Genotyping of Autochthonous Rose Populations in the Netherlands for Effective Ex Situ Gene Conservation Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sampling
2.2. Microsatellite Genotyping
2.3. MLGs and Genetic Diversity
2.4. Core-Set Analysis
3. Results
3.1. Multilocus Genotypes (MLGs) in the Netherlands
3.2. Genetic Structure
3.3. Geographic Origin of the MLGs
3.4. Multilocus Genotypes in the Gene Bank and Evaluation of Redundancy
3.5. Construction of Core Collections
4. Discussion
4.1. Clonality
4.2. Redundancy in the Gene Bank
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maes, B. Inheemse Bomen en Struiken in Nederland en Vlaanderen: Herkenning, Verspreiding, Geschiedenis en Gebruik; Uitgeverij Boom: Amsterdam, The Netherland, 2013. [Google Scholar]
- Sparrius, L.; Odé, B.; Beringen, R. Basisrapport Rode Lijst Vaatplanten 2012 Volgens Nederlandse en IUCN-Criteria. FLORON Rapport 57. 2012. Available online: https://www.floron.nl/Portals/1/Downloads/Basisrapport%20Rode%20Lijst%20vaatplanten%202012.pdf (accessed on 13 June 2024).
- Rassenlijst Bomen. Available online: https://www.rassenlijstbomen.nl/nl/home/soorten.htm (accessed on 13 June 2024).
- Esselink, D.; Smulders, M.J.M.; Vosman, B. Identification of cut-rose (Rosa hybrida) and rootstock varieties using robust Sequence Tagged Microsatellite markers. Theor. Appl. Genet. 2003, 106, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Smulders, M.J.M.; Esselink, D.; Voorrips, R.E.; Vosman, B. Analysis of a database of DNA profiles of 734 Hybrid Tea Rose varieties. Acta Hortic. 2009, 836, 169–174. [Google Scholar] [CrossRef]
- Vukosavljev, M.; Zhang, J.; Esselink, G.D.; Van ‘t Westende, W.P.C.; Cox, P.; Visser, R.G.F.; Arens, P.; Smulders, M.J.M. Genetic diversity and differentiation in roses: A garden rose perspective. Sci. Hortic. 2013, 162, 320–332. [Google Scholar] [CrossRef]
- Samiei, L.; Naderi, R.; Khalighi, A.; Bushehri, A.-A.; Mozaffarian, V.; Esselink, G.D.; Smulders, M.J.M. In search of genetic diversity in Rosa foetida Herrmann in Iran. Acta Hortic. 2009, 836, 25–30. [Google Scholar] [CrossRef]
- Reichel, K.; Herklotz, V.; Smolka, A.; Nybom, H.; Kellner, A.; De Riek, J.; Smulders, M.J.M.; Wissemann, V.; Ritz, C.M. Untangling the hedge: Genetic diversity in clonally and sexually transmitted genomes of European wild roses, Rosa L. PLoS ONE 2023, 18, e0292634. [Google Scholar] [CrossRef] [PubMed]
- Ritz, C.M.; Wissemann, V. Microsatellite Analyses of Artificial and Spontaneous Dogrose Hybrids Reveal the Hybridogenic Origin of Rosa micrantha by the Contribution of Unreduced Gametes. J. Hered. 2011, 102, 217–227. [Google Scholar] [CrossRef]
- Kellner, A.; Ritz, C.M.; Wissemann, V. Hybridization with invasive Rosa rugosa threatens the genetic integrity of native Rosa mollis. Bot. J. Linn. Soc. 2012, 170, 472–484. [Google Scholar] [CrossRef]
- Herklotz, V.; Ritz, C.M. Spontane Hybridisierung von Hundsrosen (Rosa L. sect. Caninae (DC). Ser.) an einem natürlichen Vorkommen in der Oberlausitz (Sachsen, Deutschland). Peckiana 2014, 9, 119–131. [Google Scholar]
- Herklotz, V.; Ritz, C.M. Multiple and asymmetrical origin of polyploid dogrose hybrids (Rosa L. sect. Caninae (DC) Ser.) involving unreduced gametes. Ann. Bot. 2017, 120, 209–220. [Google Scholar] [CrossRef]
- Wissemann, V.; Hellwig, F.H. Reproduction and Hybridisation in the Genus Rosa, Section Caninae (Ser.) Rehd. Bot. Acta 1997, 110, 251–256. [Google Scholar] [CrossRef]
- Werlemark, G.; Nybom, H. Dogroses: Botany, Horticulture, Genetics, and Breeding. Hortic. Rev. 2010, 36, 199–255. [Google Scholar] [CrossRef]
