3, 416–422. [Google Scholar]
- Korpinen, R.I.; Välimaa, A.-L.; Liimatainen, J.; Kunnas, S. Essential oils and supercritical CO2 extracts of arctic angelica (Angelica archangelica L.), marsh labrador tea (Rhododendron tomentosum) and common tansy (Tanacetum vulgare)—Chemical compositions and antimicrobial activities. Molecules 2021, 26, 7121. [Google Scholar] [CrossRef] [PubMed]
- Godinho, L.; de Carvalho, L.; Barbosa, C.C.; Dias, M.M.; de Faria Pinto, P.; Miller Crotti, A.E.; Silva Pinto, P.L.; de Moraes, J.; da Silva Filho, A.A. Anthelmintic activity of crude extract and essential oil of Tanacetum vulgare (Asteraceae) against adult worms of Schistosoma mansoni. Sci. World J. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, S.; Tahraoui, A.; Israili, Z.; Lyoussi, B. Diuretic activity of the aqueous extracts of Carum carvi and Tanacetum vulgare in normal rats. J. Ethnopharmacol. 2007, 110, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, S.; Tangi, K.C.; Lyoussi, B.; Morel, N. Vascular effects of Tanacetum vulgare L. leaf extract: In vitro pharmacological study. J. Ethnopharmacol. 2008, 120, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Móricz, Á.M.; Ott, P.G.; Morlock, G.E. Discovered acetylcholinesterase inhibition and antibacterial activity of polyacetylenes in tansy root extract via effect-directed chromatographic fingerprints. J. Chromatogr. A 2018, 1543, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, P.; Saliminejad, K.; Dehghan Shasaltaneh, M.; Kamali, K.; Riazi, G.H.; Nazari, R.; Azimzadeh, P.; Khorram Khorshid, H.R. Neuroprotective effects of herbal extract (Rosa canina, Tanacetum vulgare and Urtica dioica) on rat model of sporadic Alzheimer’s disease. Avicenna J. Med. Biotechnol. 2016, 8, 120–125. [Google Scholar]
- Mbega, E.R.; Mortensen, C.N.; Mabagala, R.B.; Wulff, E.G. The effect of plant extracts as seed treatments to control bacterial leaf spot of tomato in Tanzania. J. Gen. Plant Pathol. 2012, 78, 277–286. [Google Scholar] [CrossRef]
- Slavov, S.; Yordanov, P.; Nikolova, M. In vitro effect of plant extracts and exudates on mycelium growth of fungal plant pathogens. Bulg. J. Agric. Sci. 2021, 27, 682–687. Available online: https://agrojournal.org/27/04-06.pdf (accessed on 12 March 2024).
- Ikeura, H.; Kobayashi, F.; Hayata, Y. Repellent effect of herb extracts on the population of wingless green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). J. Agric. Sci. 2012, 4, 139–144. [Google Scholar] [CrossRef]
- Kwiecień, N.; Gospodarek, J.; Boligłowa, E. The effects of water extracts from tansy on pea leaf weevil and black bean aphid. J. Ecol. Eng. 2020, 21, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Magierowicz, K.; Górska-Drabik, E.; Golan, K. Effects of plant extracts and essential oils on the behavior of Acrobasis advenella (Zinck.) caterpillars and females. J. Plant Dis. Prot. 2020, 127, 63–67. [Google Scholar] [CrossRef]
- Clancy, M.V.; Haberer, G.; Jud, W.; Niederbacher, B.; Niederbacher, S.; Senft, M.; Zytynska, S.E.; Weisser, W.W.; Schnitzler, J.-P. Under fire-simultaneous volatilome and transcriptome analysis unravels fine-scale responses of tansy chemotypes to dual herbivore attack. BMC Plant Biol. 2020, 20, 551. [Google Scholar] [CrossRef] [PubMed]
- Górska-Drabik, E.; Golan, K.; Kot, I.; Kmieć, K.; Poniewozik, M.; Dzida, K.; Bochniak, A. The effect of pre-harvest treatments with Tanacetum vulgare L. and Satureja montana L. essential oils (EOs) on the yield and chemical composition of Aronia melanocarpa (Michx.) Elliot fruit. Agriculture 2024, 14, 12. [Google Scholar] [CrossRef]
