An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Surface Sterilization
2.2. Induction of Callus and Culture Conditions
2.3. Indirect Shoot Organogenesis and Proliferation
2.4. Induction of Roots and Acclimatization
2.5. Preparation of Extracts
2.6. Gas Chromatography–Mass Spectrometry Analysis
2.7. Biochemical Parameters
2.7.1. Determination of Total Phenol Content
2.7.2. Determination of Flavonoid Level
2.7.3. DPPH Assay for Scavenging Activity
2.8. Statistical Analysis
3. Results
3.1. Callus Induction
3.2. Indirect Shoot Organogenesis and Proliferation
3.3. Induction of Root and Acclimatization
3.4. GC-MS Analysis
3.5. Determination of Total Phenolic and Flavonoid Content and DPPH Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gawade, N.; Bhalekar, S.G.; Bhosale, P.; Katwate, S.M.; Wadekar, V. Studies on different genotypes of Gaillardia (Gaillardia pulchella L.) for quantitative and qualitative performance. Int. J. Curr. Microbiol. Appl. Sci 2018, 7, 1030–1039. [Google Scholar] [CrossRef]
- Marak, J.R.; Singh, S.; Saxena, A.K. Effect of various organic growing media on growth and yield of gaillardia (Gaillardia pulchella foug) at Dehradun valley of Uttarakhand. Pharma Innov. J. 2023, 12, 1437–1447. [Google Scholar]
- Sowmyamala, B.V.; Kumar, R.V.; Nagaraj, H.T.; Kulkarni, B.S.; Hiremath, J.B.; Turamari, R.M. Effect of organic and inorganic fertilizers on plant height, spread and flower diameter of gaillardia (Gaillardia pulchella). Int. J. Appl. Biol. Pharmaceut. Technol. 2012, 3, 53–57. [Google Scholar]
- Nagy, K.N.; Kardos, L.V.; Orbán, Z.; Bakacsy, L. The allelochemical potential of an invasive ornamental plant, the Indian blanket flower (Gaillardia pulchella Foug.). Plant Species Biol. 2023, 39, 102–108. [Google Scholar] [CrossRef]
- Kadam, M.; Malshe, K.; Salvi, B.; Chavan, S. Effect of plant growth regulators on flowering and flower yield in Gaillardia (Gaiilardia pulchella) cv. Local Double. Int. J. Chem. Studies 2020, 8, 927–930. [Google Scholar] [CrossRef]
- El-Khateeb, M.; Ashour, H.; Eid, R.; Mahfouze, H.; Abd Elaziz, N.; Radwan Ragab, M.S. Induction of genetic variability with gamma radiation and detection of DNA polymorphisms among radio mutants using sequence-related amplified polymorphism markers in Gaillardia pulchella Foug. plants. Egypt. Pharmaceut. J. 2023, 22, 272. [Google Scholar] [CrossRef]
- Belal, R.; Eldesouky, M.; Elmasry, A.; Weheda, B.; Aggag, S. Gene expression profile of some antioxidant-related genes in five species of the family Asteraceae in Egypt. J. Agric. Chem. Biotechnol. 2023, 14, 57–64. [Google Scholar] [CrossRef]