- Nybom, H.; Esselink, G.D.; Werlemark, G.; Vosman, B. Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. Sect. Caninae DC. Heredity 2004, 92, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Nybom, H.; Esselink, G.D.; Werlemark, G.; Leus, L.; Vosman, B. Unique genomic configuration revealed by microsatellite DNA in polyploid dogroses, Rosa sect. Caninae. J. Evol. Biol. 2006, 19, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Jürgens, A.H.; Seitz, B.; Kowarik, I. Genetic differentiation of Rosa canina (L.) at regional and continental scales. Plant Syst. Evol. 2007, 269, 39–53. [Google Scholar] [CrossRef]
- Koopman, W.J.M.; Wissemann, V.; de Cock, K.; van Huylenbroeck, J.; De Riek, J.; Sabatino, G.J.; Visser, D.; Vosman, B.; Ritz, C.M.; Maes, B.; et al. AFLP Markers as a tool to reconstruct complex relationships: A case study in Rosa (Rosaceae). Am. J. Bot. 2008, 95, 353–366. [Google Scholar] [CrossRef] [PubMed]
- De Riek, J.; De Cock, K.; Smulders, M.J.M.; Nybom, H. AFLP-based population structure analysis as a means to validate the complex taxonomy of dogroses (Rosa section Caninae). Mol. Phylogenet. Evol. 2013, 67, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Henker, H. Rosa. In Gustav Hegi–Illustrierte Flora von Mitteleuropa. IV/2C; Conert, H.J., Jaeger, E.J., Kadereit, J.W., Schultze-Motel, W., Wagenitz, G., Weber, H.E., Eds.; Parey: Berlin, Germnay, 2000; pp. 1–108. [Google Scholar]
- Duistermaat, L. Heukels’ Flora van Nederland; Noordhoff: Groningen, The Netherlands, 2020; ISBN 9789001589561. [Google Scholar]
- Bakker, P.; Maes, B.; Maskew, R.; Stace, C. Dog-roses (Rosa sect. Caninae): Towards a consensus taxonomy. Br. Ir. Bot. 2019, 1, 7–19. [Google Scholar] [CrossRef]
- Spiller, M.; Linde, M.; Hibrand-Saint Oyant, L.; Tsai, C.-J.; Byrne, D.H.; Smulders, M.J.M.; Foucher, F.; Debener, T. Towards a unified genetic map of diploid rose. Theor. Appl. Genet. 2011, 122, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Hibrand Saint-Oyant, L.; Ruttink, T.; Hamama, L.; Kirov, I.; Lakhwani, D.; Zhou, N.N.; Bourke, P.M.; Daccord, N.; Leus, L.; Schulz, D.; et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 2018, 4, 473–484. [Google Scholar] [CrossRef]
- Mayland-Quellhorst, E.; Wissemann, V. Population structure of Rosa spinosissima L. on the Frisian Islands and introgression from cultivated material. Nord. J. Bot. 2021, 39, e02941. [Google Scholar] [CrossRef]
- Brownstein, M.L.; Carpten, J.D.; Smith, J.R. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. BioTechniques 1996, 20, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Esselink, G.D.; Nybom, H.; Vosman, B. Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—Peak ratios) method. Theor. Appl. Genet. 2004, 109, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.; Drauch Schreier, A. Resolving microsatellite genotype ambiguity in populations of allopolyploid and diploidized autopolyploid organisms using negative correlations between allelic variables. Mol. Ecol. Resour. 2017, 17, 1090–1103. [Google Scholar] [CrossRef] [PubMed]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [PubMed]
- De Beukelaer, H.; Davenport, G.F.; Fack, V. Core Hunter 3: Flexible core subset selection. BMC Bioinform. 2018, 19, 203. [Google Scholar] [CrossRef] [PubMed]
- Odong, T.L.; Jansen, J.; Van Eeuwijk, F.A.; van Hintum, T.J. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor. Appl. Genet. 2013, 126, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Werlemark, G. Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sex. Plant Reprod. 2000, 12, 353–359. [Google Scholar] [CrossRef]
- De Cock, K. Genetic Diversity of Wild Roses (Rosa spp.) in Europe, with an in-Depth Morphological Study of Flemish Populations. Ph.D. Thesis, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium, 2008. Available online: http://hdl.handle.net/1854/LU-472039 (accessed on 13 June 2024).
