Imidazolinone Resistance in Oilseed Rape (Brassica napus L.): Current Status, Breeding, Molecular Markers and Prospects for Application in Hybrid Seed Purity Improvement
Abstract
:1. Introduction
2. Mutants and Mutations Conferring Resistance to Imidazolinones
Mutant | P1 | M9 | 12WH318 | P2 | M342 | 5N | DS3 |
---|---|---|---|---|---|---|---|
Method of obtaining (chemical substance) | Microspore mutagenesis (ENU) | Spontaneous mutation | Crosses with resistant germplasm | Microspore mutagenesis (ENU) | Seed mutagenesis (EMS) | Gene stacking from mutants M342 and PN19 | Mutagenesis of seeds of a line derived from the M342 mutant (EMS) |
Resistance | IMI | IMI | IMI | (IMI) | (IMI) | ||
SU | SU | SU | SU | ||||
TP | (TP) | (TP) | (TP) | ||||
Gene | BnAHAS1 | BnAHAS3 | BnAHAS3 BnAHAS1 | ||||
Genome | C | A | A, C | ||||
Mutated gene (mutation) | BnAHAS1R (Ser653Asp) | BnAHAS3R (Trp574Leu) | BnAHAS3R (Trp574Leu) BnAHAS1-2R (Trp574Leu) | BnAHAS3R (Trp574Leu) BnAHAS1-3R (Pro197Leu) | |||
References | [28] | [32,33,34] | [37] | [28,30] | [35] | [9] | [38] |
3. Markers for Mutant Forms of AHAS Genes Leading to Resistance to Imidazolinones
4. Improving Hybrid Seed Purity Using Imidazolinones
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poehlman, J.M.; Sleper, D.A. Breeding Field Crops; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Rutledge, R.G.; Quellet, S.; Hattori, J.; Miki, B.L. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol. Gen. Genet. MGG 1991, 229, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Evans, R.R.; Dahmer, M.L.; Singh, B.K.; Shaner, D.L. Imidazolinone-tolerant crops: History, current status and future. Proc. Pest Manag. Sci. 2005, 61, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Ohlrogge, J.B. Design of New Plant Products: Engineering of Fatty Acid Metabolism. Plant Physiol. 1994, 104, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Thelen, J.J.; Ohlrogge, J.B. Metabolic Engineering of Fatty Acid Biosynthesis in Plants. Metab. Eng. 2002, 4, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, S.V.; Gorlova, L.A. Herbicide tolerance in rapeseed breeding: Results and prospects. Oilseed Crops 2018, 4, 42–47. [Google Scholar] [CrossRef]
- Miki, B.L.; Labbe, H.; Hattori, J.; Ouellet, T.; Gabard, J.; Sunohara, G.; Charest, P.J.; Iyer, V.N. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor. Appl. Genet. 1990, 80, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Larue, C.T.; Goley, M.; Shi, L.; Evdokimov, A.G.; Sparks, O.C.; Ellis, C.; Wollacott, A.M.; Rydel, T.J.; Halls, C.E.; Van Scoyoc, B. Development of enzymes for robust aryloxyphenoxypropionate and synthetic auxin herbicide tolerance traits in maize and soybean crops. Pest Manag. Sci. 2019, 75, 2086–2094. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cheng, L.; Long, W.; Gao, J.; Zhang, J.; Chen, S.; Pu, H.; Hu, M. Synergistic mutations of two rapeseed AHAS genes confer high resistance to sulfonylurea herbicides for weed control. Theor. Appl. Genet. 2020, 133, 2811–2824. [Google Scholar] [CrossRef] [PubMed]
- Bagherani, N.; Shimi, P. Evaluation of some herbicides for weed control in oilseed rape (Brassica napus L.). J. Agric. Sci. Nat. Resour. 2001, 8, 157–163. [Google Scholar]
- Bijanzadeh, E.; Naderi, R.; Behpoori, A. Interrelationships between oilseed rape yield and weeds population under herbicides application. Aust. J. Crop Sci. 2010, 4, 155–162. [Google Scholar]
- Haukkapää, A.L.; Junnila, S.; Eriksson, C.; Tulisalo, U.; Seppänen, M. Efficacy of imazamox in imidazolinone-resistant spring oilseed rape in Finland. Agric. Food Sci. 2005, 14, 377–388. [Google Scholar] [CrossRef]
