Yield and Heat Unit Requirements for Several Citrus Cultivars over Several Seasons in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Site and Plant Description
2.2. Measurements and Calculations of the Related Variables
2.2.1. Calculating Daily Heat Units (DHUs)
2.2.2. Climatic Data
2.2.3. Yield Determination
2.3. Statistical Analysis
3. Results and Discussion
3.1. The Time Cycle from Plant Growth to Harvesting Periods
3.2. Analysis of the Collected Meteorological Data
3.3. Citrus Cultivars’ Yield Responses to the Investigated Seasons
3.4. Statistical Analysis of Citrus Yield Responses Based on the Investigated Seasons
3.5. Citrus Cultivars’ Yield Responses to Climate Parameters
3.6. DHUs Requirements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Saif, A.M.; Abdel-Sattar, M.; Eshra, D.H.; Sas-Paszt, L.; Mattar, M.A. Predicting the chemical attributes of fresh citrus fruits using artificial neural network and linear regression models. Horticulturae 2022, 8, 1016. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. FAO Statistical Databases 2020. Available online: https://www.fao.org/faostat/ (accessed on 22 August 2022).
- Tanaka, T. Fundamental discussion of Citrus classification. Stud. Citrog. 1977, 14, 1–6. [Google Scholar]
- Taia, W.K.; Ibrahim, M.M.; Abdel-Sattar, M. Pollen morphological variations among some cultivated citrus species and its related genera in Egypt. Jordan J. Biol. Sci. 2020, 13, 499–508. [Google Scholar]
- Iglesias, D.J.; Cercós, M.; Colmenero-Flores, J.M.; Naranjo, M.A.; Ríos, G.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; Tadeo, F.R.; et al. Physiology of citrus fruiting. Braz. J. Plant Physiol. 2007, 19, 333–362. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef]
- Talón, M.; Caruso, M.; Gmitter, F.G., Jr. The Genus Citrus, 1st ed.; Elsevier: London, UK, 2020; p. 720. [Google Scholar]
- Karn, A.; Zhao, C.; Yang, F.; Cui, J.; Gao, Z.; Wang, M.; Wang, F.; Xiao, H.; Zheng, J. In-vivo biotransformation of citrus functional components and their effects on health. Crit. Rev. Food Sci. Nutr. 2020, 61, 756–776. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zhang, L.; Sugiura, M.; Kato, M. Citrus and health. In The Genus Citrus; Woodhead Publishing: Cambridge, UK, 2020; pp. 495–511. [Google Scholar]
- Srivastava, A.K.; Hu, C. (Eds.) Fruit Crops: Diagnosis and Management of Nutrient Constraints; Elsevier: Amsterdam, The Netherlands, 2020; pp. 723–737. ISBN 978-0-12-818732-6. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) phenomenon—A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef]
- Khan, A.-U.-R.; Nawaz, M.A.; Khan, M.N.; Ahmed, W.; Rehman, A.; Munir, N.; Saleem, B.A. Heat units requirement of various citrus cultivars grown in Pakistan. J. Environ. Agric. 2016, 1, 30–34. [Google Scholar]
- Zekri, M. Factors Affecting Citrus Production and Quality; Citrus Industry: 2011. pp. 6–9. Available online: https://crec.ifas.ufl.edu/media/crecifasufledu/extension/extension-publications/2011/2011_Dec_factors_citrus.pdf (accessed on 3 July 2024).
- Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. The future of citrus fruit: The impact of climate change on citriculture. Mètode Sci. Stud. J. 2022, 12, 123–129. [Google Scholar] [CrossRef]
- Abobatta, W.F. Challenges for Citrus Production in Egypt. Acta Sci. Agric. 2018, 2, 40–41. [Google Scholar]
- Khurshid, T.; Hutton, R.J. Heat unit mapping-a decision support system for selection and evaluation of citrus cultivars. Acta Hortic. 2005, 694, 265–269. [Google Scholar] [CrossRef]
- Hardy, S.; Khurshid, T. Calculating Heat Units for Citrus. NSW Government. Department of Primary Industries. Primefact. 2021. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0011/218972/Calculating-heat-units-for-citrus.pdf (accessed on 5 May 2024).