- Storme, V.; Vanden Broeck, A.; Ivens, B.; Halfmaerten, D.; Van Slycken, J.; Castiglione, S.; Grassi, F.; Fossati, T.; Cottrell, J.E.; Tabbener, H.E.; et al. Ex-situ conservation of Black poplar in Europe: Genetic diversity in nine gene bank collections and their value for nature development. Theor. Appl. Genet. 2004, 108, 969–981. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Wu, S.; Raupp, W.J.; Sehgal, S.; Arora, S.; Tiwari, V.; Vikram, P.; Singh, S.; Chhuneja, P.; Gill, B.S.; et al. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Sci. Rep. 2019, 9, 650. [Google Scholar] [CrossRef]
- Carvajal-Yepes, M.; Ospina, J.A.; Aranzales, E.; Velez-Tobon, M.; Correa Abondano, M.; Manrique-Carpintero, N.C.; Wenzl, P. Identifying genetically redundant accessions in the world’s largest cassava collection. Front. Plant Sci. 2024, 14, 1338377. [Google Scholar] [CrossRef]
- Van Treuren, R.; van Hintum, T.J. Marker-Assisted Reduction of Redundancy in Germplasm Collections: Genetic and Economic Aspects. Acta Hortic. 2003, 623, 139–149. [Google Scholar] [CrossRef]
- van Treuren, R.; Kemp, H.; Ernsting GJongejans, B.; Visser, L. Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: Application in collection management and variety identification. Genet. Resour. Crop Evol. 2010, 57, 853–865. [Google Scholar] [CrossRef]
- Barreneche, T.; Cárcamo de la Concepción, M.; Blouin-Delmas, M.; Ordidge, M.; Nybom, H.; Lacis, G.; Feldmane, D.; Sedlak, J.; Meland, M.; Kaldmäe, H.; et al. SSR-Based Analysis of Genetic Diversity and Structure of Sweet Cherry (Prunus avium L.) from 19 Countries in Europe. Plants 2021, 10, 1983. [Google Scholar] [CrossRef]
- Van Hintum, T.H.J.L.; Brown, A.H.; Spillane, C.; Hodgkin, T. Core Collections of Plant Genetic Resources; IPGRI Technical Bulletin No. 3; International Plant Genetic Resources Institute: Rome, Italy, 2000. [Google Scholar]
- Schanzer, I.A.; Kutlunina, N.A. Interspecific hybridization in wild roses (Rosa L. sect. Caninae DC.). Biol. Bull. Russ. Acad. Sci. 2010, 37, 480–488. [Google Scholar] [CrossRef]
- Brown, A.H.D.; Marshall, D.R. A basic sampling strategy: Theory and practice. In Collecting Plant Genetic Diversity: Technical Guidelines; CAB International: Wallingford, UK, 1995; Chapter 5; pp. 75–91. Available online: http://cropgenebank.sgrp.cgiar.org/images/file/procedures/collecting1995/Chapter5.pdf (accessed on 13 June 2024).