- Bosco, A.; Molina, L.; Kernéis, S.M.; Hatzopoulos, G.; Favez, T.; Gönczy, P.; Tantapakul, C.; Maneerat, W.; Yeremy, B.; Williams, D.E.; et al. Pulchelloid A, a sesquiterpene lactone from the Canadian prairie plant Gaillardia aristata inhibits mitosis in human cells. Mol. Biol. Rep. 2021, 48, 5459–5471. [Google Scholar] [CrossRef] [PubMed]
- Kaňuková, Š.; Lenkavská, K.; Gubišová, M.; Kraic, J. Suspension culture of stem cells established of Calendula officinalis L. Sci. Rep. 2024, 14, 441. [Google Scholar] [CrossRef]
- Bansal, Y.; Mujib, A.; Siddiqui, Z.H.; Mamgain, J.; Syeed, R.; Ejaz, B. Ploidy status, nuclear DNA content and start codon targeted (SCOT) genetic homogeneity assessment in Digitalis purpurea L., regenerated in vitro. Genes 2022, 13, 2335. [Google Scholar] [CrossRef]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gai, M.; Li, X.; Li, T.; Sun, H. Somatic embryogenesis and direct as well as indirect organogenesis in Lilium pumilum dc. fisch., an endangered ornamental and medicinal plant. Biosci. Biotechnol. Biochem. 2016, 80, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.; Correia, S.; Cavaleiro, C.; Canhoto, J. modulation of organogenesis and somatic embryogenesis by ethylene: An overview. Plants 2021, 10, 1208. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-GraciaMedrano, R.M.; Maldonado-Borges, J.I.; Burgos-Tan, M.J.; Valadez-González, N.; Ku-Cauich, J.R. Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminatacolla (aa) ssp. malaccensis cell suspension cultures. Plant Cell Tissue Organ Cult. 2013, 116, 175–185. [Google Scholar] [CrossRef]
- Khan, H.; Khan, T.; Ahmad, N.; Zaman, G.; Khan, T.; Ahmad, W.; Batool, S.; Hussain, Z.; Drouet, S.; Hano, C.; et al. Chemical elicitors-induced variation in cellular biomass, biosynthesis of secondary cell products, and antioxidant system in callus cultures of Fagoniaindica. Molecules 2021, 26, 6340. [Google Scholar] [CrossRef] [PubMed]
- Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep. 2020, 10, 16438. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Ahmad, N.; Anis, M.; Alatar, A.A. Influence of meta-topolin on in vitro organogenesis in Tecoma stans l., assessment of genetic fidelity and phytochemical profiling of wild and regenerated plants. Plant Cell Tissue Organ Cult. 2019, 138, 339–351. [Google Scholar] [CrossRef]
- Mamgain, J.; Mujib, A.; Syeed, R.; Ejaz, B.; Malik, M.Q.; Bansal, Y. Genome size and gas chromatography-mass spectrometry (GC–MS) analysis of field-grown and in vitro regenerated Pluchealanceolata plants. J. Appl. Genet. 2023, 64, 1–21. [Google Scholar] [CrossRef]
- Manokari, M.; Raj, M.C.; Dey, A.; Faisal, M.; Alatar, A.A.; Joshee, N.; Shekhawat, M.S. Silver nanoparticles improved morphogenesis, biochemical profile and micro-morphology of Gaillardia pulchella Foug cv. ‘Torch Yellow’. Plant Cell Tissue Organ Cult. 2023, 155, 433–445. [Google Scholar] [CrossRef]
