Drivers of and Barriers to the Implementation of Integrated Pest Management in Horticultural Crops
Conflicts of Interest
References
- Ehler, L.E. Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 2006, 62, 787–789. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, M.; Langrell, S.R.H.; Gomez-y-Paloma, S. Incentives and policies for integrated pest management in Europe: A review. Agron. Sustain. Dev. 2015, 35, 27–45. [Google Scholar] [CrossRef]
- Preti, M.; Verheggen, F.; Angeli, S. Insect pest monitoring with camera-equipped traps: Strengths and limitations. J. Pest Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
- Liu, C.; Zhai, Z.; Zhang, R.; Bai, J.; Zhang, M. Field pest monitoring and forecasting system for pest control. Front. Plant Sci. 2022, 13, 990965. [Google Scholar] [CrossRef]
- Trematerra, P. Aspects related to decision support tools and Integrated Pest Management in food chains. Food Control 2013, 34, 733–742. [Google Scholar] [CrossRef]
- Damos, P. Modular structure of web-based decision support systems for integrated pest management. A Review. Agron. Sustain. Dev. 2015, 35, 1347–1372. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Pajač Živković, I.; Lešić, V.; Lemić, D. Effect of climate change on introduced and native agricultural invasive insect pests in Europe. Insects 2021, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.B.; Bolda, M.P.; Goodhue, R.E.; Dreves, A.J.; Lee, J.C.; Bruck, D.J.; Walton, V.M.; O’Neal, S.D.; Zalom, F.G. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. 2011, 1, 1–7. [Google Scholar] [CrossRef]
- Lee, D.H. Current status of research progress on the biology and management of Halyomorpha halys (Hemiptera: Pentatomidae) as an invasive species. Appl. Entomol. Zool. 2015, 50, 277–290. [Google Scholar] [CrossRef]
- van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Wajnberg, E.; Roitberg, B.D.; Boivin, G. Using optimality models to improve the efficacy of parasitoids in biological control programmes. Entomol. Exp. Appl. 2016, 158, 2–16. [Google Scholar] [CrossRef]
- Bueno, A.D.F.; Sutil, W.P.; Maciel, R.M.A.; Roswadoski, L.; Colmenarez, Y.C.; Colombo, F.C. Challenges and opportunities of using egg parasitoids in FAW augmentative biological control in Brazil. Biol. Control 2023, 186, 105344. [Google Scholar] [CrossRef]
- Raven, P.H.; Wagner, D.L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 2021, 118, e2002548117. [Google Scholar] [CrossRef]
- Lessando, M.; Gontijo, M. Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol. Control 2019, 130, 155–163. [Google Scholar] [CrossRef]
- Kleijn, D.; Biesmeijer, K.J.C.; Klaassen, R.H.G.; Oerlemans, N.; Raemakers, I.; Scheper, J.; Vet, L.E.M. Integrating biodiversity conservation in wider landscape management: Necessity, implementation and evaluation. In Advances in Ecological Research; Bohan, D.A., Vanbergen, A.J., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 63, pp. 127–159. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Caltagirone, L.E.; Meikle, W. Evaluation of results: Economics of biological control. In Handbook of Biological Control; Bellows, T.S., Fisher, T.W., Eds.; Academic Press: San Diego, CA, USA, 1999; pp. 243–252. [Google Scholar]
- Hatt, S.; Boeraeve, F.; Artru, S.; Dufrene, M.; Francis, F. Spatial diversification of agroecosystems to enhance biological control and other regulating services: An agroecological perspective. Sci. Total Environ. 2018, 621, 600–611. [Google Scholar] [CrossRef]
- Tscharntkea, T.; Karp, D.S.; Chaplin-Kramer, R.; Batary, P.; DeClerck, F.; Grattone, C.; Hunt, L.; Ives, A.; Jonsson, M.; Larsen, A.; et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Conserv. 2016, 204, 449–458. [Google Scholar] [CrossRef]