- Hoban, S.; Strand, A. Ex situ seed collections will benefit from considering spatial sampling design and species’ reproductive biology. Biol. Conserv. 2015, 187, 182–191. [Google Scholar] [CrossRef]
- Hoban, S.; Callicrate, T.; Clark, J.; Deans, S.; Dosmann, M.; Fant, J.; Gailing, O.; Havens, K.; Hipp, A.L.; Kadav, P.; et al. Taxonomic similarity does not predict necessary sample size for ex situ conservation: A comparison among five genera. Proc. R. Soc. B 2020, 287, 20200102. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, K.; Schumacher, E.; Brown, A.; Hoban, S. Proportional sampling strategy often captures more genetic diversity when population sizes vary. Biol. Conserv. 2021, 261, 109261. [Google Scholar] [CrossRef]
- Di Santo, L.N.; Hamilton, J.A. Using environmental and geographic data to optimize ex situ collections and preserve evolutionary potential. Conserv. Biol. 2020, 35, 733–744. [Google Scholar] [CrossRef] [PubMed]
- DeWoody, J.; Rowe, C.A.; Hipkins, V.D.; Mock, K.E. “Pando” lives: Molecular genetic evidence of a giant aspen clone in central Utah. West. N. Am. Nat. 2008, 68, 493–497. [Google Scholar] [CrossRef]
- Arens, P.; Bijlsma, R.-J.; van ‘t Westende, W.P.C.; van Os, B.; Smulders, M.J.M.; Vosman, B. Genetic Structure in Populations of an Ancient Woodland Sedge, Carex sylvatica Hudson, at a Regional and Local Scale. Plant Biol. 2005, 7, 387–396. [Google Scholar] [CrossRef]
- Arens, P.; Grashof-Bokdam, C.J.; van der Sluis, T.; Smulders, M.J.M.; Vosman, B. Clonal diversity and genetic differentiation in Maianthemum bifolium between forest fragments of different age. Plant Ecol. 2005, 179, 169–180. [Google Scholar] [CrossRef]
Group | Species | N | MLG | eMLG | SE | H | G | E | R |
---|---|---|---|---|---|---|---|---|---|
arv | R. arvensis | 59 | 52 | 9.87 | 0.35 | 3.96 | 50.45 | 0.96 | 0.88 |
can | R. subcanina | 6 | 6 | 6.00 | 0.00 | 1.79 | 6.00 | 1.00 | 1.00 |
can | R. subcollina | 11 | 7 | 6.55 | 0.50 | 1.77 | 4.84 | 0.79 | 0.60 |
can | R. canina | 93 | 76 | 9.73 | 0.51 | 4.23 | 58.84 | 0.85 | 0.82 |
can | R. corymbifera | 56 | 43 | 9.26 | 0.83 | 3.59 | 27.03 | 0.74 | 0.76 |
can | R. balsamica | 44 | 30 | 8.74 | 1.00 | 3.18 | 17.93 | 0.74 | 0.67 |
can | R. dumalis | 5 | 5 | 5.00 | 0.00 | 1.61 | 5.00 | 1.00 | 1.00 |
can | R. pseudoscabriuscula | 1 | 1 | 1.00 | 0.00 | 0.00 | 1.00 | NA | NA |
can | R. tomentosa | 57 | 39 | 9.04 | 0.91 | 3.46 | 23.72 | 0.74 | 0.68 |
can | R. caesia | 3 | 3 | 3.00 | 0.00 | 1.10 | 3.00 | 1.00 | 1.00 |
can | Caninae_spec. | 10 | 10 | 10.0 | 0.00 | 2.30 | 10.00 | 1.00 | 1.00 |
can | R. sherardii | 10 | 2 | 2.00 | 0.00 | 0.50 | 1.47 | 0.72 | 0.11 |
rub | R. gremlii | 35 | 10 | 4.45 | 1.13 | 1.55 | 3.07 | 0.55 | 0.26 |
rub | R. rubiginosa | 34 | 18 | 6.58 | 1.29 | 2.30 | 5.16 | 0.46 | 0.52 |
rub | R. elliptica | 2 | 2 | 2.00 | 0.00 | 0.69 | 2.00 | 1.00 | 1.00 |