- Łysiak, G.P.; Szot, I. The Use of Temperature Based Indices for Estimation of Fruit Production Conditions and Risks in Temperate Climates. Agriculture 2023, 13, 960. [Google Scholar] [CrossRef]
- Ikinci, A.; Mamay, M.; Unlu, L.; Bolat, I.; Ercisli, S. Determination of Heat Requirements and Effective Heat Summations of Some Pomegranate Cultivars Grown in Southern Anatolia. Erwerbs-Obstbau 2014, 56, 131–138. [Google Scholar] [CrossRef]
- Zaky, M.A. Relationship between climatic indicators and some physiological stages of navel orange trees in West Delta, Egypt. Middle East J. Appl. Sci. 2020, 10, 665–672. [Google Scholar] [CrossRef]
- Stenzel, N.M.C.; Neves, C.S.V.J.; Marur, C.J.; Scholz, M.B.D.S.; Gomes, J.C. Maturation curves and degree-days accumulation of orange trees. Sci. Agric. 2006, 63, 219–225. [Google Scholar] [CrossRef]
- Ortolani, A.A.; Pedro, J.R.; Alfonsi, R.R. Agro climatological of citrus. In Citrus Industry; Rodriguez, O., Viegas, F.C.P., Pompeu, J.R., Amaro, A.A., Eds.; Fundação Cargill: Campinas, Brazil, 1991; pp. 153–193. [Google Scholar]
- Nashwan, M.S.; Shahid, S. Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmos. Res. 2019, 230, 104631. [Google Scholar] [CrossRef]
- Abdel-Sattar, M.; EL-Tanany, M.; EL-Kouny, H.M. Reducing mineral fertilizers by using organic manure to improve Washington navel orange productivity and sandy soil characteristics. Alex. Sci. Exch. J. 2011, 32, 372–380. [Google Scholar]
- Amaral, M.H.; McConchie, C.; Dickinson, G.; Walsh, K.B. Growing Degree Day Targets for Fruit Development of Australian Mango Cultivars. Horticulturae 2023, 9, 489. [Google Scholar] [CrossRef]
- Dhonju, H.K.; Bhattarai, T.; Amaral, M.H.; Matzner, M.; Walsh, K.B. Management Information Systems for Tree Fruit—2: Design of a Mango Harvest Forecast Engine. Horticulturae 2024, 10, 301. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; The Iowa State University: Ames, IA, USA, 1990; p. 593. [Google Scholar]
- SAS Institute Inc. The SAS System for Windows, version 9.13; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Wang, S.; Xie, W.; Yan, X. Effects of Future Climate Change on Citrus Quality and Yield in China. Sustainability 2022, 14, 9366. [Google Scholar] [CrossRef]
- Tso, G.K.; Yau, K.K. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Khurshid, T.; Sanderson, G. Heat unit mapping and the effects of climatic conditions on citrus phenology with reference to developmental responses to climate change. Proc. Int. Soc. Citric. 2008, I, 819–820. [Google Scholar]
- Reuther, W.; Nauer, E.M.; Summers, L. Effects of seasonal temperature regimes on development and maturation of citrus fruits. Proc. Intl. Soc. Citricult. 1973, 3, 63–71. [Google Scholar]
- Lal, S.; Singh, D.B.; Sharma, O.C.; Mir, J.I.; Sharma, A.; Raja, W.H.; Kumawat, K.L.; Rather, S.A. Impact of climate change on productivity and quality of temperate fruits and its management strategies. Int. J. Adv. Res. Sci. Eng. 2018, 7, 1833–1844. [Google Scholar]
- Albrigo, L.G. Climatic Effects on Flowering, Fruit Set and Quality of Citrus—A Review. Available online: https://www.1stfruits.co.za/wp/wp-content/uploads/2022/03/Climatic-Effects-on-Flowering-of-Citrus.pdf (accessed on 10 March 2024).