- Kļaviņa, A.; Keidāne, D.; Ganola, K.; Lūsis, I.; Šukele, R.; Bandere, D.; Kovalcuka, L. Anthelmintic activity of Tanacetum vulgare L. (leaf and flower) extracts against Trichostrongylidae nematodes in sheep in vitro. Animals 2023, 13, 2176. [Google Scholar] [CrossRef]
- von Cossel, M. How to reintroduce arable crops after growing perennial wild plant species such as common tansy (Tanacetum vulgare L.) for biogas production. Energies 2022, 15, 4380. [Google Scholar] [CrossRef]
- Stevović, S.; Mikovilović, V.S.; Ćalic-Dragosavac, D. Environmental adaptibility of tansy (Tanacetum vulgare L.). Afr. J. Biotechnol. 2009, 8, 6290–6294. [Google Scholar]
- Sharma, G.; Ali, M.I.; Moin, S. The genus Tanacetum: A comprehensive review. Int. J. Pharm. Qual. Assur. 2022, 13, 208–213. [Google Scholar]
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Crit. Rev. Plant Sci. 2003, 22, 239–311. [Google Scholar] [CrossRef]
- Giuliani, C.; Bottoni, M.; Milani, F.; Spada, A.; Falsini, S.; Papini, A.; Santagostini, L.; Fico, G. An integrative approach to selected species of Tanacetum L. (Asteraceae): Insights into morphology and phytochemistry. Plants 2024, 13, 155. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef]
- Willis, R.J. The History of Allelopathy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Shan, Z.; Zhou, S.; Shah, A.; Arafat, Y.; Arif Hussain Rizvi, S.; Shao, H. Plant allelopathy in response to biotic and abiotic factors. Agronomy 2023, 13, 2358. [Google Scholar] [CrossRef]
- Wink, M. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr. Drug Metab. 2008, 9, 996–1009. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R.; Sałata, A.; Kniaziewicz, M. Tansy (Tanacetum vulgare L.)—A wild-growing aromatic medicinal plant with a variable essential oil composition. Agronomy 2022, 12, 277. [Google Scholar] [CrossRef]
- Roman, H.; Niculescu, A.-G.; Lazăr, V.; Mitache, M.M. Antibacterial Efficiency of Tanacetum vulgare essential oil against ESKAPE pathogens and synergisms with antibiotics. Antibiotics 2023, 12, 1635. [Google Scholar] [CrossRef] [PubMed]
- Judzentiene, A.; Mockute, D. The inflorescence and leaf essential oils of Tanacetum vulgare L. var. vulgare growing wild in Lithuania. Biochem. Syst. Ecol. 2005, 33, 487–498. [Google Scholar] [CrossRef]
- Karcheva-Bahchevanska, D.; Benbassat, N.; Georgieva, Y.; Lechkova, B.; Ivanova, S.; Ivanov, K.; Todorova, V.; Peychev, L.; Peychev, Z.; Denev, P. A Study of the chemical composition, antioxidant potential, and acute toxicity of Bulgarian Tanacetum vulgare L. essential oil. Molecules 2023, 28, 6155. [Google Scholar] [CrossRef] [PubMed]
- Mockute, D.; Judzentiene, A. Volatile compounds of Tanacetum vulgare L. (tansy) growing wild in Central Lithuania. J. Essent. Oil-Bear. Plants 2013, 6, 198–202. [Google Scholar] [CrossRef]
- Kowalonek, J.; Stachowiak, N.; Bolczak, K.; Richert, A. Physicochemical and antibacterial properties of alginate films containing tansy (Tanacetum vulgare L.) essential oil. Polymers 2023, 15, 260. [Google Scholar] [CrossRef]
- Hodisan, N.; Csep, N. Research on the allelopathic effect among the species Tanacetum vulgare and some agricultural crops. Acta Agrar. Debreceniensis 2010, 39, 105–109. [Google Scholar] [CrossRef]
- Babaahmadi, H.; Ghanbari, A.; Asadi, G.; Emami, M.K. Allelopathic effect from some medicinal plants on germination of Alyssum hirsutum and Amaranthus retroflexus. Int. J. Agron. Plant Prod. 2013, 4, 3344–3347. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20143012077 (accessed on 14 March 2024).