rub | R. micrantha | 15 | 8 | 6.00 | 0.92 | 1.80 | 4.79 | 0.75 | 0.50 |
rub | R. agrestis | 10 | 3 | 3.00 | 0.00 | 0.64 | 1.52 | 0.58 | 0.22 |
rub | Rubigineae_spec. | 2 | 1 | 1.00 | 0.00 | 0.00 | 1.00 | NA | 0.00 |
spi | R. spinosissima | 58 | 36 | 8.98 | 0.89 | 3.39 | 24.03 | 0.81 | 0.61 |
Total | 511 | 352 |
Species Name in This Study | Taxon Name Used by Duistermaat [21] | (Sub)section | Group |
---|---|---|---|
R. arvensis | R. arvensis | Synstylae | arv |
R. balsamica | R. tomentella | Tomentellae | can |
R. caesia | R. caesia | Caninae | can |
R. canina | R. canina | Caninae | can |
Caninae_spec. | n.d. | Caninae | can |
R. corymbifera | R. corymbifera | Caninae | can |
R. dumalis | R. vosagiaca | Caninae | can |
R. pseudoscabriuscula | R. x suberectiformis | Vestitae | can |
R. sherardii | R. sherardii | Vestitae | can |
R. subcanina | R. x subcanina | Caninae | can |
R. subcollina | R. x subcollina | Caninae | can |
R. tomentosa | R. tomentosa | Vestitae | can |
R. agrestis | R. agrestis | Rubigineae | rub |
R. elliptica | R. elliptica | Rubigineae | rub |
R. gremlii | R. x gremlii | Rubigineae | rub |
R. micrantha | R. micrantha | Rubigineae | rub |
Rubigineae_spec. | n.d. | Rubigineae | rub |
R. rubiginosa | R. rubiginosa | Rubigineae | rub |
R. spinosissima | R. spinosissima | Pimpinellifoliae | spi |
Locus | Linkage Group | Allele Size Range [bp] | Repeat Motif | Forward Primer Fluorescently Labelled | Reverse Primer | Fluorescent Label Used |
---|---|---|---|---|---|---|
RhAB40 | 4 | 201–236 | (TC)(AC) | AAT TTG TGT CAA TGC CAA ACA C | GTTTCTTGTCTCCAACCCATCGAGGTTTG | Pool 4-HEX |
RhAB73 | 7 | 151–215 | (CT)(CA) | GGT TAG ACG GGT GGA AGA AG | GTT TAC TGC CGA TAG AAG TAT TTC ATC A | Pool 1-NED |
RhB303 | 2 | 83–151 | (GA) | CAC TGC AAC AAC CCA ATA GC | GTT TCT TGT CTT CAG CTT AGA CTG TGC TG | Pool 2-HEX |
RhD201 | 1 | 165–242 | (TCT) | GGT ATG CAA ATA AGA GAT ACA GT | GTT TCT TCC TAA CAA ACC CAT TTT GAA AGG G | Pool 1-6-FAM |
RhD221 | 4 | 163–233 | (TCT) | CGT AAT TGC TGT GTG ACT GCT TT | GTTTCTTGCCGCTACGAGGAAAATCAA | Pool 3-HEX |
RhE2b | 6 | 151–195 | (TGT) | CTT TGC ATC AGA ATC TGC TGC ATT | GTTTCTTGCAGACACAGTTCATTAAAGCAG | Pool 4-NED |
RhEO506 | 2 | 186–343 | (CAG)(CAA)(CAG) | GAA GCC TCA GCA GCA TCC TCA AAT | GTT TCT TCA GTG CCA ACA AGC CCA TTG G | Pool 2-6-FAM |
RhO517 | 1 | 164–275 | (GAC) | CGG CGA CGA ACA AAT CAG CAT ATC | GTT TCT TTG AAG AAC GAG GCG CAG CGT AA | Pool 2-NED |
RhP50 | 3 | 225–406 | (CGG) | TGA TGA AAT CAT CCG AGT GTC AG | GTT TCA CTT TCA TTG GAA TGC CAG AAT | Pool 3-6-FAM |
RhP518 | 5 | 119–184 | (CAT)CAAT(CAT) | TTC GAT CTC CAT CTG CAA GA | GTT TCT TCT TAT AAT CTA TTA CGA AGG CTG G | Pool 4-6-FAM |
Group | # Sites (Populations) | #Samples | #MLGs | ||||
---|---|---|---|---|---|---|---|
In Gene Bank | Not in Gene Bank (Only Additional) | Total | In Gene Bank | Not in Gene Bank (Only Additional) | Total | ||
