The Functional Verification of CmSMXL6 from Chrysanthemum in the Regulation of Branching in Arabidopsis thaliana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Planting Material
2.2. Exogenous Hormone Treatment
2.3. Morphological Measurements
2.4. RNA Extraction and qPCR
2.5. Isolation of CmSMXL6 and Sequence Analysis
2.6. Subcellular Localization
2.7. Transgenic Arabidopsis Phenotype Observation
2.8. Statistical Analysis
3. Results
3.1. Phenotypic Analysis of Chrysanthemum Branching Following Hormone Treatment
3.2. Analysis of Lateral Shoot Growth Rate
3.3. Analysis of Gene Expression after Hormone Treatment
3.4. Isolation and Characterization of CmSMXL6
3.5. Subcellular Localization of CmSMXL6
3.6. Analysis of Expression Patterns of CmSMXL6
3.7. The Heterologous Expression of CmSMXL6 Increased the Branching Number in A. thaliana
3.8. Analysis of Relative Expression Levels of Branching Genes in Transgenic A. thaliana
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, L.; Takahashi, M.; Kameoka, H.; Qin, R.Y.; Shiga, T.; Kanno, Y.; Seo, M.; Ito, M.; Xu, G.H.; Kyozuka, J. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. Plant J. 2019, 97, 1006–1021. [Google Scholar] [CrossRef]
- Xu, J.; Zha, M.; Li, Y.; Ding, Y.; Chen, L.; Ding, C.; Wang, S. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep. 2015, 34, 1647–1662. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Nemhauser, J.L.; Perata, P. New mechanistic links between sugar and hormone signalling networks. Curr. Opin. Plant Biol. 2015, 25, 130–137. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, Y. Regulation of axillary meristem initiation by transcription factors and plant hormones. Front. Plant Sci. 2016, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Yu, H.; Yuan, K.; Liao, Z.; Meng, X.; Jing, Y.; Liu, G.; Chu, J.; Li, J. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proc. Natl. Acad. Sci. USA 2019, 116, 14319–14324. [Google Scholar] [CrossRef]
- Brewer, P.B.; Yoneyama, K.; Filardo, F.; Meyers, E.; Scaffidi, A.; Frickey, T.; Akiyama, K.; Seto, Y.; Dun, E.A.; Gremer, J.E. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2016, 113, 6301–6306. [Google Scholar] [CrossRef]
- Foster, T.M.; Ledger, S.E.; Janssen, B.J.; Luo, Z.W.; Snowden, K.C. Expression of MdCCD7 in the scion determines the extent of sylleptic branching and the primary shoot growth rate of apple trees. J. Exp. Bot. 2018, 69, 2379–2390. [Google Scholar] [CrossRef]
- Han, X.; Hao, X.; Qiu, S.; Guan, S.X.; Zhan, H.; Yu, J.X.; Wang, S.J.; Lu, X.J. Strigolactone regulates plant architecture by inhibiting lateral branch growth in Quercus mongolica seedlings. Scand. J. For. Res. 2021, 36, 333–343. [Google Scholar] [CrossRef]
- Umehara, M.; Hanada, A.; Yoshida, S.; Akiyama, K.; Tomotsugu, A.; Noruko, T.K.; Magome, H.; Kamiya, K.; Shirasu, K. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455, 195-U29. [Google Scholar] [CrossRef]
- Al-Babili, S.; Bouwmeester, H.J. Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 2015, 66, 161–186. [Google Scholar] [CrossRef]
