Agronomic and Functional Quality Traits in Various Underutilized Hot Pepper Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Sampling
2.2. Evaluation of the Main Agronomic Characteristics
2.3. Determination of Capsaicinoid Content
2.4. Determination of Carotenoid and Tocopherol Content
2.5. Determination of Total Vitamin C Content
2.6. Determination of Total Phenolic Content
2.7. Measurement of the Radical Scavenging Activity
2.8. Statistical Analysis
3. Results
3.1. Agronomic and Physico-Chemical Traits
3.2. Functional Quality Traits
3.2.1. Capsaicinoid Content
3.2.2. Carotenoid Content
3.2.3. Tocopherol Content
3.2.4. Total Vitamin C Content
3.2.5. Total Phenols
3.2.6. Radical Scavenging Activity
3.3. Correlation Analysis
3.4. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DGPA. ONAGRI. Observatoire National de l’Agriculture-Tunis, Tunisie. Production and Average Yield of Pepper Culture in Tunisia. 2022. Available online: http://www.onagri.nat.tn/uploads/filieres/fruits-legumes/Fiche-signaletique-des-cultures-maraicheres-en-Tunisie-HD.pdf (accessed on 16 June 2024).
- GICA. Groupement des Conserves Alimentaires. Pepper Processing in Tunisia. Available online: www.GICA.tn (accessed on 20 June 2024).
- Duah, S.A.; Souza, C.S.; Daood, H.G.; Pék, Z.; Neményi, A.; Helyes, L. Content and response to Ɣ-irradiation before over-ripening of capsaicinoid, carotenoid, and tocopherol in new hybrids of spice chili peppers. LWT Food Sci. Technol. 2021, 147, 111–555. [Google Scholar] [CrossRef]
- Korkmaz, A.; Atasoy, A.F.; Hayaloglu, A.A. The effects of production methods on the color characteristics, capsaicinoid content and antioxidant capacity of pepper spices (C. annuum L.). Food Chem. 2021, 341, 128–184. [Google Scholar] [CrossRef] [PubMed]
- Civan, M.; Kumcuoglu, S. Green ultrasound-assisted extraction of carotenoid and capsaicinoid from the pulp of hot pepper paste based on the bio-refinery concept. LWT Food Sci. Technol. 2019, 113, 108–320. [Google Scholar] [CrossRef]
- Votava, E.J.; Baral, J.B.; Bosland, P.W. Genetic diversity of chile (Capsicum annuum var. annuum L.) landraces from northern New Mexico, Colorado, and Mexico. Econ. Bot. 2005, 59, 8–17. [Google Scholar] [CrossRef]
- Rivera, A.; Monteagudo, A.B.; Igartua, E.; Taboada, A.; García-Ulloa, A.; Pomar, F.; Riveiro-Leira, M.; Silvar, C. Assessing genetic and phenotypic diversity in pepper (Capsicum annuum L.) landraces from North-West Spain. Sci. Hort. 2016, 203, 1–11. [Google Scholar] [CrossRef]
- Liu, W.Y.; Yang, H.B.; Jo, Y.D.; Jeong, H.J.; Kang, B.C. Classical genetics and traditional breeding in peppers. In Genetics, Genomics and Breeding of Peppers and Eggplants; Kang, B.C., Kole, C., Eds.; CRC Press: London, UK, 2013; pp. 16–39. [Google Scholar]
- Patil, B.S.; Crosby, K.; Byrne, D.; Hirschi, K. The intersection of plant breeding, human health, and nutritional security: Lessons learned and future perspectives. Sci. Hortic. 2014, 49, 116–127. [Google Scholar] [CrossRef]
- Hamza, N.; Jebari, H.; R’him, T.; Hdider, C.; Khamassy, N.; Ilahy, R.; Tlili, I. Historique et principaux acquis de l’INRAT en matière de cultures maraîchères. Ann. de l’INRAT 2013, 86, 139–148. [Google Scholar]
- Corrado, G.; Caramante, M.; Piffanelli, P.; Rao, R. Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Sci. Hortic. 2014, 168, 138–144. [Google Scholar] [CrossRef]
- Abu-Zahra, T.R. Influence of agricultural practices on fruit quality of bell pepper. Pak. J. Biol. Sci. 2011, 14, 876. [Google Scholar] [CrossRef] [PubMed]
