Organic Agricultural Practice: Crop Load Management Enhancing Quality and Storability of High-Russet Pears
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Tree Selection
2.2. Crop Load Management and Experimental Design
2.3. Skin Russeting Quantification
2.4. Yield and Fruit Quality Evaluations
2.5. Incidence of Physiological Disorders
2.6. Statistical Analysis
3. Results
3.1. Yield Efficiency and Yield Properties
3.2. Quality Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wójcik, P.; Skorupińska, A.; Filipczak, J. Impacts of preharvest fall sprays of calcium chloride at high rates on quality and ‘Conference’ pear storability. Sci. Hortic. 2014, 168, 51–57. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, S.; Han, H.; Kim, D. QTL analysis and CAPS marker development linked with russet in pear (Pyrus spp.). Plants 2022, 11, 3196. [Google Scholar] [CrossRef] [PubMed]
- Konarska, A. The relationship between the morphology and structure and the quality of fruits of two pear cultivars (Pyrus communis L.) during their development and maturation. Sci. World J. 2013, 2013, 846796. [Google Scholar] [CrossRef] [PubMed]
- Khanal, B.P.; Grimm, E.; Knoche, M. Russeting in apple and pear: A plastic periderm replaces a stiff cuticle. AoB PLANTS 2013, 5, pls048. [Google Scholar] [CrossRef] [PubMed]
- Falginella, L.; Cipriani, G.; Monte, C.; Gregori, R.; Testolin, R.; Velasco, R.; Troggio, M.; Tartarini, S. A major QTL controlling apple skin russeting maps on the linkage group 12 of ‘Renetta Grigia di Torriana’. BMC Plant Biol. 2015, 15, 150. [Google Scholar] [CrossRef] [PubMed]
- Inoue, E.; Kasumi, M.; Sakuma, F.; Anzai, H.; Amano, K.; Hara, H. Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Sci. Hortic. 2006, 107, 254–258. [Google Scholar] [CrossRef]
- Jia, B.; Cheng, Z.; Wang, Q.; Zhang, S.; Heng, W.; Zhu, L. Characterization of the composition and gene expression involved the shikimate pathway in the exocarp of ‘Dangshansuli’ pear and its russet mutant. Hortic. Environ. Biotechnol. 2021, 62, 125–134. [Google Scholar] [CrossRef]
- Sansavini, S. Pear fruiting-branch models related to yield control and pruning. Acta Hortic. 2002, 596, 627–633. [Google Scholar] [CrossRef]
- Maas, F.; van der Steeg, P. Crop load regulation in ‘Conference’ pears. Acta Hortic. 2011, 909, 369–379. [Google Scholar] [CrossRef]
- Hudina, M.; Štampar, F. Influence of NAA thinning on yield of pear (Pyrus communis L.) cvs. ‘Williams’, ‘Conference’ and ‘Harrow sweet’. In Proceedings of the 21st Scientific-Expert Conference of Agriculture and Food Industry, Sarajevo, Bosnia and Herzegovina, 29 September–2 October 2010; pp. 223–230. [Google Scholar]
- Pfeiffer, B.; Eis, B.; Zimmer, J.; Fieger-Metag, N. Optimizing crop loading of apples and pears—Results 2004–2006 (foliar fertilizers, thinning). In Proceedings of the Ecofruit-13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 18–20 February 2008; pp. 324–329. [Google Scholar]
- Wójcik, P. Quality and ‘Conference’ pear storability as influenced by preharvest sprays of calcium chloride. J. Plant Nutr. 2012, 35, 1970–1983. [Google Scholar] [CrossRef]
- Wünsche, J.N.; Ferguson, I.B. Crop load interactions in apple. Hortic. Rev. 2005, 31, 231–290. [Google Scholar]
- Guerra, M.; Casquero, P. Post-harvest quality of ‘Green Gage’ European plum in integrated production: Effects of year and fruit maturity. J. Hortic. Sci. Biotechnol. 2010, 85, 66–70. [Google Scholar] [CrossRef]
- Greene, D. Increasing the flowering of bearing apple trees with PGRs. HortScience 2008, 43, 1058. [Google Scholar]
- Maas, F.M.; Kanne, H.J.; van der Steeg, P.A.H. Chemical thinning of ‘Conference’ pears. Acta Hortic. 2010, 884, 293–304. [Google Scholar] [CrossRef]