- Eliwa, G.I.; El-Dengawy, E.-R.F.; Gawish, M.S.; Yamany, M.M. Comprehensive study on in vitro propagation of some imported peach rootstocks: In vitro explant surface sterilization and bud proliferation. Sci. Rep. 2024, 14, 5586. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficusreligiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Dhar, U.; Joshi, M. Efficient plant regeneration protocol through callus for Saussureaobvallata (dc.) edgew. (asteraceae): Effect of explant type, age and plant growth regulators. Plant Cell Rep. 2005, 24, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Zayova, E.; Nedev, T.; Petrova, D.; Zhiponova, M.; Kapchina, V.; Chaneva, G. Tissue culture applications of Artemisia annua L. callus for indirect organogenesis and production phytochemical. Plant Tissue Cult. Biotechnol. 2020, 30, 97–106. [Google Scholar] [CrossRef]
- Nazirah, A.; Nor-Hasnida, H.; Mohd-Saifuldullah, A.W.; Muhammad-Fuad, Y.; Ahmad-Zuhaidi, Y.; Rozidah, K. Development of an efficient micropropagation protocol for eucalyptus hybrid (E. urophylla × E. grandis) through axillary shoot proliferation. J. Trop. For. Sci. 2021, 33, 391–397. [Google Scholar] [CrossRef]
- Tikendra, L.; Dey, A.; Jamir, I.; Sahoo, M.R.; Nongdam, P. Cytokinin influence on in vitro shoot induction and genetic stability assessment of Dendrocalamus latiflorus munro: A commercially important bamboo in Manipur, North-East India. Vegetos 2022, 35, 1085–1095. [Google Scholar] [CrossRef]
- Novikova, T.I.; Asbaganov, S.V.; Ambros, E.V.; Zaytseva, Y.G. TDZ-induced axillary shoot proliferation of Rhododendron mucronulatumturcz and assessment of clonal fidelity using dna-based markers and flow cytometry. In Vitro Cell. Dev. Biol.-Plant 2020, 56, 307–317. [Google Scholar] [CrossRef]
- Jena, S.; Ray, A.; Sahoo, A.; Sahoo, S.; Dash, B.; Kar, B.; Nayak, S. Rapid plant regeneration in industrially important Curcuma zedoaria revealing genetic and biochemical fidelity of the regenerants. 3 Biotech 2020, 10, 17. [Google Scholar] [CrossRef]
- Kumar, S.S.; Giridhar, P. In vitro micropropagation of Basella rubra L. through proliferation of axillary shoots. Plant Cell Tissue Organ Cult. 2021, 144, 477–483. [Google Scholar] [CrossRef]
- Wardani, I.B. Effect of BAP (6-benzyl amino purine) and NAA (naphtalen acetic acid) on the induction of axillary shoots in sandalwood (Santalum album L.). J. Sci. Technol. Educ. 2022, 1, 23–30. [Google Scholar]
- Sholikhah, R.I.; Makhziah, M.; Widiwurjani, W. Effect of IAA addition and some organic supplements on growth and rooting of cavendish banana (Musa acuminata, aaa) In-Vitro. J. Tek. Pertan. Lampung (J. Agric. Eng.) 2022, 11, 266. [Google Scholar] [CrossRef]