- Green, J.M. Current state of herbicides in herbicide-resistant crops. Pest Manag. Sci. 2014, 70, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Monaco, T.J.; Weller, S.C.; Ashton, F.M. Weed Science: Principles and Practices; John Wiley & Sons: Hoboken, NJ, USA, 2002; ISBN 0471370517. [Google Scholar]
- Mazur, B.J. Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol. 1987, 85, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, P.; Woodworth, A.R.; Rosen, B.A.; Subramanian, M.V.; Siehl, D.L. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 1996, 271, 13925. [Google Scholar] [CrossRef]
- Los, M. Synthesis and Biology of the Imidazolinone Herbicides; Blackwells Scientific Publications: Oxford, UK, 1987. [Google Scholar]
- Shaner, D.L. Mechanisms of Resistance to Acetolactate Synthase/Acetohydroxyacid Synthase Inhibitors; Western Society of Weed Science: Newark, CA, USA, 1991. [Google Scholar]
- Yu, Q.; Powles, S.B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 2014, 70, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Duggleby, R.G.; McCourt, J.A.; Guddat, L.W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 2008, 46, 309–324. [Google Scholar] [CrossRef]
- Garcia, M.D.; Wang, J.; Lonhienne, T.; Guddat, L.W. Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides. FEBS J. 2017, 284, 2037–2051. [Google Scholar] [CrossRef] [PubMed]
- Drenkard, E.; Richter, B.G.; Rozen, S.; Stutius, L.M.; Angell, N.A.; Mindrinos, M.; Cho, R.J.; Oefner, P.J.; Davis, R.W.; Ausubel, F.M. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol. 2000, 124, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Vignal, A.; Milan, D.; SanCristobal, M.; Eggen, A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 2002, 34, 275–305. [Google Scholar] [CrossRef] [PubMed]
- Henikoff, S.; Comai, L. Single-nucleotide mutations for plant functional genomics. Annu. Rev. Plant Biol. 2003, 54, 375–401. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Yang, X.; Peng, Z.; Xu, L.; Wang, J. Development and applications of a high throughput genotyping tool for polyploid crops: Single nucleotide polymorphism (SNP) array. Front. Plant Sci. 2018, 9, 297846. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Huang, Q.; Sun, Y.; Qu, G.; Guo, Y.; Zhang, X.; Zhao, H.; Hu, S. Male sterility of an AHAS-mutant induced by tribenuron-methyl solution correlated with the decrease of AHAS activity in Brassica napus L. Front. Plant Sci. 2018, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yu, H.; Fu, Y.; Wang, T.; Zhang, Y.; Huang, J.; Li, S.; Zheng, T.; Ni, X.; Zhao, J. Development and validation of functional kompetitive allele-specific PCR markers for herbicide resistance in Brassica napus. Front. Plant Sci. 2023, 14, 1213476. [Google Scholar] [CrossRef] [PubMed]
- Swanson, E.B.; Herrgesell, M.J.; Arnoldo, M.; Sippell, D.W.; Wong, R.S.C. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet. 1989, 78, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Mcvetty, P.B.E.; Zelmer, C.D. Breeding Herbicide-Tolerant Oilseed Rape Cultivars. Adv. Bot. Res. 2007, 45, 233–270. [Google Scholar]
- Hattori, J.; Brown, D.; Mourad, G.H.; Labb, N.; Ouellet, S.; Sunohara Robert Rutledge, G.; King-Brian Miki, J.; Schell J Hattori, C.J.; Labb, H.; Ouellet-B Miki, T.; et al. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Key words Acetohydroxy acid synthase Feedback inhibitors-Herbicides Multiple resistance. Mol. Genet. Genom. 1995, 246, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Canadian Food Inspection Agency (CFIA) Decision Document DD 95–03. Determination of environmental safety (and feed safety) of Pioneer Hi-Bred International Inc.’s imidazolinone-tolerant canola. Available online: https://inspection.canada.ca/en/plant-varieties/plants-novel-traits/approved-under-review/decision-documents/dd1995-03 (accessed on 20 April 2024).