- Waters, M.T.; Brewer, P.B.; Bussell, J.D.; Smith, S.M.; Beveridge, C.A. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 2012, 159, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kim, I.; Kim, Y.K.; Heo, J.B.; Suh, M.C.; Kim, H.U. Strigolactone signaling genes showing differential expression patterns in Arabidopsis max mutants. Plants 2019, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Soundappan, I.; Bennett, T.; Morffy, N.; Liang, Y.; Stanga, J.P.; Abbas, A.; Leyser, O.; Nelson, D.C. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 2015, 27, 3143–3159. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, B.; Jiang, L.; Liu, X.; Li, X.; Lu, Z.; Meng, X.; Wang, Y.; Smith, S.M.; Li, J. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 2015, 27, 3128–3142. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, G.; Zhao, Y.; Wang, H.H.; Dai, Z.Y.; Xue, W.C.; Yang, J. DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching. Plant Physiol. 2021, 187, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Katyayini, N.U.; Rinne, P.L.; Christiaan, S.D. Strigolactone-Based Node-to-Bud Signaling may restrain shoot branching in Hybrid Aspen. Plant Cell Physiol. 2019, 60, 2797–2811. [Google Scholar] [CrossRef] [PubMed]
- Kerr, S.C.; Patil, S.B.; Genmain, A.D.; Pilot, J.P.; Saffar, J.; Ligerot, Y. Integration of the SMXL/D53 strigolactone signalling repressors in the model of shoot branching regulation in Pisum sativum. Plant J. 2021, 107, 1756–1770. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Ji, Y.; Hu, J.; Guo, R.; Sun, S.; Wang, X. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine expression in rice tillering. Mol. Plant 2020, 13, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Ge, Y.; Wang, J.; Yu, J.; Yang, Z.; Huang, B. Gibberellic acid inhibition of tillering in tall fescue involving crosstalks with cytokinins and transcriptional regulation of genes controlling axillary bud outgrowth. Plant Sci. 2019, 287, 110168. [Google Scholar] [CrossRef]
- Yang, T.; Lian, Y.; Kang, J.; Bian, Z.; Xuan, L.; Gao, Z.; Wang, X.; Deng, J.; Wang, C. The suppressor of MAX2 1 (SMAX1)-like SMXL6, SMXL7 and SMXL8 act as negative regulators in response to drought stress in Arabidopsis. Plant Cell Physiol. 2020, 61, 1477–1492. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Yu, H.; Guo, H.; Lin, T.; Kou, L.; Wang, A.; Shao, N.; Ma, H.; Xiong, G.; et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 2020, 583, 277. [Google Scholar] [CrossRef]
- Foo, E.; Bullier, E.; Goussot, M.; Foucher, F.; Rameau, C.; Beveridge, C.A. The branching gene RAMOSUS1 mediates interactions among two novel signals 464 and auxin in pea. Plant Cell 2005, 17, 464–474. [Google Scholar] [CrossRef]
- Dun, E.A.; Germain, A.; Rameau, C.; Beveridge, C.A. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol. 2012, 158, 487–498. [Google Scholar] [CrossRef]
- Janssen, B.J.; Drummond, R.S.; Snowden, K.C. Regulation of axillary shoot development. Curr. Opin. Plant Biol. 2014, 17, 28–35. [Google Scholar] [CrossRef]
- Tan, M.; Li, G.; Liu, X.; Cheng, F.; Ma, J.; Zhao, C.; Zhang, D.; Han, M. Exogenous application of GA inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (Malus domestica). Mol. Genet. Genom. 2018, 293, 1547–1563. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X.; Wang, Y.; Diez-Simon, C.; Flokova, K.; Bimbo, A.; Bouwmeester, H.J.; Ruyter-Spira, C. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytol. 2018, 219, 297–309. [Google Scholar] [CrossRef]
- Martin-Trillo, M.; Gonzalez, G.E.; Serra, F.; Marcel, F.; Luisa, R.M.; Schmitz, G.; Theres, K.; Bendahmane, A.; Dopazo, H. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J. 2011, 67, 701–714. [Google Scholar] [CrossRef]