- Mujib, A.; Aslam, J.; Bansal, Y. Low colchicine doses improved callus induction, biomass growth, and shoot regeneration in in vitro culture of Dracaena sanderiana sander ex mast. Prop. Ornam. Plants 2023, 23, 81–87. [Google Scholar]
- Gianguzzi, V.; Barone, G.; Di Gristina, E.; Sottile, F.; Domina, G. Micropropagation of Endemic Endangered Taxa of the Italian Flora: Adenostyles alpina subsp. macrocephala (Asteraceae), as a Case Study. Plants 2023, 12, 1530. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Wachol, M.; Pawlowska, B. Liquid culture systems affect morphological and biochemical parameters during rosacanina plantlets in vitro production. Not. Bot. HortiAgrobot. Cluj-Napoca 2018, 46, 58–64. [Google Scholar] [CrossRef]
- Ghosh, A.; Igamberdiev, A.U.; Debnath, S.C. Thidiazuron-induced somatic embryogenesis and changes of antioxidant properties in tissue cultures of half-high blueberry plants. Sci. Rep. 2018, 8, 16978. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.R.; Sivanesan, I. Direct adventitious shoot regeneration, in vitro flowering, fruiting, secondary metabolite content and antioxidant activity of Scrophulariatakesimensis Nakai. Plant Cell Tissue Organ Cult. 2015, 123, 607–618. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Kumaria, S.; Tandon, P. High frequency regeneration protocol for Dendrobium nobile: A model tissue culture approach for propagation of medicinally important orchid species. S. Afr. J. Bot. 2016, 104, 232–243. [Google Scholar] [CrossRef]
- Khorasani Esmaeili, A.; Mat Taha, R.; Mohajer, S.; Banisalam, B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Res. Int. 2015, 15, 643285. [Google Scholar]
- Zayova, E.; Nikolova, M.; Dimitrova, L.; Petrova, M. Comparative study of in vitro, ex vitro and in vivo propagated Salvia hispanica (chia) plants: Morphometric analysis and antioxidant activity. AgroLife Sci. J. 2016, 5, 166–173. [Google Scholar]
- Mamgain, J.; Mujib, A.; Bansal, Y.; Gulzar, B.; Zafar, N.; Syeed, R.; Alsughayyir, A.; Dewir, Y.H. Elicitation induced α-amyrin synthesis in Tylophora indica in vitro cultures and comparative phytochemical analyses of in vivo and micropropagated plants. Plants 2024, 13, 122. [Google Scholar] [CrossRef]
- Bansal, Y.; Mujib, A.; Mamgain, J.; Dewir, Y.H.; Rihan, H.Z. Phytochemical composition and detection of novel bioactives in anther callus of Catharanthus roseus L. Plants 2023, 12, 2186. [Google Scholar] [CrossRef] [PubMed]
- Bansal, Y.; Mujib, A.; Mamgain, J.; Kumar, S.; Dewir, Y.H.; Magyar-Tábori, K. synthesis and accumulation of phytocompounds in field-, tissue-culture grown (stress) root tissues and simultaneous defense response activity in Glycyrrhiza glabra L. Sustainability 2024, 16, 1613. [Google Scholar] [CrossRef]