spi | 4 | 0 | 58 | 58 | 0 | 36 | 36 |
arv | 3 | 11 | 48 | 59 | 11 | 41 | 52 |
rub | 15 | 82 | 16 | 98 | 32 | 3 | 35 |
can | 31 | 151 | 145 | 296 | 109 | 105 | 214 |
Total | 244 | 267 | 511 | 152 | 185 | 337 |
MLG | Shared between | |||||
---|---|---|---|---|---|---|
R. gremlii | R. micrantha | Rubigineae_spec. | R. rubiginosa | R. agrestis | Sites | |
3 | x | x | x | x | x | |
13 | x | x | x | |||
66 | x | x | ||||
72 | x | x | x | x | ||
73 | x | x | - | |||
209 | x | x |
MLG | Shared between Taxa | Shared between/within Sites | Shared between Subsections | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R. subcollina | R. dumalis | R. subcanina | R. canina | R. corymbifera | Caninae_spec. | R. balsamica | R. pseudoscabriuscula | R. tomentosa | Between Sites | Within Sites | Between Subsections | |
23 | x | x | x | - | x | |||||||
29 | x | x | - | x | ||||||||
108 | x | x | - | x | ||||||||
110 | x | x | x | x | ||||||||
126 | x | x | - | |||||||||
199 | x | x | x | x | ||||||||
319 | x | x | ||||||||||
325 | x | x | ||||||||||
339 | x | x | - | x | ||||||||
342 | x | x |
Group | Samples | #Alleles | min_dist |
---|---|---|---|
spi | 58 (all) | 64 | 0.010 |
spi | 30 | 63 | 0.123 |
spi | 20 | 62 | 0.123 |
spi | 10 | 47 | 0.233 |
rub | 98 (all) | 76 | 0.017 |
rub | 20 | 73 | 0.025 |
rub | 10 | 67 | 0.050 |
can | 296 (all) | 131 | 0.009 |
can | 200 | 131 | 0.013 |
can | 180 | 130 | 0.019 |
can | 160 | 128 | 0.038 |
can | 140 | 127 | 0.038 |
can | 120 | 127 | 0.038 |
can | 100 | 123 | 0.048 |
can | 80 | 120 | 0.048 |
can | 60 | 116 | 0.048 |
can | 40 | 104 | 0.048 |
can | 20 | 88 | 0.120 |
can | 10 | 75 | 0.199 |
arv | 59 (all) | 81 | 0.010 |
arv | 50 | 81 | 0.021 |
arv | 40 | 80 | 0.096 |
arv | 30 | 70 | 0.096 |
arv | 20 | 70 | 0.175 |
arv | 10 | 64 | 0.201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buiteveld, J.; Smolka, A.; Smulders, M.J.M. Genotyping of Autochthonous Rose Populations in the Netherlands for Effective Ex Situ Gene Conservation Management. Horticulturae 2024, 10, 777. https://doi.org/10.3390/horticulturae10080777
Buiteveld J, Smolka A, Smulders MJM. Genotyping of Autochthonous Rose Populations in the Netherlands for Effective Ex Situ Gene Conservation Management. Horticulturae. 2024; 10(8):777. https://doi.org/10.3390/horticulturae10080777
Chicago/Turabian StyleBuiteveld, Joukje, Alisia Smolka, and Marinus J. M. Smulders. 2024. "Genotyping of Autochthonous Rose Populations in the Netherlands for Effective Ex Situ Gene Conservation Management" Horticulturae 10, no. 8: 777. https://doi.org/10.3390/horticulturae10080777
APA StyleBuiteveld, J., Smolka, A., & Smulders, M. J. M. (2024). Genotyping of Autochthonous Rose Populations in the Netherlands for Effective Ex Situ Gene Conservation Management. Horticulturae, 10(8), 777. https://doi.org/10.3390/horticulturae10080777