- Baličević, R.; Ravlić, M.; Kleflin, J.; Tomić, M. Allelopathic activity of plant species from Asteraceae and Polygonaceae family on lettuce. Herbologia 2016, 16, 23–30. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20173025434 (accessed on 14 March 2024). [CrossRef]
- Mardani, H.; Kazantseva, E.; Onipchenko, V.; Fujii, Y. Evaluation of allelopathic activity of 178 Caucasian plant species. Int. J. Basic Appl. Sci. 2016, 5, 75–78. [Google Scholar] [CrossRef]
- Parus, A.; Leśniewicz, J.; Szulc, P.; Zbytek, Z. Influence of water extracts from selected weeds on germination and growth of maize seedling. J. Res. Appl. Agric. Eng. 2018, 63, 45–49. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-5c0a21cb-037f-4121-ae14-aa09134b9d1d/c/parus_lesniewicz_szulc_influence_3_2018.pdf (accessed on 12 March 2024).
- Fujii, Y.; Parvez, S.S.; Parvez, M.M.; Ohmae, Y.; Iida, O. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biol. Manag. 2003, 3, 233–241. [Google Scholar] [CrossRef]
- Jacobs, J. Ecology and Management of Common Tansy (Tanacetum vulgare L.); Invasive Species Technical Note MT-18; U.S. Department of Agriculture, Natural Resources Conservation Service, Montana State Office: Bozeman, MT, USA, 2008; Volume 12, p. 74736. [Google Scholar]
- Adams, R.P. Essential Oil Components by Quadrupole Gas Chromatography/Mass Spectrometry, 3rd ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2001. [Google Scholar]
- Sako, Y.; McDonald, M.B.; Fujimura, K.; Rvans, A.F.; Bennett, M.M. A system for automated seed vigour assessment. Seed Sci. Technol. 2001, 29, 625–636. [Google Scholar]
- Keskitalo, M.; Pehu, E.; Simon, J.E. Variation in volatile compounds from tansy (Tanacetum vulgare L.) related to genetic and morphological differences of genotypes. Biochem. Syst. Ecol. 2001, 29, 267–285. [Google Scholar] [CrossRef] [PubMed]
- Kleine, S.; Müller, C. Differences in shoot and root terpenoid profiles and plant responses to fertilisation in Tanacetum vulgare. Phytochemistry 2013, 96, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.K.M.M.; Suttiyut, T.; Anwar, M.P.; Juraimi, A.S.; Kato-Noguchi, H. Allelopathic properties of Lamiaceae species: Prospects and challenges to use in agriculture. Plants 2022, 11, 1478. [Google Scholar] [CrossRef]
Index | Equation |
---|---|
Germination rate (GR), % | GR = final number of germinated seeds after 5 days of incubation/20 × 100% |