- García-Luis, A.; Kanduser, M.; Guardiola, J.L. The influence of fruiting on the bud sprouting and flower induction responses to chilling in Citrus. J. Hortic. Sci. 1995, 70, 817–825. [Google Scholar]
- Makinde, A.A.; Afolayan, S.O.; Olaniyan, A.A.; Odeleye, O.M.O.; Okafor, B.N. Effect of climate on citrus yield in rainforest-savanna transitional zone of Nigeria. J. Agric. Biol. Sci. 2011, 2, 10–13. [Google Scholar]
- Abobatta, W.F. Influence of Climate Change on Citrus Growth and Productivity (Effect of Temperature). Adv. Agric. Technol. Plant Sci. 2019, 2, 180036. [Google Scholar]
- Omar, A.E.-D.K.; Belal, E.B.; El-Abd, A.E.-N.A. Effects of foliar application with compost tea and filtrate biogas slurry liquid on yield and fruit quality of Washington navel orange (Citrus sinenesis Osbeck) trees. J. Air Waste Manag. Assoc. 2012, 62, 767–772. [Google Scholar] [CrossRef]
- Zayan, M.A.; Sayed, R.A.; El-Shereif, A.R.; ElZawily, H.M.A. Irrigation and fertilization programs for “Washington navel” orange trees in sandy soil under desert climatic conditions. 1—Effect on soil properties, vegetative growth and yield. J. Agric. Res. Kafr El-Sheikh Univ. 2016, 42, 210–233. [Google Scholar]
- El-Khalifa, Z.S.; ElSheikh, M.H.; Zahran, H.F.; Ayoub, A. Evaluation of Washington navel orange economic indicators. Open J. Appl. Sci. 2022, 12, 481–490. [Google Scholar] [CrossRef]
- Saleh, M.A.; Hafez, O.M.; Thabet, A.Y.I. Enhancing of fruit set %, yield and fruit quality of “Washington” navel orange by different agrochemical foliar sprays in application times. Middle East J. Appl. Sci. 2022, 12, 83–90. [Google Scholar] [CrossRef]
- El-Aidy, A.; Esa, W.; Alam-Eldein, S. Effect of organic and bio-fertilization on vegetative growth, yield, and fruit quality of ‘Valencia’ orange trees. J. Product. Dev. 2018, 23, 111–134. [Google Scholar] [CrossRef]
- El-Shirbeny, M.A.; Ali, A.M.; Edriss, M.H.; Baghdady, G.A.; Dawood, A.S. The effect of water and vegetation vigor on citrus production in Egypt using remotely sensed data and techniques. Int. J. Plant Soil Sci. 2016, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mossad, A.; Farina, V.; Bianco, R.L. Fruit Yield and Quality of ‘Valencia’ Orange Trees under Long-Term Partial Rootzone Drying. Agronomy 2020, 10, 164. [Google Scholar] [CrossRef]
- Badawy, H.E.M. Partial substitution of Valencia orange chemical fertilization by bioorganic fertilization conjoint with algae extract foliar spray. Middle East J. Appl. Sci. 2017, 7, 1016–1030. [Google Scholar]
- Yildiz, E.; Demirkeser, T.H.; Kaplankiran, M. Growth, yield, and fruit quality of ‘Rhode Red Valencia’ and ‘Valencia Late’ sweet oranges grown on three rootstocks in eastern Mediterranean. Chil. J. Agric. Res. 2013, 73, 142–146. [Google Scholar] [CrossRef]
- Dubey, A.K.; Sharma, R.M. Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm.). Sci. Hortic. 2016, 200, 131–136. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Managing nematodes in Egyptian citrus orchards. Bull. Natl. Res. Cent. 2020, 44, 2–15. [Google Scholar] [CrossRef]