- Pu, H.; Gao, J.; Long, W.; Hu, M.; Zhang, J.; Chen, S.; Chen, X.; Chen, F.; Gu, H.; Fu, S.; et al. Studies on inheritance of imidazolinones resistance in Brassica napus and its utilization. Chin. J. Oil Crop Sci. 2011, 33, 15–19. [Google Scholar]
- Hu, M.; Pu, H.; Gao, J.; Long, W.; Qi, C.; Zhang, J.; Chen, S. Inheritance and Gene Cloning of an ALS Inhabiting Herbicide-Resistant Mutant Line M9 in Brassica napus. Sci. Agric. Sin. 2012, 45, 4326–4334. [Google Scholar] [CrossRef]
- Hu, M.; Pu, H.; Kong, L.; Gao, J.; Long, W.; Chen, S.; Zhang, J.; Qi, C. Molecular characterization and detection of a spontaneous mutation conferring imidazolinone resistance in rapeseed and its application in hybrid rapeseed production. Mol. Breed. 2015, 35, 46. [Google Scholar] [CrossRef]
- Hu, M.L.; Pu, H.M.; Gao, J.Q.; Long, W.H.; Chen, F.; Zhou, X.Y.; Zhang, W.; Peng, Q.; Chen, S.; Zheng, J.F. Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed. J. Integr. Agric. 2017, 16, 2421–2433. [Google Scholar] [CrossRef]
- Hu, M.L.; Pu, H.M.; Long, W.H.; Gao, J.Q.; Qi, C.K.; Zhang, J.F.; Chen, S. Enzymatic characteristics of acetolactate synthase mutant S638N in Brassica napus and its resistance to ALS inhibitor herbicides. Acta Agron. Sin. 2015, 41, 1353–1360. [Google Scholar] [CrossRef]
- Li, X.; Wu, L.; Jia, Y.; Li, K.; Chen, Y.; Lu, C. Inheritance of imidazolinone resistance in rapeseed 12WH318 and BnALS gene cloning. Chin. J. Oil Crop Sci. 2015, 37, 269–276. [Google Scholar]
- Guo, Y.; Liu, C.; Long, W.; Gao, J.; Zhang, J.; Chen, S.; Pu, H.; Hu, M. Development and molecular analysis of a novel acetohydroxyacid synthase rapeseed mutant with high resistance to sulfonylurea herbicides. Crop J. 2022, 10, 56–66. [Google Scholar] [CrossRef]
- Andersen, J.R.; Lübberstedt, T. Functional markers in plants. Trends Plant Sci. 2003, 8, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005, 10, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, Z.; Zhang, Y.; Ke, H.; Yang, J.; Li, Z.; Wu, L.; Zhang, G.; Wang, X.; Ma, Z. Development and utilization of functional kompetitive allele-specific PCR markers for key genes underpinning fiber length and strength in Gossypium hirsutum L. Front. Plant Sci. 2022, 13, 853827. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L.; Long, W.H.; Gao, J.Q.; Fu, S.X.; Chen, F.; Zhou, X.Y.; Peng, Q.; Zhang, W.; Pu, H.M.; Qi, C.K.; et al. Development and Application of Allele-Specific PCR Markers for Imidazolinone-Resistant Gene BnALS1R in Brassica napus. Acta Agron. Sin. 2013, 39, 1711. [Google Scholar] [CrossRef]
- Hu, M.L.; Cheng, L.; Guo, Y.; Long, W.H.; Gao, J.Q.; Pu, H.M.; Zhang, J.F.; Chen, S. Development and application of the marker for imidazolinone-resistant gene in Brassica napus. Acta Agron. Sin. 2020, 46, 1639–1646. [Google Scholar]