Relative germination (RG), % | RG = GRtr (%)/GRcn (%) × 100 GRtr—mean seed germination for each treatment GRcn—mean seed germination for control |
Vigor index (VI) | VI = PL (mm) × GR (%) |
Compound (RIExp) * | Flowers | Leaves | ||||
---|---|---|---|---|---|---|
pH = 3.5 | pH = 4.9 | pH = 9.5 | pH = 3.5 | pH = 6.0 | pH = 9.5 | |
α-Pinene (935) | 0.3 ± 0.1 | 0.5 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.5 ± 0.2 | 0.4 ± 0.1 |
β-Pinene (978) | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.4 ± 0.3 | 0.7 ± 0.3 | 0.5 ± 0.3 |
1,8-Dehydrocineole (990) | 0.5 ± 0.2 | 0.5 ± 0.2 | tr. | 0.5 ± 0.2 | 0.2 ± 0.1 | tr. |
Yomogi alcohol (998) | 0.7 ± 0.2 | 0.9 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.1 | tr. | 0.1 ± 0.0 |
α-Phellandrene (1006) | 0.9 ± 0.6 | tr. | tr. | 0.2 ± 0.1 | 0.1 ± 0.0 | tr. |
α-Terpinene (1016) | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.4 ± 0.3 | 0.8 ± 0.4 | tr. | tr. |
p-Cymene (1018) | 0.8 ± 0.0 | 0.5 ± 0.3 | 0.3 ± 0.1 | 0.4 ± 0.2 | 0.6 ± 0.2 | 0.3 ± 0.1 |
1,8-Cineole (1033) | 17.1 ± 2.6 | 15.5 ± 2.3 | 12.8 ± 2.1 | 28.1 ± 2.7 | 31.3 ± 3.3 | 30.0 ± 1.2 |
γ-Terpinene (1062) | tr. | 0.4 ± 0.3 | 0.2 ± 0.1 | 0.9 ± 0.3 | 0.4 ± 0.2 | tr. |
Artemisia ketone (1062) | 1.1 ± 0.2 | 0.9 ± 0.2 | 0.7 ± 0.2 | tr. | tr. | |
Artemisia alcohol (1083) | 0.5 ± 0.1 | 0.9 ± 0.2 | 0.2 ± 0.1 | |||
Terpinolene (1088) | 0.3 ± 0.2 | 0.4 ± 0.2 | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.0 |
Linalool (1098) | 0.9 ± 0.2 | 0.2 ± 0.1 | 0.3 ± 0.1 | tr. | 0.2 ± 0.1 | tr. |
α-Thujone (1103) | 0.4 ± 0.3 | 0.3 ± 0.2 | tr. | tr. | ||
cis-Sabinene hydrate (1068) | tr. | 0.6 ± 0.2 | 0.9 ± 0.2 | 0.5 ± 0.1 | 1.6 ± 0.4 | 2.4 ± 0.9 |
trans-Sabinene hydrate (1098) | 0.2 ± 0.0 | 1.7 ± 0.2 | 1.5 ± 0.4 | 0.7 ± 0.2 | 2.4 ± 0.4 | 2.9 ± 1.1 |
β-Thujone (1115) | 2.3 ± 1.5 | 1.9 ± 0.2 | 1.7 ± 0.2 | 0.3 ± 0.1 | tr. | 0.4 ± 0.2 |
Chrysanthenone (1124) | 1.4 ± 0.2 | 1.0 ± 0.2 | 1.1 ± 0.3 | tr. | ||
Nopinone (1136) | 0.6 ± 0.2 | 0.7 ± 0.2 | 0.3 ± 0.2 | |||
trans-Pinocarveol (1137) | 1.4 ± 0.7 | 0.8 ± 0.1 | 0.6 ± 0.2 | 0.8 ± 0.4 | 0.5 ± 0.3 | 0.6 ± 0.3 |
Camphor (1145) | 11.8 ± 2.3 | 10.9 ± 0.2 | 9.8 ± 1.5 | 0.6 ± 0.4 | 0.7 ± 0.1 | 0.8 ± 0.3 |
Isoborneol (1155) | tr. | 0.3 ± 0.2 | tr. | 0.2 ± 0.1 | 0.6 ± 0.3 | 0.5 ± 0.1 |
Sabina ketone (1156) | 0.3 ± 0.2 | 0.5 ± 0.2 | 0.6 ± 0.2 | 0.4 ± 0.1 | 0.2 ± 0.1 | tr. |
cis-Chrysanthenol (1161) | 2.2 ± 0.8 | 1.9 ± 0.2 | 1.7 ± 0.3 | tr. | tr. | 0.2 ± 0.1 |
Pinocarvone (1163) | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.3 ± 0.2 | 0.4 ± 0.1 | 0.3 ± 0.2 | 0.3 ± 0.1 |