- Ruiz-Camacho, W.; Villegas-Rivas, D.; Borjas-Ventura, R.; Alvarado Huamán, L.; Bello-Amez, S.; Arias-Heredia, G.; Sernaque-Auccahuasi, F.; Palacios-Sánchez, J.M.; Alzamora-Rivero, C.A.; Franco-Del Carpio, C.M.; et al. The Behavior of Valencia Orange Cultivation (Citrus x sinensis (L.) Osbeck cv. Valencia) in “Type Farms” in a Province in Central Jungle of Peru. J. Biol. Sci. 2023, 23, 307–312. [Google Scholar] [CrossRef]
- Arras, G.; Usai, M. Response of Murcott mandarins to storage temperature. Adv. Hortic. Sci. 1991, 5, 99–103. [Google Scholar]
- Samra, N.R.; Shalan, A.M.; Eltair, B.T. Efficacy of different edible coatings in improving “Murcott tangor” fruit qualities during chilled and ambient storage. J. Plant Prod. Mansoura Univ. 2014, 5, 1283–1302. [Google Scholar]
- Tucker, D.P.H.; Futch, S.H.; Gmitter, F.G.; Kesinger, M.C. Florida Citrus Varieties SP 102. UF/IFAS Extension; The University of Florida: Gainesville, FL, USA, 1998; p. 36. [Google Scholar]
- Ennab, H.A.; El-Shemy, M.A.; Alam-Eldein, S.M. Salicylic Acid and Putrescine to Reduce Post-Harvest Storage Problems and Maintain Quality of Murcott Mandarin Fruit. Agronomy 2020, 10, 115. [Google Scholar] [CrossRef]
- Fikry, A.M.; Radhi, K.S.; Abourehab, M.A.S.; Abou Sayed-Ahmed, T.A.M.; Ibrahim, M.M.; Mohsen, F.S.; Abdou, N.A.; Omar, A.A.; Elesawi, I.E.; El-Saadony, M.T. Effect of Inorganic and Organic Nitrogen Sources and Biofertilizer on Murcott Mandarin Fruit Quality. Life 2022, 12, 2120. [Google Scholar] [CrossRef]
- Hamdy, A.E.; Khalifa, S.M.; Abdeen, S.A. Effect of magnetic water on yield and fruit quality of some mandarin varieties. Ann. Agric. Sci. Moshtohor. 2015, 53, 657–666. [Google Scholar]
- Aly, M.A.; Ezz, T.M.; Harhash, M.M.; El-Sayed, H.A.; El-demerdash, I.M. Sunscald Reduction, Increasing Yield and Fruit Quality of Murcott Mandarin Fruits Using Different Compounds as Nano Form. J. Adv. Agric. Res. (JAAR) 2023, 28, 404–412. [Google Scholar] [CrossRef]
- Hamdy, A.E. Effect of pruning severity on yield and fruit quality of two mandarin cultivars. Acta Hortic. 2016, 9. [Google Scholar] [CrossRef]
- El-Sayed, F.S.; Ahmed, H.S.; Elazazy, A.M. Effect of Hand and Chemical Thinning on Regulating Alternative Bearing in Murcott Trees. J. Hortic. Sci. Ornam. Plants 2017, 9, 98–105. [Google Scholar]
- Ribeiro, L.D.O.; Girardi, E.A.; de Carvalho, H.W.L.; Bastos, D.C.; Soares Filho, W.D.S.; Passos, O.S. Evaluation of mandarin hybrids grafted on ‘Rangpur’ lime in the Coastal Tablelands, Brazil. Rev. Bras. Frutic. 2020, 42, 1–9. [Google Scholar] [CrossRef]
- Ülker, T.; Kamiloğlu, M.U. Influences of girdling and potassium treatments on fruit quality and some physiological characters of ‘Fremont’ mandarin variety. Folia Hortic. 2021, 33, 195–202. [Google Scholar] [CrossRef]
- Available online: https://www.tripletreenurseryland.com/product/bearss-seedless-lime (accessed on 10 March 2024).