- Yao, X.T.; Ling, P.X.; Jiang, S.; Lai, P.X.; Zhu, C.G. Analysis of the essential oil from Gaillardia pulchella Foug. and its antioxidant activity. J. Oleo Sci. 2013, 62, 329–333. [Google Scholar] [CrossRef]
- Shahidi, F.; Pinaffi-Langley, A.C.C.; Fuentes, J.; Speisky, H.; de Camargo, A.C. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Radic. Biol. Med. 2021, 176, 312–321. [Google Scholar] [CrossRef]
- Loizou, S.; Lekakis, I.; Chrousos, G.P.; Moutsatsou, P. β-Sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol. Nutr. Food Res. 2010, 54, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Okechukwu, P.N. Evaluation of anti-inflammatory, analgesic, antipyretic effect of eicosane, pentadecane, octacosane, and heneicosane. Asian J. Pharmaceut. Clin. Res. 2020, 13, 29–35. [Google Scholar] [CrossRef]
- Bhat, M.P.; Rudrappa, M.; Hugar, A.; Gunagambhire, P.V.; Suresh Kumar, R.; Nayaka, S.; Almansour, A.I.; Perumal, K. In-vitro investigation on the biological activities of squalene derived from the soil fungus Talaromyces pinophilus. Heliyon 2023, 9, e21461. [Google Scholar] [CrossRef]
- Gonzalez-Rivera, M.L.; Barragan-Galvez, J.C.; Gasca-Martínez, D.; Hidalgo-Figueroa, S.; Isiordia-Espinoza, M.; Alonso-Castro, A.J. In vivo neuropharmacological effects of neophytadiene. Molecules 2023, 28, 3457. [Google Scholar] [CrossRef]
- Gulzar, B.; Mujib, A.; Malik, M.Q.; Mamgain, J.; Syeed, R.; Zafar, N. Plant tissue culture: Agriculture and industrial applications. In Transgenic Technology Based Value Addition in Plant Biotechnology; Academic Press: Cambridge, MA, USA, 2020; pp. 25–49. [Google Scholar]
PGRs | Concentration (mg/L) | Callus Induction Percentage (%) | Callus Biomass (g) |
---|---|---|---|
Control | 0 | 0 e | 0 d |
NAA + BAP | 0.5 + 0.5 | 79.17 ± 4.17 ab | 3.3 ± 0.5 a |
0.5 + 1.0 | 58.33 ± 8.33 c | 2.6 ± 0.4 ab | |
1.0 + 2.0 | 54.17 ± 4.17 c | 2.7 ± 0.3 ab | |
2.0 + 0.5 | 91.66 ± 8.33 a | 3.8 ± 0.8 a | |
2,4-D | 0.5 | 62.50 ± 7.22 bc | 2.9 ± 0.4 ab |
1.0 | 45.83 ± 4.16 cd | 1.8± 0.2 bc | |
1.5 | 33.33 ± 11.02 d | 1.1 ± 0.2 c | |
2.0 | 8.33 ± 4.16 e | 0.9 ± 0.1 c |
PGRs | Concentration (mg/L) | Shoot Regeneration Percentage (%) | Shoot Numbers/Callus Mass |
---|---|---|---|
Control | 0 | 0 d | 0 c |
BAP + NAA | 0.5 + 1.0 | 79.17 ± 11.02 ab | 4.9 ± 0.8 a |
0.5 + 2.0 | 95.83 ± 4.16 a | 5.2 ± 0.5 a | |
1.0 + 0.5 | 54.17 ± 11.02 bc | 4.1 ± 0.2 a | |
1.0 + 1.5 | 37.50 ± 7.21 c | 2.6 ± 0.3 b | |
1.0 + 2.0 | 33.33 ± 11.02 c | 1.8 ± 0.4 b |
PGRs | Concentration (mg/L) | Root Induction Frequency (%) | Root Numbers/Shoot |
---|---|---|---|
Control | 0 | 0 d | 0 e |
IAA | 0.5 | 54.16 ± 11.02 abc | 9.7 ± 0.4 bc |
0.75 | 70.83 ± 15.02 ab | 10.6 ± 0.6 b | |
1 | 79.17 ± 8.33 a | 12.4 ± 0.2 a | |
IBA | 0.5 | 41.66 ± 4.16 bc | 8.4 ± 0.4 c |