- Ilić, Z.S.; Kevrešan, Ž.; Mastilović, J.; Zorić, L.; Tomšik, A.; Belović, M.; Pestorić, M.; Karanović, D.; Luković, J. Evaluation of mineral profile, texture, sensory and structural characteristics of old pepper landraces. J. Food Process. Preserv. 2017, 41, e13141. [Google Scholar] [CrossRef]
- Brilhante, B.D.G.; Santos, T.; Júnior, J.C.; Rodrigues, V.A.P.; Almeida, R.; Santos, J.O.; Neto, J.S.; Júnior, A.C.S.; Menini, L.; Bento, C.; et al. Fruit quality and morphoagronomic characterization of a Brazilian Capsicum germplasm collection. Genet. Mol. Res. 2024, 23, GMR19197. [Google Scholar]
- Siddique, M.I.; Wai, K.P.P.; Mo, H.-S.; Yoo, H.-J.; Jang, K.-S.; Jeon, S.-G.; Hwang, J.-E.; Kim, B.-S. Resistance to Phytophthora capsici, restorer-offertility genotype for cytoplasmic male sterility and chemical quality components of breeding lines developed for improvement of Subicho, a land race of pepper in Yeongyang. Hortic. Sci. Technol. 2017, 35, 758–768. [Google Scholar] [CrossRef]
- Jeeatid, N.; Suriharn, B.; Techawongstien, S.; Chanthai, S.; Bosland, P.W.; Techawongstien, S. Evaluation of the effect of genotype-by-environment interaction on capsaicinoid production in hot pepper hybrids (Capsicum chinense Jacq.) under controlled environment. Sci. Hortic. 2018, 235, 334–339. [Google Scholar] [CrossRef]
- Ficiciyan, A.M.; Loos, J.; Tscharntke, T. Similar yield benefits of hybrid, conventional, and organic tomato and sweet pepper varieties under well-watered and drought-stressed conditions. Front. Sustain. Food Syst. 2021, 5, 628537. [Google Scholar] [CrossRef]
- Alam, M.A.; Saleh, M.; Mohsin, G.M.; Nadirah, T.A.; Aslani, F.; Rahman, M.M.; Roy, S.K.; Juraimi, A.S.; Alam, M.Z. Evaluation of phenolics, capsaicinoids, antioxidant properties, and major macro-micro minerals of some hot and sweet peppers and ginger land-races of Malaysia. J. Food Process. Preserv. 2020, 44, e14483. [Google Scholar] [CrossRef]
- Díaz-Sánchez, D.D.; López-Sánchez, H.; Silva-Rojas, H.V.; Gardea-Béjar, A.A.; Cruz-Huerta, N.; Ramírez-Ramírez, I.; González-Hernández, V.A. Pungency and fruit quality in Mexican landraces of piquín pepper (Capsicum annuum var. glabriusculum) as affected by plant growth environment and postharvest handling. Chil. J. Agric. Res. 2021, 81, 546–556. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E.; Sánchez-Prieto, M.; Olmedilla-Alonso, B. Assessment of carotenoid concentrations in red peppers (Capsicum annuum) under domestic refrigeration for three weeks as determined by HPLC-DAD. Food Chem. 2020, 6, 100092. [Google Scholar] [CrossRef]
- Maiani, G.; Castón, M.J.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, S194–S218. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Ro, N.; Kim, J.; Ko, H.C.; Lee, S.; Oh, H.; Kim, B.; Lee, H.-S.; Lee, G.A. Characterization of diverse pepper (Capsicum spp.) germplasms based on agro-morphological traits and phytochemical contents. J. Agron. 2023, 13, 2665. [Google Scholar] [CrossRef]
- Da Silveira Agostini-Costa, T.; da Silva Gomes, I.; de Melo, L.A.M.P.; Reifschneider, F.J.B.; da Costa Ribeiro, C.S. Carotenoid and total vitamin C content of peppers from selected Brazilian cultivars. J. Food Compos. Anal. 2017, 57, 73–79. [Google Scholar] [CrossRef]
- García-Vásquez, R.; Vera-Guzmán, A.M.; Carrillo-Rodríguez, J.C.; Pérez-Ochoa, M.L.; Aquino-Bolaños, E.N.; Alba-Jiménez, J.E.; Chávez-Servia, J.L. Bioactive and nutritional compounds in fruits of pepper (Capsicum annuum L.) landraces conserved among indigenous communities from Mexico. AIMS Agric. Food 2023, 8, 832–850. [Google Scholar] [CrossRef]