- Singh, J.; Sharma, V.; Pandey, K.; Ahmed, S.; Kaur, M.; Singh Sidhu, G. Horticultural Classification of Citrus Cultivars. In Citrus—Research, Development and Biotechnology; IntecOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Nawaz, R.; Khan, M.A.; Hafiz, I.A.; Khanm, M.F.; Khalid, A. Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions. Sci. Rep. 2021, 11, 18177. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, A.; Munteanu, N.; Petre, B.A.; Stan, T.; Teliban, G.C.; Vintu, C.; Stoleru, V. Biochemical and Production of Rhubarb Under Growing Technological Factors. Rev. Chim. 2019, 70, 2000–2003. [Google Scholar] [CrossRef]
- Monselise, S.P. Citrus. In Handbook of Fruit Set and Development; Monselise, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 1986; pp. 87–108. [Google Scholar]
- Ahmed, K.F.; Ahmed, F.M. Effect of Irradiated Compost and Bio Fertilizer on Vegetative Growth and Fruit Quality of Valencia Orange. Egypt. J. Hortic. 2020, 47, 15–27. [Google Scholar] [CrossRef]
- Nawaz, R.; Abbasi, N.A.; Hafiz, I.A.; Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 2020, 260, 108868. [Google Scholar] [CrossRef]
- Siagian, I.C.; Nurmegawati; Puspitasari, M.; Miswarti; Dinata, K.; Mikasari, W.; Hartono, R.; Yuliasari, S.; Sastro, Y. Analysis of limiting fators of RGL citrus fruit productivity (study case in Pal VII Village, Bermani Ulu Raya Subdistrict, Rejang Lebong District). IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012008. [Google Scholar] [CrossRef]
- Roose, M.L.; Cole, D.A.; Atkin, D.; Kupper, R.S. Yield and Tree Size of Four Citrus Cultivars on 21 Rootstocks in California. J. Am. Soc. Hortic. Sci. 1989, 114, 678–684. [Google Scholar] [CrossRef]
- Georgiou, A. Performance of ‘Nova’ Mandarin on Eleven Rootstocks in Cyprus. Sci. Hortic. 2000, 84, 115–126. [Google Scholar] [CrossRef]
- Georgiou, A. Evaluation of Rootstocks for ‘Clementine’ Mandarin in Cyprus. Sci. Hortic. 2002, 93, 29–38. [Google Scholar] [CrossRef]
- Abdel-Sattar, M.; Al-Obeed, R.S.; Rihan, H.Z.; El-Badan, G.E. Genetic Diversity and Relationships among Indian Jujube (Ziziphus mauritiana Lamk.) Cultivars Using Morphometric Characteristics, matK Barcoding, and ISSR Markers. Diversity 2024, 16, 313. [Google Scholar] [CrossRef]
- Ahmad, S.; Firdous, I.; Jatoi, G.H.; Rais, M.U.N.; Mohsin, A.Q. Economic impact of climate change on the production of citrus fruit in Punjab province of the Pakistan. Sci. Int. 2017, 29, 413. [Google Scholar]
- Egypt Orange Production on the Rise. Available online: https://citrusindustry.net/2023/01/04/egypt-orange-production-on-the-rise (accessed on 10 March 2024).
- Shafqat, W.; Naqvi, S.A.; Maqbool, R.; Haider, M.S.; Jaskani, M.J.; Khan, I.A. Climate Change and Citrus; IntechOpen: London, UK, 2021; 24p. [Google Scholar] [CrossRef]
- Panwar, S.; Kumar, A.; Singh, K.N.; Paul, R.K.; Gurung, B.; Ranjan, R.; Alam, N.M.; Rathore, A. Forecasting of crop yield using weather parameters–two step nonlinear regression model approach. Indian J. Agric. Sci. 2018, 88, 1597–1599. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Biswas, R.; Sujatha, K.; Chiphang, D.Y. Linear regression model to study the effects of weather variables on crop yield in Manipur state. Int. J. Agric. Stat. Sci. 2021, 17, 317–320. [Google Scholar]
- Zandalinas, S.I.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front. Plant Sci. 2017, 8, 953. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, E.E. Effect of Climate on Fruit Development and Maturation. Available online: https://irrec.ifas.ufl.edu/flcitrus/pdfs/short_course_and_workshop/citrus_flowering_97/Goldschmidt-Effect_of_Climate_on_Fruit_Development.pdf (accessed on 17 June 2024).