0.75 | 29.16 ± 11.02 c | 6.1 ± 0.5 d | |
1 | 29.17 ± 4.17 c | 5.8 ± 0.5 d |
Peak# | R. Time (min) | Area% | Name | Molecular Formula | Molecular Weight |
---|---|---|---|---|---|
1 | 4.160 | 3.38 | pyranone | C6H8O4 | 144 |
2 | 4.552 | 7.54 | 4-methyloxazole | C4H5NO | 83 |
3 | 5.103 | 1.93 | levulinic acid | C5H8O3 | 116 |
4 | 5.311 | 0.05 | 2,5-dimethyl-3(2h) furanone | C6H8O3 | 128 |
5 | 5.675 | 3.28 | cyanuramide | C3H6N6 | 126 |
6 | 5.910 | 4.03 | 1-aminocyclopropane-1-carboxylic acid | C4H7NO2 | 101 |
7 | 6.344 | 0.52 | 3-methyloctane | C9H20 | 128 |
8 | 6.645 | 25.39 | 3-hydroxy-2,3-dihydromaltol | C6H8O4 | 144 |
9 | 6.837 | 0.69 | di-2-ethylhexyl amine | C16H35N | 241 |
10 | 6.957 | 0.69 | neopentyl acetate | C7H14O2 | 130 |
11 | 7.172 | 7.49 | 5-methoxypyrrolidin-2-one | C5H9NO2 | 115 |
12 | 7.843 | 11.63 | isoamyl acetate | C7H14O2 | 130 |
13 | 8.159 | 1.56 | glycerol 1-acetate | C5H10O4 | 134 |
14 | 8.749 | 1.04 | 2-methylpentyl propyl ether | C9H20O | 144 |
15 | 8.975 | 0.38 | 1-methylpiperidine | C6H13N | 99 |
16 | 10.183 | 1.03 | bis(2-ethylhexyl) amine | C16H35N | 241 |
17 | 11.032 | 3.39 | di-sec-butyl oxalate | C10H18O4 | 202 |
18 | 11.703 | 0.77 | 1,2,3,5-cyclohexanetetrol | C6H12O4 | 148 |
19 | 12.696 | 0.73 | 2-aminobenzoyl azide | C7H6N4O | 162 |
20 | 13.165 | 1.65 | methyl hexopyranoside | C7H14O6 | 194 |
21 | 13.640 | 0.47 | santalol | C15H24O | 220 |
22 | 14.510 | 0.94 | caprinic acid | C10H20O2 | 172 |
23 | 15.238 | 0.34 | (−)-cis-pinan | C10H18 | 138 |
24 | 15.729 | 0.33 | (s)-(+)-3-methyl-1-pentanol | C6H14O | 102 |
25 | 16.590 | 11.55 | palmitic acid | C16H32O2 | 256 |
26 | 18.215 | 0.79 | cyclooctene, 3-methyl- | C9H16 | 124 |
27 | 18.467 | 0.56 | cyclohexyl laurate | C18H34O2 | 282 |
28 | 19.473 | 0.25 | bis(2-(dimethylamino)ethyl) ether | C8H20N2O | 160 |
29 | 20.493 | 1.11 | neophytadiene | C20H38 | 278 |
30 | 21.205 | 1.18 | cis-z-.alpha.-bisabolene epoxide | C15H24O | 220 |
31 | 21.531 | 0.76 | 1,2-benzenedicarboxylic acid, diisooctyl e | C24H38O4 | 390 |
32 | 23.909 | 2.16 | squalene | C30H50 | 410 |
33 | 31.099 | 1.97 | 1,16-dichlorohexadecane | C16H32Cl2 | 294 |
34 | 32.623 | 0.40 | 6(e),9(z),13(e)-pendectriene | C15H26 | 206 |
Peak# | Retention Time (min) | Retention Area (%) | Phytocompounds | Formula | Molecular Weight |
---|---|---|---|---|---|
1 | 7.811 | 6.28 | Isoamyl Acetate | C7H14O2 | 130 |
2 | 11.061 | 0.38 | (−)-Globulol | C15H26O | 222 |
3 | 11.307 | 0.07 | 4iodobis(Bicyclo [2.2.1])Hexane | C12H17I | 288 |
4 | 11.349 | 0.25 | 2-Tridecynyl2,6-Difluorobenzoate | C20H26F2O2 | 336 |
5 | 11.543 | 0.11 | (3e)-6-Methyl-3,5-Heptadien-2-One | C8H12O | 124 |
6 | 15.170 | 0.12 | (5e)-3-Methyl-5-Undecene | C12H24 | 168 |
7 | 15.239 | 3.63 | 3-Methylene-7,11,15-Trimethylhexadec-1-Ene | C20H38 | 278 |