- Ramírez-Aragón, M.G.; Troyo-Diéguez, E.; Preciado-Rangel, P.; Borroel-García, V.J.; García-Carrillo, E.M.; García-Hernández, J.L. Antioxidant profile of hot and sweet pepper cultivars by two extraction methods. Hortic. Bras. 2023, 40, 411–417. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Mendel, H. Content and stability of R-tocopherol in fresh and dehydrated pepper fruits (Capsicum annuum L.). J. Agric. Food Chem. 1979, 27, 1316–1318. [Google Scholar] [CrossRef] [PubMed]
- Laayouni, Y.; Tlili, I.; Henane, I.; Ali, A.B.; Égei, M.; Takács, S.; Azam, M.; Siddiqui, M.W.; Daood, H.; Pék, Z.; et al. Phytochemical profile and antioxidant activity of some open-field ancient-tomato (Solanum lycopersicum L.) genotypes and promising breeding lines. J. Hortic. 2023, 9, 1180. [Google Scholar] [CrossRef]
- Chen, Y.; Min, Z.; Fan, D.; Kai, F.; Wang, X. Linear regression between CIE-Lab color parameters and organic matter in soils of tea plantations. Eurasian Soil Sci. 2018, 51, 199–203. [Google Scholar] [CrossRef]
- Daood, H.G.; Halasz, G.; Palotás, G.; Palotás, G.; Bodai, Z.; Helyes, L. HPLC determination of capsaicinoids with cross-linked C18 column and buffer-free eluent. J. Chromatogr. Sci. 2015, 53, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Z.; Daood, H.; Koncsek, A.; Molnár, H.; Helyes, L. The simultaneous determination of capsaicinoids, tocopherols, and carotenoids in pungent pepper powder. J. Liq. Chromatogr. 2017, 40, 199–209. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radic. Res. 1997, 26, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Barbero, G.F.; Ruiz, A.G.; Liazid, A.; Palma, M.; Vera, J.C.; Barroso, C.G. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.). Food Chem. 2014, 153, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Aguilar, C.C.; Castilla, L.L.; Pacheco, N.; Cuevas-Bernardino, J.C.; Garruña, R.; Andueza-Noh, R.H. Phenotypic diversity and capsaicinoid content of chilli pepper landraces (Capsicum spp.) from the Yucatan Peninsula. Plant Genet. Resour. 2021, 19, 159–166. [Google Scholar] [CrossRef]
- Martínez-Ispizua, E.; Martínez-Cuenca, M.R.; Marsal, J.I.; Díez, M.J.; Soler, S.; Valcárcel, J.V.; Calatayud, Á. Bioactive compounds and antioxidant capacity of Valencian pepper landraces. Molecules 2021, 26, 1031. [Google Scholar] [CrossRef] [PubMed]
- Osuna-Garcia, J.A.; Wall, M.M.; Waddell, C.A. Endogenous levels of tocopherols and ascorbic acid during fruit ripening of New Mexican-type chile (Capsicum annuum L.) cultivars. J. Agric. Food Chem. 1998, 46, 5093–5096. [Google Scholar] [CrossRef]
- Karaman, K.; Pinar, H.; Ciftci, B.; Kaplan, M. Characterization of phenolics and tocopherol profile, capsaicinoid composition and bioactive properties of fruits in interspecies (Capsicum annuum x Capsicum frutescens) recombinant inbred pepper lines (RIL). Food Chem. 2023, 423, 136173. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Wheeler, G.L. Ascorbic acid in plants: Biosynthesis and function. Crit. Rev. Plant Sci. 2000, 19, 267–290. [Google Scholar] [CrossRef]
- Martínez, S.; López, M.; González-Raurich, M.; Bernardo Álvarez, A. The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). Int. J. Food Sci. Nutr. 2005, 56, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Howard, L.R.; Villalon, B. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J. Food Sci. 1995, 60, 473–476. [Google Scholar] [CrossRef]
- Kumar, O.A.; Rao, S.A.; Tata, S.S. Phenolics quantification in some genotypes of Capsicum annuum L. J. Phytol. Phytophysiol. 2010, 2, 87–90. Available online: www.journal-phytology.com (accessed on 20 June 2024).