- Jonsson, M.; Wratten, S.D.; Landis, D.A.; Tompkins, J.-M.L.; Cullen, R. Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biol. Invasions 2010, 12, 2933–2945. [Google Scholar] [CrossRef]
- Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.; Tylianakis, J.; van Nouhuys, S.; Vidal, S. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 2007, 43, 294–309. [Google Scholar] [CrossRef]
- Borsotto, P.; Borri, I.; Tartanus, M.; Zikeli, S.; Lepp, B.; Kelderer, M.; Holtz, T.; Friedl, M.; Boutry, C.; Neri, D.; et al. Innovative agricultural management in organic orchards and perception of their potential ecosystem services. Acta Hortic. 2022, 1354, 1–8. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Ellsworth, P.C.; Frisvold, G.B. Economic value of biological control in Integrated Pest Management of managed plant systems. Annu. Rev. Entomol. 2015, 60, 621–645. [Google Scholar] [CrossRef] [PubMed]
- Kevin, D.; Gallagher, K.D.; Ooi, P.A.C.; Kenmore, P.E. Impact of IPM Programs in Asian Agriculture. In Integrated Pest Management: Dissemination and Impact; Peshin, R., Dhawan, A.K., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 347–358. [Google Scholar]
- Freier, B.; Boller, E.F. Integrated Pest Management in Europe—History, Policy, Achievements and Implementation. In Integrated Pest Management: Dissemination and Impact; Peshin, R., Dhawan, A.K., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 435–454. [Google Scholar] [CrossRef]
- Jones, V.P.; Brunner, J.F.; Grove, G.G.; Petit, B.; Tangren, G.V.; Jones, W.E. A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Manag. Sci. 2010, 66, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Kuehne, G.; Llewellyn, R.; Pannell, D.J.; Wilkinson, R.; Dolling, P.; Ouzman, J.; Ewing, M. Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agric. Syst. 2017, 156, 115–125. [Google Scholar] [CrossRef]
- Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision support tools for agriculture: Towards effective design and delivery. Agric. Syst. 2016, 149, 165–174. [Google Scholar] [CrossRef]
- Arcega Rustia, D.J.; Chiu, L.-Y.; Lu, C.-Y.; Wu, Y.-F.; Chen, S.-K.; Chung, J.-Y.; Hsu, J.-C.; Lin, T.-T. Towards intelligent and integrated pest management through an AIoT-based monitoring system. Pest Manag. Sci. 2022, 78, 4288–4302. [Google Scholar] [CrossRef] [PubMed]
- Wandkar, S.; Bhatt, Y.C.; Jain, H.K.; Nalawade, S.M.; Pawar, S.G. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review. J. Inst. Eng. Ser. A 2018, 99, 385–390. [Google Scholar] [CrossRef]
- Potamitis, I.; Eliopoulos, P.; Rigakis, I. Automated Remote Insect Surveillance at a Global Scale and the Internet of Things. Robotics 2017, 6, 19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartanus, M.; Malusà, E. Drivers of and Barriers to the Implementation of Integrated Pest Management in Horticultural Crops. Horticulturae 2024, 10, 626. https://doi.org/10.3390/horticulturae10060626
Tartanus M, Malusà E. Drivers of and Barriers to the Implementation of Integrated Pest Management in Horticultural Crops. Horticulturae. 2024; 10(6):626. https://doi.org/10.3390/horticulturae10060626
Chicago/Turabian StyleTartanus, Małgorzata, and Eligio Malusà. 2024. "Drivers of and Barriers to the Implementation of Integrated Pest Management in Horticultural Crops" Horticulturae 10, no. 6: 626. https://doi.org/10.3390/horticulturae10060626
APA StyleTartanus, M., & Malusà, E. (2024). Drivers of and Barriers to the Implementation of Integrated Pest Management in Horticultural Crops. Horticulturae, 10(6), 626. https://doi.org/10.3390/horticulturae10060626