- Janssens, P.; Deckers, T.; Elsen, F.; Elsen, A.; Schoofs, H.; Verjans, W.; Vandendriessche, H. Sensitivity of root pruned ‘Conference’ pear to water deficit in a temperate climate. Agric. Water Manag. 2011, 99, 58–66. [Google Scholar] [CrossRef]
- Suo, G.-D.; Xie, Y.-S.; Zhang, Y.; Cai, M.-Y.; Wang, X.-S.; Chuai, J.-F. Crop load management (CLM) for sustainable apple production in China. Sci. Hortic. 2016, 211, 213–219. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lee, S.-M.; Lee, M.-J.; Han, S.-Y.; Jung, H.-W.; Lee, Y.-H. Crop load adjustment based on branch vigor for producing uniform fruit in young apple trees. Hortic. J. 2015, 84, 202–213. [Google Scholar] [CrossRef]
- Bound, S.A. Optimising crop load and fruit quality of ‘Packham’s Triumph’ pear with ammonium thiosulfate, ethephon and 6-benzyladenine. Sci. Hortic. 2015, 192, 187–196. [Google Scholar] [CrossRef]
- Kacal, E. Crop load regulation with chemical thinners in Deveci pear (Pyrus communis L.). Appl. Ecol. Environ. Sci. 2018, 16, 7203–7212. [Google Scholar] [CrossRef]
- Kılıç, O.; Boz, I.; Eryılmaz, G.A. Comparison of conventional and good agricultural practices farms: A socio-economic and technical perspective. J. Clean. Prod. 2020, 258, 120666. [Google Scholar] [CrossRef]
- Guerra, M.; Sanz, M.Á.; Rodríguez-González, Á.; Casquero, P.A. Effect of sustainable preharvest and postharvest techniques on quality and storability of high-acidity ‘Reinette du Canada’ apple. Horticulturae 2022, 8, 86. [Google Scholar] [CrossRef]
- Winter, C.K.; Davis, S.F. Organic foods. J. Food Sci. 2006, 71, R117–R124. [Google Scholar] [CrossRef]
- Knight, K.W.; Newman, S. Organic agriculture as environmental reform: A cross-national investigation. Soc. Natur. Resour. 2013, 26, 369–385. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Z.; Gong, D.; Huang, C.; Ma, X.; Ma, X.; Yuan, F.; Fu, S.; Feng, C. Enhancing soil fertility and elevating pecan fruit quality through combined chemical and organic fertilization practices. Horticulturae 2024, 10, 25. [Google Scholar] [CrossRef]
- Ananthi, T.; Vennila, C. Influence of organic manures and inorganic fertilizers on growth and yield of fodder maize (Zea mays L.) grown in north eastern zone of Tamil Nadu. Curr. J. Appl. Sci. Technol. 2021, 40, 70–78. [Google Scholar] [CrossRef]
- Elakkiya, S.; Karthikeyan, C. An analytical study on training needs of farmers on organic farming. Int. J. Farm Sci. 2020, 10, 40–44. [Google Scholar] [CrossRef]
- Shuttleworth, L.A. Alternative disease management strategies for organic apple production in the United Kingdom. CABI Agric. Biosci. 2021, 2, 34. [Google Scholar] [CrossRef]
- Seehuber, C.; Damerow, L.; Kunz, A.; Blanke, M.M. Mechanical thinning of ‘Lucas’ and ‘Conference’ pear improves fruit quality. Acta Hortic. 2015, 1094, 289–295. [Google Scholar] [CrossRef]
- Bound, S.A. Managing Crop Load in European Pear (Pyrus communis L.)—A Review. Agriculture 2021, 11, 637. [Google Scholar] [CrossRef]
- Guerra, M.; Sanz, M.Á.; Rodríguez-González, Á.; Casquero, P.A. Summer pruning, an eco-friendly approach to controlling bitter pit and preserving sensory quality in highly vigorous apple cv. ‘Reinette du Canada’. Agriculture 2021, 11, 1081. [Google Scholar] [CrossRef]
- Lopez, G.; Larrigaudière, C.; Girona, J.; Behboudian, M.H.; Marsal, J. Fruit thinning in ‘Conference’ pear grown under deficit irrigation: Implications for fruit quality at harvest and after cold storage. Sci. Hortic. 2011, 129, 64–70. [Google Scholar] [CrossRef]
- Guerra, A.; Guerra, M. Evolución de Fruticultura y Poda de Árboles Frutales, 2nd ed.; Consejería de Agricultura y Ganadería: Valladolid, Spain, 2009; pp. 127–136. [Google Scholar]