- Ferrari, C.K.B.; Torres, E.A.F.S. Biochemical pharmacology of functional foods and prevention of chronic diseases of aging. Biomed. Pharmacother. 2003, 57, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Oboh, G.; Rocha, J.B.T. Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. Eur. Food Res. Technol. 2006, 225, 239–247. [Google Scholar] [CrossRef]
- Constantino, L.V.; Fukuji, A.Y.S.; Zeffa, D.M.; Baba, V.Y.; Corte, E.D.; Giacomin, R.M.; Vilela Resende, J.T.; Gonçalves, L.S.A. Genetic variability in peppers accessions based on morphological, biochemical and molecular traits. Bragantia 2020, 79, 558–571. [Google Scholar] [CrossRef]
Landraces | Earliness | Fruit Shape | Intended Use | Yeald per Plant (g Plant−1) | Average Fruit Length (cm) | Average Fruit Weight (g) |
---|---|---|---|---|---|---|
Dhirat | Early | Elongate | Fresh market | 1480.58 ± 36.11 d | 11.67 ± 1.11 de | 22.25 ± 0.83 d |
Semmane | Late | Elongate | Fresh market | 1687.25 ± 40.00 c | 17.33 ± 1.78 abc | 34.33 ± 1.11 bc |
Beldi | Early | Elongate | Fresh market/Processing | 1755.08 ± 56.22 c | 18.00 ± 2.00 abc | 34.33 ± 1.11 bc |
Nabeul | Late | Elongate | Fresh market | 1720.83 ± 56.22 c | 18.67 ± 2.44 ab | 35.58 ± 0.89 bc |
Jerid | Early | Triangular | Pickling | 1163.25 ± 47.17 e | 5.33 ± 1.56 f | 6.5 ± 0.5 f |
Mahdia | Late | Elongate | Fresh market | 1634.92 ± 22.55 c | 13.67 ± 1.11 cde | 33.83 ± 0.39 c |
Cayenne | Very late | Elongate | Pickling | 1997.33 ± 11.61 a | 9.33 ± 1.56 ef | 14.25 ± 0.5 e |
Kairouan | Late | Elongate | Fresh market/processing | 1841.67 ± 17.94 b | 20.33 ± 2.22 a | 37.75 ± 0.17 a |
Baklouti | Late | Triangular | Fresh market/processing | 1644.08 ± 29.61 c | 14.67 ± 1.78 bcd | 35.75 ± 0.17 b |
Landraces | Soluble Solids (°Brix) | pH | Titratable Acidity (%) | a* | b* | a*/b* |
---|---|---|---|---|---|---|
Dhirat | 10.6 ± 0.3 bc | 4.95 ± 0.01 c | 0.21 ± 0.01 bcd | 36.68 ± 0.76 bc | 40.47 ± 0.04 bc | 0.91 ± 0.02 bcd |
Semmane | 9.1 ± 0.1 e | 4.93 ± 0.05 cd | 0.16 ± 0.04 f | 40.33 ± 1.27 a | 44.81 ± 1.52 a | 0.90 ± 0.01 bcd |
Beldi | 12.2 ± 0.36 a | 4.97 ± 0.02 c | 0.19 ± 0.01 def | 40.9 ± 1.38 a | 43.59 ± 0.76 a | 0.94 ± 0.01 abc |
Nabeul | 10.9 ± 0.9 bc | 4.85 ± 0.02 cd | 0.31 ± 0.03 a | 33.94 ± 1.23 c | 39.32 ± 0.94 c | 0.87 ± 0.03 d |
Jerid | 10.63 ± 0.06 bc | 5.02 ± 0.01 c | 0.22 ± 0.02 bcd | 40.57 ± 0.98 a | 42.9 ± 1.20 ab | 0.95 ± 0.00 ab |
Mahdia | 10.6 ± 0.53 bc | 5.35 ± 0.00 b | 0.16 ± 0.00 ef | 34.82 ± 1.43 c | 38.36 ± 1.87 c | 0.91 ± 0.01 bcd |