- He, C.; Holme, J.; Anthony, J. SNP genotyping: The KASP assay. Crop Breed. Methods Protoc. 2014, 1145, 75–86. [Google Scholar]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Mol. Breed. 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Yu, C.Y.; Lian, J.L.; Gong, Q.; Ren, L.S.; Huang, Z.; Xu, A.X.; Dong, J.G. Sublethal application of various sulfonylurea and imidazolinone herbicides favors outcrossing and hybrid seed production in oilseed rape. BMC Plant Biol. 2020, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Wang, Z.; Zhang, H.; Hu, K.; Zhang, Z.; Qin, M.; Dun, X.; Yi, B.; Wen, J.; Ma, C. Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. Plant Cell 2016, 28, 2060–2078. [Google Scholar] [CrossRef] [PubMed]
- Frauen, M.; Noack, J.; Girke, A.; Paulmann, W. Ten years experience of development and cultivation of winter oilseed rape hybrids in Europe based on the MSL system. Proc. Proc. 12th Int. Rapeseed Congr. 2006, 1, 39–41. [Google Scholar]
- Levings III, C.S. The Texas cytoplasm of maize: Cytoplasmic male sterility and disease susceptibility. Science 1990, 250, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, S.K.; Maity, A.; Yadav, J.B. Influence of cyto-sterility sources of female line on seed quality of Indian mustard (B rassica juncea L. C zern & C oss.) in relation to storage period. Plant Breed. 2015, 134, 333–337. [Google Scholar]
- Dey, S.S.; Bhatia, R.; Parkash, C.; Sharma, S.; Dabral, M.; Mishra, V.; Bhardwaj, I.; Sharma, K.; Sharma, V.K.; Kumar, R. Alteration in important quality traits and antioxidant activities in Brassica oleracea with Ogura cybrid cytoplasm. Plant Breed. 2017, 136, 400–409. [Google Scholar] [CrossRef]
- Lobos-Sujo, V.; Duncan, R. Evaluation of the Rfo introgression following recombination and mutation. In Proceedings of the Saskatoon: Proceedings of 14th International Rapeseed Congress, Saskatoon, AB, Canada, 5–9 July 2015. [Google Scholar]
- McVetty, P.B.E. Cytoplasmic Male Sterility; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Liu, X.-Q.; Liu, Z.-Q.; Yu, C.-Y.; Dong, J.-G.; Hu, S.-W.; Xu, A.-X. TGMS in rapeseed (Brassica napus) resulted in aberrant transcriptional regulation, asynchronous microsporocyte meiosis, defective tapetum, and fused sexine. Front. Plant Sci. 2017, 8, 1268. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.X.; Lei, W.X.; Hong, D.F.; He, J.P.; Wan, L.L.; Xu, Z.H.; Liu, P.W.; Yang, G.S. Development and primary genetic analysis of a fertility temperature-sensitive polima cytoplasmic male sterility restorer in Brassica napus. Plant Breed. 2007, 126, 297–301. [Google Scholar] [CrossRef]
- Banga, S.S.; Labana, K.S. Production of F1 hybrids using ethrel-induced male sterility in Indian mustard (Brassica juncea (L.) Coss.). J. Agric. Sci. 1983, 101, 453–455. [Google Scholar] [CrossRef]
- Singh, V. Benzotriazole-A New Chemical Hybridizing Agent for Brassica Juncea L. J. Cytol. Genet. 2001, 2, 81–83. [Google Scholar]
- Guan, C.Y.; Stringam, G.R. The effect of ZMA on inducing male sterility on spring canola. Crucif. Newsl. 1998, 20, 55–56. [Google Scholar]
- Torres Carbonell, F.; Ureta, S.; Pandolfo, C.; Presotto, A. Molecular characterization of imidazolinone-resistant Brassica rapa × B. napus hybrids. Environ. Monit. Assess. 2020, 192, 746. [Google Scholar] [CrossRef] [PubMed]