- Lepsis, J.; Blanke, M.M. The trunk cross-section area as a basis for fruit yield modelling in intensive apple orchards. Acta Hortic. 2006, 707, 231–235. [Google Scholar] [CrossRef]
- Jakovljevic, G.; Miro, G.; Alvarez-Taboada, F. A deep learning model for automatic plastic mapping using Unmanned Aerial Vehicle (UAV) data. Remote Sens. 2020, 12, 1515. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Janssens, P.; Elsen, F.; Elsen, A.; Deckers, T.; Vandendriessche, H.; Verstraeten, W.W.; Coppin, P.; Sase, S.; DeMeloAbreu, J.P. Adapted soil water balance model for irrigation scheduling in ‘Conference’ pear orchards. Acta Hortic. 2011, 919, 39–46. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mašković, P. Do the rootstocks determine tree growth, productivity and fruit quality of pears, which grow on typical heavy and acidic soil? Erwerbs-Obstbau 2015, 57, 125–134. [Google Scholar] [CrossRef]
- Sidhu, R.S.; Hunt, I.; Bound, S.A.; Swarts, N.D. Crop load, fruit quality and mineral nutrition as predictors of fruit softening and internal flesh browning in modern firm fleshed apple cultivars. Sci. Hortic. 2024, 330, 113035. [Google Scholar] [CrossRef]
- Smith, H.M.; Samach, A. Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth. Plant Sci. 2013, 207, 158–167. [Google Scholar] [CrossRef]
- Bussi, C.; Genard, M. Thinning and pruning to overcome alternate bearing in peach trees. Eur. J. Hortic. Sci. 2014, 79, 313–317. [Google Scholar]
- Lauri, P.E.; Grappadelli, L.C. Tree architecture, flowering and fruiting—Thoughts on training, pruning and ecophysiology. Acta Hortic. 2014, 1058, 291–298. [Google Scholar] [CrossRef]
- Wouters, N.; De Ketelaere, B.; Deckers, T.; De Baerdemaeker, J.; Saeys, W. Multispectral detection of floral buds for automated thinning of pear. Comput. Electron. Agric. 2015, 113, 93–103. [Google Scholar] [CrossRef]
- Lace, B.; Lacis, G. Evaluation of pear (Pyrus communis L.) cultivars in Latvia. Hortic. Sci. 2015, 42, 107–113. [Google Scholar] [CrossRef]
- Link, H. Significance of flower and fruit thinning on fruit quality. Plant Growth Regul. 2000, 31, 17–26. [Google Scholar] [CrossRef]
- Baldassi, C.; Berim, A.; Roeder, S.; Losciale, P.; Serra, S.; Gang, D.R.; Musacchi, S. Rootstock and crop load effects on ‘honeycrisp’ photosynthetic performance and carbohydrate accumulation. Plants 2023, 12, 4035. [Google Scholar] [CrossRef] [PubMed]
- Plocharski, W.J.; Konopacka, D. The relation between mechanical and sensory parameters of apples and pears. Acta Hortic. 1999, 485, 309–317. [Google Scholar] [CrossRef]
- Torregrosa, L.; Echeverria, G.; Illa, J.; Giné-Bordonaba, J. Ripening behaviour and consumer acceptance of ‘Conference’ pears during shelf life after long term DCA-storage. Postharvest Biol. Technol. 2019, 155, 94–101. [Google Scholar] [CrossRef]
- Johnston, J.W.; Hewett, E.W.; Hertog, M.L.A.T.M.; Harker, R. Harvest date and fruit size affect postharvest softening of apple fruit. J. Hortic. Sci. Biotechnol. 2002, 77, 355–360. [Google Scholar] [CrossRef]
- Iwanami, H.; Moriya-Tanaka, Y.; Hanada, T.; Baba, T.; Sakamoto, D. Meteorological and tree-management factors related to soluble solids content of apple fruit and crop load management for producing high soluble solids content fruit in high-density planted ‘Fuji’. Sci. Hortic. 2023, 310, 111755. [Google Scholar] [CrossRef]
- Colás-Medà, P.; Abadias, M.; Alegre, I.; Usall, J.; Viñas, I. Effect of ripeness stage during processing on Listeria monocytogenes growth on fresh-cut ‘Conference’ pears. Food Microbiol. 2015, 49, 116–122. [Google Scholar] [CrossRef]
- Scharwies, J.D.; Grimm, E.; Knoche, M. Russeting and relative growth rate are positively related in ‘Conference’ and ‘Condo’ pear. HortScience 2014, 49, 746–749. [Google Scholar] [CrossRef]