Borneol (1165) | 13.9 ± 2.7 | 11.1 ± 1.5 | 11.7 ± 1.8 | 20.9 ± 1.0 | 24.2 ± 2.5 | 24.2 ± 2.3 |
Terpinen-4-ol (1174) | 3.4 ± 1.1 | 0.3 ± 0.1 | 1.8 ± 0.2 | 4.9 ± 0.5 | 1.4 ± 0.2 | 0.9 ± 0.3 |
p-Cymen-8-ol (1183) | 0.3 ± 0.1 | 0.6 ± 0.2 | 0.2 ± 0.1 | tr. | tr. | tr. |
α-Terpineol (1190) | 3.9 ± 1.6 | 3.6 ± 0.3 | 2.9 ± 0.7 | 3.6 ± 0.3 | 2.5 ± 0.3 | 3.7 ± 1.1 |
Z-Dihydrocarvone (1193) | 2.9 ± 0.9 | 2.5 ± 0.9 | 3.9 ± 0.7 | 1.9 ± 0.7 | 1.4 ± 0.5 | 1.9 ± 0.3 |
E-Dihydrocarvone (1201) | 8.5 ± 2.2 | 6.9 ± 0.9 | 5.1 ± 1.3 | 3.9 ± 1.9 | 3.4 ± 1.5 | 3.7 ± 1.3 |
trans-Piperitol (1205) | 0.2 ± 0.1 | 0.4 ± 0.1 | tr. | 0.3 ± 0.2 | 0.2 ± 0.1 | 0.1 ± 0.0 |
2-Hydroxycineole (1208) | 0.2 ± 0.0 | tr. | 0.5 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.2 | 0.5 ± 0.3 |
iso-Dihydrocarveol (1213) | 0.7 ± 0.3 | 0.9 ± 0.4 | 0.9 ± 0.3 | 0.7 ± 0.3 | 1.5 ± 0.6 | 0.7 ± 0.4 |
trans-Carveol (1218) | 1.4 ± 0.1 | 0.5 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.2 |
neo-iso-Dihydrocarveol (1224) | 0.5 ± 0.2 | 0.4 ± 0.1 | 1.1 ± 0.1 | 0.9 ± 0.4 | 0.3 ± 0.1 | 0.6 ± 0.2 |
cis-Ascaridole (1236) | 0.6 ± 0.3 | tr. | tr. | |||
Carvone (1242) | 0.5 ± 0.0 | 0.5 ± 0.1 | 0.6 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
Theaspirane (1255) | 1.5 ± 0.3 | tr. | 0.3 ± 0.2 | |||
cis-Chrysanthenyl acetate (1264) | 0.4 ± 0.1 | 2.0 ± 0.2 | 0.5 ± 0.3 | |||
Bornyl acetate (1286) | 0.7 ± 0.2 | 0.7 ± 0.3 | 0.3 ± 0.1 | 0.3 ± 0.2 | 0.4 ± 0.2 | 0.1 ± 0.0 |
Eugenol (1359) | 1.3 ± 0.4 | 1.1 ± 0.3 | 0.5 ± 0.2 | 0.9 ± 0.2 | tr. | 0.9 ± 0.3 |
Z-β-Damascone (1360) | tr. | 0.5 ± 0.1 | 0.4 ± 0.2 | 0.3 ± 0.1 | ||
Dihydroactinidiolide (1498) | 0.5 ± 0.3 | 0.6 ± 0.2 | 0.6 ± 0.3 | 1.9 ± 0.2 | 1.9 ± 0.3 | 1.9 ± 0.1 |
E-Nerolidol (1564) | 0.6 ± 0.4 | 0.5 ± 0.3 | 0.7 ± 0.4 | tr. | 0.3 ± 0.1 | tr. |
Spathulenol (1577) | 0.9 ± 0.3 | 0.2 ± 0.0 | 0.5 ± 0.3 | 0.4 ± 0.3 | 0.2 ± 0.0 | 0.3 ± 0.2 |
Humulene epoxide II (1607) | 0.5 ± 0.1 | 1.5 ± 0.3 | 2.5 ± 1.3 | 1.3 ± 0.2 | 2.4 ± 0.7 | 1.9 ± 0.3 |
τ-Muurolol (1645) | 1.1 ± 0.5 | 0.5 ± 0.2 | 0.5 ± 0.3 | tr. | ||
Patchouli alcohol (1658) | 2.0 ± 0.4 | 1.8 ± 0.3 | tr. | |||
Cedroxyde (1705) | 2.1 ± 1.0 | 1.9 ± 0.4 | 1.7 ± 0.4 | 1.9 ± 0.3 | 1.8 ± 0.2 | 2.1 ± 0.7 |
Compound | Chemical Formula | Molecular Weight, g/mol | m/z ESI+, Da | m/z ESI−, Da |
---|---|---|---|---|
Acids: | ||||
Succinic acid | C4H6O4 | 118.09 | 119.08 | |
Quinic acid | C7H12O6 | 192.17 | 194.15 | 191.017 |