8 | 15.494 | 0.72 | Neophytadiene | C20H38 | 278 |
9 | 15.688 | 1.15 | 3,7,11,15 Tetramethyl-2-Hexadecen-1-Ol | C20H40O | 296 |
10 | 15.800 | 0.32 | 1-Hexadecyloctahydro-1h-Indene | C25H48 | 348 |
11 | 16.575 | 0.77 | 1,4-Cyclohexanediol, (Z)-, Tms Derivative | C16H32O2 | 256 |
12 | 16.798 | 0.15 | Pentadecanal | C15H30O | 226 |
13 | 17.954 | 3.64 | Phytol | C20H40O | 296 |
14 | 19.000 | 0.12 | 14-Heptadecenal | C17H32O | 252 |
15 | 20.299 | 1.14 | Vitamin A Acetate | C22H32O2 | 328 |
16 | 20.554 | 1.23 | 2-Methyl-1-Phenyl-1-Butanol | C11H16O | 164 |
17 | 20.613 | 0.44 | 6-Epi-Shyobunol | C15H26O | 222 |
18 | 20.808 | 0.37 | Xanthinin | C17H22O5 | 306 |
19 | 20.896 | 0.45 | Limonene Dioxide | C10H16O2 | 168 |
20 | 20.942 | 1.25 | Isoborneol, Allyldimethylsilyl Ether | C15H28OSi | 252 |
21 | 21.187 | 13.23 | Stanolone Acetate | C21H32O3 | 332 |
22 | 21.260 | 34.53 | 1-Heptatriacotanol | C37H76O | 536 |
23 | 21.467 | 0.35 | 5,8,11-Eicosatrienoic Acid, (Z)-, Tms Derivative | C23H42O2Si | 378 |
24 | 21.539 | 0.40 | 5-Hydroxy-4-Nitro-1-Decalinone | C10H15NO4 | 213 |
25 | 21.719 | 0.20 | Diazoprogesterone | C21H30N4 | 338 |
26 | 22.453 | 0.48 | Cis-Z-.Alpha.-Bisabolene Epoxide | C15H24O | 220 |
27 | 22.657 | 0.12 | Cyclopropanecarboxylic Acid, 1-Amino- | C4H7NO2 | 101 |
28 | 22.740 | 0.95 | Periplogenin | C23H34O5 | 390 |
29 | 22.824 | 0.42 | 2-Bromo Dodecane | C12H25Br | 248 |
30 | 23.162 | 12.26 | Chrysanin | C20H24O5 | 344 |
31 | 23.503 | 0.27 | 1,2-Dibromoethane | C2H4Br2 | 186 |
32 | 23.702 | 0.34 | N,N′-Di(2-Propenyl)-1,2,4,5-Tetrazin-3,6-Diamine | C8H12N6 | 192 |
33 | 23.774 | 0.77 | 2-Hydroxy-1,1,10-Trimethyl-6,9-Epidioxy-7-Octalin | C13H20O3 | 224 |
34 | 23.912 | 2.08 | Squalene | C30H50 | 410 |
35 | 24.386 | 0.27 | 1-Chlorooctadecane | C18H37Cl | 288 |
36 | 24.699 | 0.38 | 1-Heptatriacotanol | C37H76O | 536 |
37 | 24.834 | 1.20 | 1-Tridecyn-4-Ol | C13H24O | 196 |
38 | 25.287 | 1.06 | Bromocyclohexane | C6H11Br | 162 |
39 | 27.054 | 0.29 | .Gamma.-Tocopherol | C28H48O2 | 416 |
40 | 28.402 | 1.87 | Vitamin E | C29H50O2 | 430 |
41 | 30.647 | 0.64 | 2,2,4, 4-Tetramethyl-3-Pentanone | C9H18O | 142 |
42 | 30.998 | 1.00 | 2,6-Dimethyl-6-Nitro-2-Hepten-4-One | C9H15NO3 | 185 |
43 | 31.598 | 2.08 | Isocitronellol | C10H20O | 156 |
44 | 32.616 | 1.28 | Sitosterol | C29H50O | 414 |
45 | 32.864 | 0.97 | (6e)-2,4-Dimethyl-2,6-Octadiene | C10H18 | 138 |
Peak# | Retention Time (min) | Retention Area (%) | Phytocompound | Formula | Molecular Weight |
---|---|---|---|---|---|
1 | 7.573 | 1.70 | Pyranone | C6H8O4 | 144 |
2 | 11.856 | 15.72 | Nitroisobutylglycerol | C4H9NO5 | 151 |
3 | 13.636 | 0.41 | 1,4-Cyclohexanediol, (Z)-, TMS Derivative | C9H20O2Si | 188 |
4 | 16.225 | 3.20 | Phytol, Acetate | C22H42O2 | 338 |