- Wang, F.L.; Cai, Z.Y.; Li, Z.M.; Luo, H.H.; Wu, Q.; Xia, H.H.; Guo, Y.H. FLOWERING LOCUS T (FT) in photosensitive type Chrysanthemum accelerates flowering in Arabidopsis. Phyton 2024, 93, 819–830. [Google Scholar] [CrossRef]
- Li, C.J.; Bangerth, F. Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. J Plant Physiol. 2003, 160, 1059–1063. [Google Scholar] [CrossRef]
- Hedden, P.; Thomas, S.G. The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 2020, 61, 1832–1849. [Google Scholar] [CrossRef]
- Dierck, R.; Leus, L.; Dhooghe, E.; Huylenbroeck, J.; De, R.J.; De, K.E. Branching gene expression during chrysanthemum axillary bud outgrowth regulated by strigolactone and auxin transport. Plant Growth Regul. 2018, 86, 23–36. [Google Scholar] [CrossRef]
- Waters, M.T.; Gutjahr, C.; Bennett, T.; Nelson, D.C. Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 2017, 68, 291–322. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, X.; Xiong, G.; Liu, H.H.; Chen, F.L.; Wang, L.; Meng, X.B.; Liu, G.F.; Yu, H.; Yuan, Y.; et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 2014, 506, 396. [Google Scholar] [CrossRef]
- Braun, N.; Saint, G.A.; Pillot, J.P.; Boutet, M.S.; Dalmais, M.; Antoniadi, L.; Li, X.; Maia-Grondard, A.; Le, S.C.; Bouteiller, N.; et al. The pea TCP transcription Factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol. 2012, 158, 225–238. [Google Scholar] [CrossRef]
- Wu, F.; Gao, Y.; Yang, W.; Sui, N.; Zhu, J. Biological functions of strigolactones and their crosstalk with other phytohormones. Front. Plant Sci. 2022, 13, 821563. [Google Scholar] [CrossRef]
Treatment | Number of Branches | Rate of Branching Growth (mm/d) | |||
---|---|---|---|---|---|
3 d | 5 d | 8 d | 10 d | ||
CK | 5.86 ± 0.36 b | 4.08 ± 0.73 a | 5.27 ± 2.38 a | 19.58 ± 3.41 ab | 13.34 ± 3.24 a |
100 µM IAA | 5.00 ± 0.78 bc | 3.38 ± 0.78 ab | 4.06 ± 0.81 ab | 16.38 ± 2.76 bc | 13.86 ± 3.03 a |
10 µM GR24 | 4.75 ± 0.87 c | 3.09 ± 0.83 b | 3.54 ± 1.88 b | 14.38 ± 3.27 c | 13.87 ± 4.67 a |
100 µM 6BA | 10.75 ± 1.48 a | 4.22 ± 1.09 a | 5.53 ± 0.90 a | 19.93 ± 3.16 a | 9.16 ± 3.72 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Hu, Z.; Luo, H.; Wu, Q.; Chen, X.; Wen, S.; Xiao, Z.; Ai, X.; Guo, Y. The Functional Verification of CmSMXL6 from Chrysanthemum in the Regulation of Branching in Arabidopsis thaliana. Horticulturae 2024, 10, 718. https://doi.org/10.3390/horticulturae10070718
Wang F, Hu Z, Luo H, Wu Q, Chen X, Wen S, Xiao Z, Ai X, Guo Y. The Functional Verification of CmSMXL6 from Chrysanthemum in the Regulation of Branching in Arabidopsis thaliana. Horticulturae. 2024; 10(7):718. https://doi.org/10.3390/horticulturae10070718
Chicago/Turabian StyleWang, Fenglan, Zhiren Hu, Honghui Luo, Qing Wu, Xiuzhe Chen, Shuang Wen, Zihang Xiao, Xiaoxiao Ai, and Yanhong Guo. 2024. "The Functional Verification of CmSMXL6 from Chrysanthemum in the Regulation of Branching in Arabidopsis thaliana" Horticulturae 10, no. 7: 718. https://doi.org/10.3390/horticulturae10070718
APA StyleWang, F., Hu, Z., Luo, H., Wu, Q., Chen, X., Wen, S., Xiao, Z., Ai, X., & Guo, Y. (2024). The Functional Verification of CmSMXL6 from Chrysanthemum in the Regulation of Branching in Arabidopsis thaliana. Horticulturae, 10(7), 718. https://doi.org/10.3390/horticulturae10070718