3-Dehydrocaffeoyl-5-caffeoylquinic acid | C25H22O12 | 514.10 | 514.30 | |
4-Dehydrocaffeoyl-5-caffeoylquinic acid | C25H22O12 | 514.10 | 514.31 | |
Feruloylquinic acid | C17H20O9 | 368.10 | 368.42 | |
Diferulic acid | C20H18O8 | 386.4 | 387.11 | 384.94 |
Protocatechuic/gentisic acid | C7H6O4 | 154.02 | 154.98 | |
Ferulic (hydroxycinnamic) acid | C10H10O4 | 194.18 | 194.15 | |
Isochlorogenic (3,5-dicaffeoylquinic) acid A | C25H24O12 | 516.45 | 517.13 | 515.12 |
Isochlorogenic (3,4-dicaffeoylquinic) acid B | C25H24O12 | 516.45 | 517.13 | 515.12 |
Other compounds: | ||||
p-Hydroxyphenylacetic acid 1-O-hexoside | C14H18O8 | 314.09 | 314.08 | |
Luteolin | C15H10O6 | 286.24 | 288.22 | |
Kaempferol | C15H10O6 | 286.24 | 287.20 | |
Quercetin | C15H10O7 | 302.24 | 304.21 | |
Acacetin | C16H12O5 | 284.26 | 286.19 | 284.22 |
Ludovicin C | C15H18O4 | 264.13 | 265.14 | 264.13 |
Hydroxyarbusculin | C15H22O4 | 266.16 | 266.17 | |
6-Methoxykaempferol/Isorhamnetin | C16H12O7 | 316.05 | 317.23 | |
Isorhamnetin 3-O-glucoside | C22H22O12 | 478.10 | 478.92 | |
Tanacetin/armefolin | C15H20O4 | 264.32 | 265.14 | |
5,7,3’-Trihydroxy-3,6,4’,5’-tetramethoxyflavone | C19H18O9 | 390.3 | 391.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Judžentienė, A.; Būdienė, J.; Stancelytė, D.; Nedveckytė, I. Phytochemistry and Allelopathic Effects of Tanacetum vulgare L. (Tansy) Extracts on Lepidium sativum L. (Garden Pepper Cress) and Lactuca sativa L. (Lettuce). Horticulturae 2024, 10, 538. https://doi.org/10.3390/horticulturae10060538
Judžentienė A, Būdienė J, Stancelytė D, Nedveckytė I. Phytochemistry and Allelopathic Effects of Tanacetum vulgare L. (Tansy) Extracts on Lepidium sativum L. (Garden Pepper Cress) and Lactuca sativa L. (Lettuce). Horticulturae. 2024; 10(6):538. https://doi.org/10.3390/horticulturae10060538
Chicago/Turabian StyleJudžentienė, Asta, Jurga Būdienė, Donata Stancelytė, and Irena Nedveckytė. 2024. "Phytochemistry and Allelopathic Effects of Tanacetum vulgare L. (Tansy) Extracts on Lepidium sativum L. (Garden Pepper Cress) and Lactuca sativa L. (Lettuce)" Horticulturae 10, no. 6: 538. https://doi.org/10.3390/horticulturae10060538
APA StyleJudžentienė, A., Būdienė, J., Stancelytė, D., & Nedveckytė, I. (2024). Phytochemistry and Allelopathic Effects of Tanacetum vulgare L. (Tansy) Extracts on Lepidium sativum L. (Garden Pepper Cress) and Lactuca sativa L. (Lettuce). Horticulturae, 10(6), 538. https://doi.org/10.3390/horticulturae10060538