- Guerra, M.; Casquero, P.A.; Valenciano, J.B. Evolución de madurez de pera Conferencia mediante diferentes técnicas de conservación frigorífica. In Innovaciones Fisiológicas y Tecnológicas de la Maduración y Post-Recolección de frutas y Hortalizas; Valero, D., Serrano, M., Eds.; Limencop S.L.: Elche, Spain, 2006; pp. 37–40. [Google Scholar]
Crop Load Level | Year 1 | Year 2 | ||||
---|---|---|---|---|---|---|
Minimum | Mean | Maximum | Minimum | Mean | Maximum | |
Low | 168.06 | 288.77 | 365.93 | 34.58 | 81.10 | 119.85 |
High | 510.03 | 651.46 | 919.60 | 219.59 | 332.95 | 760.51 |
Mean | 470.12 | 207.02 |
Factor | <55 mm (%) | 55–60 mm (%) | 60–65 mm (%) | 65–70 mm (%) | >70 mm (%) | Fresh-Market Yield (%) | Fruit Mass (g) | |
---|---|---|---|---|---|---|---|---|
Crop load | Low | 19.26 b 1 | 10.39 b | 11.60 a | 13.04 a | 45.72 a | 70.35 a | 237.16 a |
High | 24.55 a | 12.44 a | 11.92 a | 12.08 a | 39.01 b | 63.01 b | 219.22 b | |
Year | 1 | 41.51 a | 20.07 a | 17.67 a | 12.96 a | 7.80 b | 38.42 b | 170.55 b |
2 | 2.30 b | 2.76 b | 5.85 b | 12.16 a | 76.93 a | 94.94 a | 285.83 a | |
Main effects 2 | ||||||||
Crop load | * | * | ns | ns | ** | ** | * | |
Year | *** | *** | *** | ns | *** | *** | *** | |
Interaction | ||||||||
Crop load × Year | ns | ns | * | * | ns | ns | ns |
Storage Stage | Factor | h° | Firmness (N) | SI (1–10) | TSS (%) | TA (%) | |
---|---|---|---|---|---|---|---|
Harvest | Crop load | Low | 115.00 a 1 | 52.18 a | 5.02 b | 12.64 a | 0.217 a |
High | 114.84 a | 48.81 b | 5.78 a | 12.62 a | 0.201 b | ||
Year | 1 | 114.26 b | 51.05 a | 5.93 a | 12.06 b | 0.203 b | |
2 | 115.58 a | 49.94 a | 4.87 b | 13.20 a | 0.215 a | ||
Main effects 2 | |||||||
Crop load | ns | *** | ** | ns | ** | ||
Year | *** | ns | *** | *** | * | ||
Interaction | |||||||
Crop load × Year | ns | ns | * | ns | ns | ||
Postharvest | Crop load | Low | 106.83 a | 21.89 a | - | 13.78 a | 0.180 a |
High | 106.12 a | 18.74 b | - | 13.88 a | 0.159 b | ||
Year | 1 | 106.74 a | 24.35 a | - | 13.20 b | 0.171 a | |
2 | 106.22 a | 16.29 b | - | 14.46 a | 0.169 a | ||
Main effects | |||||||
Crop load | ns | * | - | ns | *** | ||
Year | ns | *** | - | *** | ns | ||
Interaction | |||||||
Crop load × Year | ns | ns | - | ns | ns |
Factor | Weighted Mean | Mean | |
---|---|---|---|
Crop load | Low | 47.51 a 1 | 47.22 a |
High | 39.03 b | 38.22 b | |
Year | 1 | 39.58 b | 38.20 b |
2 | 46.96 a | 47.24 a | |
Main effects 2 | |||
Crop load | ** | ** | |
Year | * | ** | |
Interaction | |||
Crop load × Year | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, M.; Álvarez-Taboada, F.; Marabel, V.; Felices, A.M.; Rodríguez-González, Á.; Casquero, P.A. Organic Agricultural Practice: Crop Load Management Enhancing Quality and Storability of High-Russet Pears. Horticulturae 2024, 10, 686. https://doi.org/10.3390/horticulturae10070686
Guerra M, Álvarez-Taboada F, Marabel V, Felices AM, Rodríguez-González Á, Casquero PA. Organic Agricultural Practice: Crop Load Management Enhancing Quality and Storability of High-Russet Pears. Horticulturae. 2024; 10(7):686. https://doi.org/10.3390/horticulturae10070686
Chicago/Turabian StyleGuerra, Marcos, Flor Álvarez-Taboada, Verónica Marabel, Amanda M. Felices, Álvaro Rodríguez-González, and Pedro A. Casquero. 2024. "Organic Agricultural Practice: Crop Load Management Enhancing Quality and Storability of High-Russet Pears" Horticulturae 10, no. 7: 686. https://doi.org/10.3390/horticulturae10070686
APA StyleGuerra, M., Álvarez-Taboada, F., Marabel, V., Felices, A. M., Rodríguez-González, Á., & Casquero, P. A. (2024). Organic Agricultural Practice: Crop Load Management Enhancing Quality and Storability of High-Russet Pears. Horticulturae, 10(7), 686. https://doi.org/10.3390/horticulturae10070686