Cayenne | 9.6 ± 0.1 de | 5.60 ± 0.35 a | 0.20 ± 0.30 cde | 38.81 ± 1.2 ab | 39.82 ± 1.16 c | 0.97 ± 0.00 a |
Kairouan | 10.1 ± 0.7 cd | 5.02 ± 0.00 c | 0.24 ± 0.03 bc | 41.35 ± 0.59 a | 44.48 ± 1.68 a | 0.93 ± 0.02 abc |
Baklouti | 11.4 ± 0.2 ab | 4.72 ± 0.01 e | 0.25 ± 0.01 b | 35.43 ± 0.77 c | 39.58 ± 0.53 c | 0.89 ± 0.03 cd |
Landraces | Capsaicin (µg g−1 fw) | Dihydrocapsaicin (µg g−1 fw) | Nordihydrocapsaicin (µg g−1 fw) | Homocapsaicin (µg g−1 fw) | Homodihydrocapsaicin (µg g−1 fw) | Total Capsaicinoids (µg g−1 fw) |
---|---|---|---|---|---|---|
Dhirat | 67.36 ± 6.46 c | 67.60 ± 7.65 a | 12.62 ± 1.28 b | 1.26 ± 0.12 a | 3.09 ± 0.15 b | 151.94 ± 15.66 b |
Semmane | 19.84 ± 0.18 d | 12.48 ± 0.16 b | 1.60 ± 0.01 d | 1.15 ± 0.01 b | 1.58 ± 0.04 e f | 36.65 ± 0.32 c |
Beldi | 0.72 ± 0.26 e | 2.37 ± 1.06 c | 0.07 ± 0.01 e | n.d. | 2.52 ± 0.08 c | 5.68 ± 1.41 d |
Nabeul | 0.78 ± 0.06 e | 0.83 ± 0.09 c | 0.02 ± 0.02 e | 0.01 ± 0.00 c | 2.12 ± 0.07 c d | 3.76 ± 0.03 d |
Jerid | 108.6 ± 0.67 a | 68.21 ± 0.47 a | 12.99 ± 0.13 b | n.d. | 3.90 ± 0.05 a | 193.71 ± 1.32 a |
Mahdia | 1.07 ± 0.01 e | 0.49 ± 0.01 d | 0.12 ± 0.00 e | n.d. | 1.32 ± 0.08 fg | 3.01 ± 0.09 d |
Cayenne | 19.97 ± 0.46 d | 12.40 ± 0.78 c | 6.48 ± 0.81 c | 0.16 ± 0.00 c | 3.11 ± 0.47 b | 42.12 ± 2.52 c |
Kairouan | 0.54 ± 0.14 e | 0.29 ± 0.03 d | 0.06 ± 0.01 e | n.d. | 0.92 ± 0.01 g | 1.81 ± 0.19 d |
Baklouti | 93.25 ± 1.79 b | 68.36 ± 1.92 d | 23.12 ± 0.46 a | n.d. | 1.94 ± 0.03 de | 186.67 ± 4.13 a |
Landraces | Capsorubin (µg g−1 fw) | Violaxanthin (µg g−1 fw) | Lutein (µg g−1 fw) | Zeaxanthin (µg g−1 fw) | β-Cryptoxanthin (µg g−1 fw) | β-Carotene (µg g−1 fw) | Total Carotenoids (µg g−1 fw) |
---|---|---|---|---|---|---|---|
Dhirat | 2.27 ± 0.12 c | 1.58 ± 0.07 cd | 4.55 ± 2.90 b | 10.41 ± 1.01 bc | 8.86 ± 0.41 cd | 25.44 ± 16.80 de | 53.12 ± 18.10 d |
Semmane | 2.95 ± 0.32 bc | 2.36 ± 0.14 b | 0.62 ± 0.04 c | 27.80 ± 3.16 a | 27.11 ± 3.17 a | 113.68 ± 14.27 a | 174.52 ± 21.09 a |
Beldi | 3.91 ± 0.09 ab | 2.10 ± 0.08 bc | 1.54 ± 0.11 c | 7.24 ± 3.69 c | 12.72 ± 0.27 bc | 43.44 ± 2.07 cd | 70.94 ± 1.26 cd |
Nabeul | 2.60 ± 0.14 c | 1.51 ± 0.03 cd | 0.96 ± 0.04 c | 9.39 ± 0.09 bc | 7.32 ± 0.12 d | 32.97 ± 1.15 cde | 54.75 ± 1.28 d |
Jerid | 4.89 ± 0.30 a | 5.14 ± 0.28 a | 0.88 ± 0.06 c | 16.04 ± 1.87 b | 26.76 ± 2.50 a | 93.69 ± 7.69 a | 147.40 ± 12.70 a |
Mahdia | 4.43 ± 0.43 a | 1.48 ± 0.16 cd | 7.19 ± 4.23 a | 11.83 ± 1.14 bc | 9.10 ± 0.81 cd | 30.30 ± 3.39 de | 64.33 ± 10.16 d |