- Singh, R.S.; Vash1shtha, B.B.; Prasad, R.N. Micrometeorology of ber (Zyzyphus mauritiana) orchard grown under rained arid conditions. Indian J. Hortic. 1998, 55, 97–107. [Google Scholar]
- Ananthanaryanan, K.K.; Pillai, O.A.A. Studies on fruit maturity in mango. Indian J. Jori 1968, 25, 1–15. [Google Scholar]
- Bevington, K.B.; Castle, W.S. Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature and soil water content. HortScience 1986, 10, 840–845. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 25, 39. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.F. Phytohormones content and random amplified polymorphic DNA (RAPD) marker assessment of some Egyptian citrus cultivars. Afr. J. Biotechnol. 2012, 11, 15755–15762. [Google Scholar] [CrossRef]
Citrus Cultivars | Flowering Date | Harvesting Date |
---|---|---|
Washington Navel orange | 25 February | 30 January |
Valencia orange | 1 March | 15 May |
Murcott mandarin | 10 March | 30 March |
Fremont mandarin | 15 March | 1 January |
Bearss Seedless lime | 20 March | 15 July |
Date | Maximum Air Temperature (°C) | Recalculated Maximum Air Temperature (for Air Temperatures > 35.0 °C) | Minimum Air Temperature (°C) | Average Air Temperature (Maximum + Minimum ÷ 2) | Daily Heat Units (DHUs) (Average Air Temperature − Base Temperature of 13.0) | Accumulated Heat Units (Negative Values for DHUs Are Not Used) |
---|---|---|---|---|---|---|
1 | 33.5 | 33.5 | 17.6 | 25.6 | 12.6 | 12.6 |
2 | 35.2 | 35.0 | 17.9 | 26.5 | 13.5 | 26.0 |
3 | 34.1 | 34.1 | 18.0 | 26.1 | 13.1 | 39.0 |
4 | 37.1 | 35.0 | 18.5 | 26.7 | 13.7 | 39.0 |
5 | 17.6 | 17.6 | 7.8 | 12.7 | −0.3 | 0.0 |
6 | 19.2 | 19.2 | 6.6 | 12.9 | −0.1 | 0.0 |
7 | 17.6 | 17.6 | 7.8 | 12.7 | −0.3 | 0.0 |
8 | 19.2 | 19.2 | 6.6 | 12.9 | −0.1 | 0.0 |
9 | 22.4 | 22.4 | 11.4 | 16.9 | 3.9 | 42.9 |
10 | 28.3 | 28.3 | 9.0 | 18.7 | 5.7 | 48.6 |
11 | 24.1 | 24.1 | 11.5 | 17.8 | 4.8 | 53.4 |
Statistical Carteria | Citrus Cultivars | ||||
---|---|---|---|---|---|
Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime | |
Mean | 339.3 | 440.3 | 384.2 | 290.0 | 482.2 |
Standard deviation | ±0.5 | ±0.5 | ±0.4 | ±0.00 | ±0.4 |
Minimum | 339 | 440 | 384 | 290 | 482 |
Maximum | 340 | 441 | 385 | 290 | 483 |
Seasons | Citrus Cultivars | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime | ||||||
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |
2010/2011 | 47.6 | ±0.8 | 66.7 | ±0.4 | 42.9 | ±0.4 | 50.1 | ±0.4 | 47.6 | ±0.3 |
2011/2012 | 52.4 | ±0.8 | 64.3 | ±0.7 | 45.4 | ±0.6 | 52.4 | ±0.6 | 42.9 | ±0.4 |
2012/2013 | 57.5 | ±1.0 | 56.1 | ±0.7 | 40.6 | ±0.4 | 48.8 | ±0.6 | 42.9 | ±0.5 |