5 | 16.477 | 0.28 | 3-Eicosyne | C20H38 | 278 |
6 | 16.675 | 1.39 | Neophytadiene | C20H38 | 278 |
7 | 17.129 | 0.28 | Octadecanoic Acid, Methyl Ester | C19H38O2 | 298 |
8 | 18.284 | 0.93 | Cholestan-3,26-Diol-22-One | C27H46O3 | 418 |
9 | 18.637 | 1.74 | 2-Methylpropionic Acid, 3,4-Dichlorophenyl Ester | C10H10Cl2O2 | 232 |
10 | 18.831 | 0.37 | Methyl Petroselinate | C19H36O2 | 296 |
11 | 19.447 | 0.43 | Hexane, 3,3-Dimethyl | C8H18 | 114 |
12 | 20.467 | 0.50 | Octanoic Acid, 2-Dimethylaminoethyl Ester | C12H25NO2 | 215 |
13 | 21.880 | 0.46 | 2-Decanone | C10H20O | 156 |
14 | 21.953 | 1.09 | Propylhexedrine | C10H21N | 155 |
15 | 22.088 | 6.43 | Longifolenaldehyde | C15H24O | 220 |
16 | 22.165 | 13.16 | Isocembrol | C20H34O | 290 |
17 | 23.837 | 4.27 | Tetracontane | C40H82 | 562 |
18 | 24.030 | 2.31 | Chrysanin | C20H24O5 | 344 |
19 | 24.598 | 1.31 | Squalene | C30H50 | 410 |
20 | 25.415 | 14.56 | 17,18,19,20-Tetrahydro-16,21-Di-T-Butyl-1,6-Methano-32-Annulene | C41H44 | 536 |
21 | 26.447 | 6.48 | Hexatriacontane | C36H74 | 506 |
22 | 26.865 | 0.90 | Carbonic Acid, 2-Ethylhexyl Pentadecyl Ester | C24H48O3 | 384 |
23 | 27.175 | 2.17 | (+)-.Alpha.-Tocopherol | C29H50O2 | 430 |
24 | 28.395 | 1.10 | 11-Hydroxypregn-4-Ene-3,20-Dione | C21H30O3 | 330 |
25 | 28.695 | 2.90 | 6-Nitrocholesteryl Acetate | C29H47NO4 | 473 |
26 | 29.222 | 3.98 | 2-Methylhexacosane | C27H56 | 380 |
27 | 29.465 | 4.98 | Ergost-5-En-3-Ol, (3.Beta.)- | C28H48O | 400 |
28 | 32.471 | 3.02 | Eicosane | C20H42 | 282 |
Tissue Type | TPC | TFC | DPPH Scavenging Activity |
---|---|---|---|
Callus | 0.95 ± 0.1 c | 6.56 ± 0.2 c | 30.28 ± 1.0 c |
Leaves (in vivo) | 3.49 ± 0.1 b | 11.20 ± 0.4 b | 36.22 ± 0.9 b |
Leaves (in vitro) | 5.32 ± 0.1 a | 13.19 ± 0.1 a | 50.64 ± 0.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bansal, M.; Mujib, A.; Bansal, Y.; Dewir, Y.H.; Mendler-Drienyovszki, N. An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug. Horticulturae 2024, 10, 728. https://doi.org/10.3390/horticulturae10070728
Bansal M, Mujib A, Bansal Y, Dewir YH, Mendler-Drienyovszki N. An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug. Horticulturae. 2024; 10(7):728. https://doi.org/10.3390/horticulturae10070728
Chicago/Turabian StyleBansal, Mahima, A. Mujib, Yashika Bansal, Yaser Hassan Dewir, and Nóra Mendler-Drienyovszki. 2024. "An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug" Horticulturae 10, no. 7: 728. https://doi.org/10.3390/horticulturae10070728
APA StyleBansal, M., Mujib, A., Bansal, Y., Dewir, Y. H., & Mendler-Drienyovszki, N. (2024). An Efficient In Vitro Shoot Organogenesis and Comparative GC-MS Metabolite Profiling of Gaillardia pulchella Foug. Horticulturae, 10(7), 728. https://doi.org/10.3390/horticulturae10070728