Cayenne | 2.10 ± 0.01 c | 1.65 ± 0.16 bcd | 7.63 ± 4.86 a | 14.98 ± 0.04 b | 14.55 ± 0.06 b | 55.68 ± 0.29 bc | 96.60 ± 4.64 bc |
Kairouan | 5.01 ± 0.08 a | 1.38 ± 0.01 cd | 5.63 ± 3.18 b | 10.77 ± 0.24 bc | 8.83 ± 0.02 cd | 14.32 ± 8.98 e | 45.94 ± 5.97 d |
Baklouti | 1.85 ± 1.23 c | 1.06 ± 0.71 cd | 8.25 ± 5.32 a | 7.35 ± 0.35 c | 12.77 ± 1.32 bc | 70.97 ± 2.69 b | 102.25 ± 5.53 b |
Landraces | α-Tocopherol (µg g−1 fw) | β-Tocopherol (µg g−1 fw) | γ-Tocopherol (µg g−1 fw) | Total Tocopherols (µg g−1 fw) |
---|---|---|---|---|
Dhirat | 19.96 ± 2.11 c | 1.15 ± 0.08 a | 0.02 ± 0.01 d | 21.13 ± 2.20 c |
Semmane | 22.84 ± 1.87 bc | 0.33 ± 0.03 de | 0.15 ± 0.02 b | 23.32 ± 1.92 bc |
Beldi | 30.93 ± 1.23 a | 0.25 ± 0.02 ef | 0.18 ± 0.02 a | 31.36 ± 1.26 a |
Nabeul | 26.92 ± 1.03 ab | 0.59 ± 0.03 bc | 0.14 ± 0.01 b | 27.65 ± 1.07 ab |
Jerid | 30.55 ± 5.09 a | 0.66 ± 0.11 b | 0.03 ± 0.02 d | 31.24 ± 5.21 a |
Mahdia | 19.67 ± 0.84 e | 0.11 ± 0.02 f | 0.07 ± 0.01 c | 19.85 ± 0.86 c |
Cayenne | 22.34 ± 0.62 bc | 0.42 ± 0.03 de | n.d. | 22.77 ± 0.62 bc |
Kairouan | 19.03 ± 0.29 c | 0.36 ± 0.01 de | n.d. | 19.38 ± 0.30 c |
Baklouti | 19.50 ± 2.04 c | 0.46 ± 0.10 cd | n.d. | 19.96 ± 2.14 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouikhi, M.; Tlili, I.; Henane, I.; Takács, S.; Daood, H.; Pék, Z.; Helyes, L.; Montefusco, A.; De Caroli, M.; Di Sansebastiano, G.P.; et al. Agronomic and Functional Quality Traits in Various Underutilized Hot Pepper Landraces. Horticulturae 2024, 10, 710. https://doi.org/10.3390/horticulturae10070710
Chouikhi M, Tlili I, Henane I, Takács S, Daood H, Pék Z, Helyes L, Montefusco A, De Caroli M, Di Sansebastiano GP, et al. Agronomic and Functional Quality Traits in Various Underutilized Hot Pepper Landraces. Horticulturae. 2024; 10(7):710. https://doi.org/10.3390/horticulturae10070710
Chicago/Turabian StyleChouikhi, Marwa, Imen Tlili, Imen Henane, Sándor Takács, Hussein Daood, Zoltàn Pék, Lajos Helyes, Anna Montefusco, Monica De Caroli, Gian Pietro Di Sansebastiano, and et al. 2024. "Agronomic and Functional Quality Traits in Various Underutilized Hot Pepper Landraces" Horticulturae 10, no. 7: 710. https://doi.org/10.3390/horticulturae10070710
APA StyleChouikhi, M., Tlili, I., Henane, I., Takács, S., Daood, H., Pék, Z., Helyes, L., Montefusco, A., De Caroli, M., Di Sansebastiano, G. P., Azam, M., Siddiqui, M. W., Ilahy, R., Lenucci, M. S., & R’him, T. (2024). Agronomic and Functional Quality Traits in Various Underutilized Hot Pepper Landraces. Horticulturae, 10(7), 710. https://doi.org/10.3390/horticulturae10070710