2013/2014 | 52.3 | ±0.6 | 63.1 | ±0.8 | 44.2 | ±0.3 | 54.7 | ±0.6 | 45.2 | ±0.7 |
2014/2015 | 46.3 | ±0.9 | 57.1 | ±0.4 | 47.7 | ±0.4 | 54.8 | ±9.5 | 47.6 | ±0.3 |
2015/2016 | 54.8 | ±0.5 | 54.7 | ±0.6 | 45.2 | ±0.4 | 52.4 | ±0.5 | 45.2 | ±0.5 |
2016/2017 | 59.7 | ±0.6 | 62.0 | ±0.8 | 45.2 | ±0.6 | 53.4 | ±0.2 | 47.6 | ±0.4 |
2017/2018 | 59.7 | ±0.7 | 59.5 | ±0.6 | 46.6 | ±0.6 | 47.6 | ±0.3 | 50.0 | ±0.4 |
2018/2019 | 45.7 | ±0.5 | 64.4 | ±0.9 | 47.6 | ±0.6 | 54.1 | ±0.5 | 48.8 | ±0.3 |
2019/2020 | 49.6 | ±1.6 | 53.8 | ±0.5 | 39.8 | ±0.4 | 50.0 | ±0.8 | 47.6 | ±0.4 |
2020/2021 | 42.7 | ±0.3 | 47.6 | ±0.4 | 47.7 | ±0.3 | 47.6 | ±0.4 | 43.6 | ±0.3 |
Overall mean | 51.7 | 59.0 | 44.8 | 51.4 | 46.3 | |||||
Standard deviation | ±5.8 | ±5.7 | ±2.7 | ±2.7 | ±2.5 | |||||
Overall minimum | 42.7 | 47.6 | 39.8 | 47.6 | 42.9 | |||||
Overall maximum | 59.8 | 66.7 | 47.7 | 54.8 | 50.0 |
Source of Variation | DF | Anova SS | Mean Square | F Value | Pr > F |
---|---|---|---|---|---|
Replicates | 3 | 14.5 | 4.8 | 2.5 | 0.06 |
Cultivars | 4 | 5514.6 | 1378.60 | 703.6 | <0.0001 |
Growing season | 10 | 974.5 | 97.4 | 49.7 | <0.0001 |
Cultivars × growing season | 40 | 2541.3 | 63.5 | 32.4 | <0.0001 |
Citrus Cultivars | Mean Yield * (tons/ha) ± Standard Deviation |
---|---|
Valencia Orange | 59.0a ± 5.7 |
Washington Navel Orange | 51.7b ± 5.8 |
Fremont Mandarin | 51.5b ± 2.7 |
Bearss Seedless Lime | 46.3c ± 2.5 |
Murcott Mandarin | 44.8d ± 2.7 |
LSD (5%) | 0.6 |
Production Growing Season | Mean Yield * (tons/ha) ± Standard Deviation |
---|---|
2016/2017 | 53.6a ± 9.2 |
2017/2018 | 52.7b ± 8.3 |
2018/2019 | 52.1bc ± 7.6 |
2013/2014 | 51.9bc ± 7.7 |
2011/2012 | 51.5cd ± 4.9 |
2010/2011 | 51.0de ± 4.9 |
2014/2015 | 50.7e ± 7.3 |
2015/2016 | 50.50e ± 6.5 |
2012/2013 | 49.2f ± 7.5 |
2019/2020 | 48.2g ± 5.2 |
2020/2021 | 45.9h ± 2.5 |
LSD (5%) | 0.9 |
Climate Factors | Citrus Cultivars | ||||
---|---|---|---|---|---|
Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime | |
Average daily precipitation | 0.053 | −0.502 | 0.528 | −0.485 | 0.121 |
Yearly average air relative humidity | −0.046 | −0.541 | 0.650 | −0.279 | −0.022 |
Yearly average maximum air temperature | −0.427 | 0.370 | −0.226 | 0.161 | 0.282 |
Yearly average minimum air temperature | −0.400 | 0.118 | 0.180 | 0.195 | 0.399 |
Citrus Cultivars | |||||
---|---|---|---|---|---|
Regression Statistics | Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime |
Multiple R | 0.875 | 0.547 | 0.776 | 0.688 | 0.443 |
R Square | 0.766 | 0.299 | 0.602 | 0.474 | 0.196 |
Adjusted R Square | 0.610 | −0.168 | 0.336 | 0.123 | −0.340 |