- Saari, L.L.; Cotterman, J.C.; Thill, D.C. Resistance to acetolactate synthase inhibiting herbicides. In Herbicide Resistance in Plants; CRC Press: Boca Raton, FL, USA, 2018; pp. 83–140. [Google Scholar]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [PubMed]
- Warwick, S.I.; Xu, R.; Sauder, C.; Beckie, H.J. Acetolactate Synthase Target-Site Mutations and Single Nucleotide Polymorphism Genotyping in ALS-Resistant Kochia (Kochia scoparia). Weed Sci. 2008, 56, 797–806. [Google Scholar] [CrossRef]
- Tranel, P.J.; Wright, T.R. Review Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Sci. 2002, 50, 700–712. [Google Scholar] [CrossRef]
Normal Gene | Mutated Gene (Mutation) | Marker Information | References | ||||||
---|---|---|---|---|---|---|---|---|---|
No | F | R | Restriction Enzyme | Method | Resistant | Susceptible | |||
BnAHAS1 | BnAHAS1R (Ser653Asp) | 1 | AP15F (AHAS1-C): CTTTCGCTAGCAGGGCTAAA | AP18R (AHAS1-S): CATCTTTGAAAGTGCCACAAC | - | PCR | - | 828 bp | [33,34] |
AP15F (AHAS1-C): CTTTCGCTAGCAGGGCTAAA | AP19R (AHAS1-R): CATCTTTGAAAGTGCCACAAT | - | 828 bp | - | |||||
2 | KBA1R19681913B, Common: CAGGACCATACCTGTTGGATGTGATA | KBA1R19681913B, X-allele: TATTACATCTTTGAAAGTGCCACCAC | - | KASP | - | - | [43] | ||
KBA1R19681913B, Common: CAGGACCATACCTGTTGGATGTGATA | KBA1R19681913B, Y-allele: GTTATTACATCTTTGAAAGTGCCACCAT | - | - | - | |||||
BnAHAS3 | BnAHAS3R (Trp574Leu) | 1 | BsrDI-AHAS3-F: GTTTGCGAGCAGGGCTAAGA | BsrDI-AHAS3-R: GACATCCAACAGGTACGGTCCA | BsrDI | PCR | 766 bp | 570 and 196 bp | [35] |
2 | KASP-A-1667-COM: TGGCGAACCCTGATGCGATTGTTGTGGAC | KASP-A-1667-HEX: GAAGGTCGGAGTCAACGGATTTAGCTTTGTAGAACCGATCTTCCA | - | KASP | - | - | [27] | ||
KASP-A-1667-COM: TGGCGAACCCTGATGCGATTGTTGTGGAC | KASP-A-1667-FAM: GAAGGTGACCAAGTTCATGCTGCTTTGTAGAACCGATCTTCCC | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozar, E.V.; Domblides, E.A. Imidazolinone Resistance in Oilseed Rape (Brassica napus L.): Current Status, Breeding, Molecular Markers and Prospects for Application in Hybrid Seed Purity Improvement. Horticulturae 2024, 10, 553. https://doi.org/10.3390/horticulturae10060553
Kozar EV, Domblides EA. Imidazolinone Resistance in Oilseed Rape (Brassica napus L.): Current Status, Breeding, Molecular Markers and Prospects for Application in Hybrid Seed Purity Improvement. Horticulturae. 2024; 10(6):553. https://doi.org/10.3390/horticulturae10060553
Chicago/Turabian StyleKozar, Elena Victorovna, and Elena Alekseevna Domblides. 2024. "Imidazolinone Resistance in Oilseed Rape (Brassica napus L.): Current Status, Breeding, Molecular Markers and Prospects for Application in Hybrid Seed Purity Improvement" Horticulturae 10, no. 6: 553. https://doi.org/10.3390/horticulturae10060553
APA StyleKozar, E. V., & Domblides, E. A. (2024). Imidazolinone Resistance in Oilseed Rape (Brassica napus L.): Current Status, Breeding, Molecular Markers and Prospects for Application in Hybrid Seed Purity Improvement. Horticulturae, 10(6), 553. https://doi.org/10.3390/horticulturae10060553