Standard Error | 3.6 | 6.2 | 2.2 | 2.6 | 2.8 |
Observations | 11 | 11 | 11 | 11 | 11 |
Significance F | 0.04 | 0.65 | 0.18 | 0.35 | 0.83 |
Parameters | Coefficients Symbols | Regression Coefficients (Equation (1)) | ||||
---|---|---|---|---|---|---|
Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime | ||
Intercept | 852.8 | 159.1 | −152.4 | 34.7 | 19.7 | |
Average daily precipitation | 32.8 | −3.0 | −7.5 | −15.7 | 4.7 | |
Yearly average air relative humidity | −6.1 | −1.4 | 1.9 | 0.5 | −0.3 | |
Yearly average maximum air temperature | −20.5 | −1.6 | 2.8 | −3.0 | 0.4 | |
Yearly average minimum air temperature | 9.0 | 1.7 | 0.4 | 4.9 | 1.9 | |
R2 | 0.766 | 0.299 | 0.602 | 0.474 | 0.196 |
Citrus Cultivars | |||||
---|---|---|---|---|---|
Growing Season | Washington Navel Orange | Valencia Orange | Murcott Mandarin | Fremont Mandarin | Bearss Seedless Lime |
2010/2011 | 3327.1 | 3800.7 | 3403.6 | 3168.4 | 4455.6 |
2011/2012 | 2818.8 | 3310.8 | 2874.6 | 2780.7 | 4523.3 |
2012/2013 | 3140.1 | 3735.1 | 3332.4 | 3087.0 | 4521.0 |
2013/2014 | 3112.5 | 3688.2 | 3250.3 | 2975.1 | 4393.7 |
2014/2015 | 3109.6 | 3573.9 | 3215.5 | 3024.6 | 4273.8 |
2015/2016 | 3098.9 | 3762.0 | 3269.7 | 3017.3 | 4355.7 |
2016/2017 | 3169.6 | 3615.0 | 3235.1 | 3068.9 | 4339.8 |
2017/2018 | 2964.5 | 3609.1 | 3169.3 | 2894.2 | 4427.3 |
2018/2019 | 3250.9 | 3678.4 | 3284.7 | 3154.3 | 4455.1 |
2019/2020 | 3154.7 | 3590.2 | 3271.6 | 3110.0 | 4325.2 |
2020/2021 | 3099.8 | 3620.5 | 3215.8 | 2998.2 | 4371.9 |
2021/2022 | 3105.5 | 3556.1 | 3140.4 | 3052.1 | 4338.5 |
Average | 3112.7 | 3628.3 | 3221.9 | 3027.6 | 4398.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Sattar, M.; Al-Obeed, R.S.; Aboukarima, A.M. Yield and Heat Unit Requirements for Several Citrus Cultivars over Several Seasons in Egypt. Horticulturae 2024, 10, 712. https://doi.org/10.3390/horticulturae10070712
Abdel-Sattar M, Al-Obeed RS, Aboukarima AM. Yield and Heat Unit Requirements for Several Citrus Cultivars over Several Seasons in Egypt. Horticulturae. 2024; 10(7):712. https://doi.org/10.3390/horticulturae10070712
Chicago/Turabian StyleAbdel-Sattar, Mahmoud, Rashid S. Al-Obeed, and Abdulwahed M. Aboukarima. 2024. "Yield and Heat Unit Requirements for Several Citrus Cultivars over Several Seasons in Egypt" Horticulturae 10, no. 7: 712. https://doi.org/10.3390/horticulturae10070712
APA StyleAbdel-Sattar, M., Al-Obeed, R. S., & Aboukarima, A. M. (2024). Yield and Heat Unit Requirements for Several Citrus Cultivars over Several Seasons in Egypt. Horticulturae, 10(7), 712. https://doi.org/10.3390/horticulturae10070712