Physiological and Transcriptomic Analysis of Citrus Fruit Segment Drying under Facility-Forcing Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Fruit Physiological
2.3. Plant Hormone Assay
2.4. RNA-Seq and Fluorescence Quantitative Real-Time PCR Analysis
2.5. Data Analysis
3. Results
3.1. Effect of Segment Drying on Citrus Fruit Quality
3.2. Effect of Segment Drying on Hormone Content of Citrus Fruit
3.3. Transcriptome Analysis on Segment Drying of Citrus Fruit
3.4. Heat Map Analysis of Important Metabolic Pathway Genes in Segment Drying Fruits
3.5. qRT-PCR Analysis of Different Expressed Genes in Segment-Drying Fruits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Warner, R.; Wu, B.; MacPherson, S.; Lefsrud, M. A Review of Strawberry Photobiology and Fruit Flavonoids in Controlled Environments. Front. Plant Sci. 2021, 12, 611893. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Zhang, Q.; Lu, X.; Wei, C.; Yu, S.; Zhou, Z. Improvement of flavour quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chem. 2014, 164, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Distefano, M.; Steingass, C.B.; Leonardi, C.; Giuffrida, F.; Schweiggert, R.; Mauro, R.P. Effects of a plant-derived biostimulant application on quality and functional traits of greenhouse cherry tomato cultivars. Food Res. Int. 2022, 157, 111218. [Google Scholar] [CrossRef] [PubMed]
- Deng, X. Citrus Varieties in China, 2nd ed.; China Agriculture Press: Beijing, China, 2023. [Google Scholar]
- Kang, C.; Cao, J.; Wang, Y.; Sun, C. Advances of section drying in citrus fruit: The metabolic changes, mechanisms and prevention methods. Food Chem. 2022, 395, 133499. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, Y.; Wu, W.; Chen, Q.; Tian, Z.; Huang, J.; Ren, H.; Zhang, J.; Du, X.; Zhuang, M.; et al. A multilevel investigation to reveal the regulatory mechanism of lignin accumulation in juice sac granulation of pomelo. BMC Plant Biol. 2024, 24, 390. [Google Scholar] [CrossRef]
- Wu, L.; Wang, C.; He, L.; Wang, Z.; Tong, Z.; Song, F.; Tu, J.; Qiu, W.; Liu, J.; Jiang, Y.; et al. Transcriptome analysis unravels metabolic and molecular pathways related to fruit sac granulation in a late-ripening navel orange (Citrus sinensis Osbeck). Plants 2020, 9, 95. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Z.; Cao, Q.; Xie, J.; Wang, X.; Zhang, R.; Deng, L.; Ming, J.; Zeng, K. Molecular basis of postharvest granulation in orange fruit revealed by metabolite, transcriptome and methylome profiling. Postharvest Biol. Technol. 2020, 166, 111205. [Google Scholar] [CrossRef]
- Kang, C.; Cao, J.; Sun, J.; Zheng, G.; Wang, Y.; Chen, K.; Sun, C. Comparison of physiochemical characteristics of Citrus reticulata cv. Shatangju fruit with different fruit sizes after storage. Food Packag. Shelf Life 2022, 31, 100774. [Google Scholar] [CrossRef]
- Kang, C.; Jiang, A.; Yang, H.; Zheng, G.; Wang, Y.; Cao, J.; Sun, C. Integrated physiochemical, hormonal, and transcriptomic analysis revealed the underlying mechanisms for granulation in Huyou (Citrus changshanensis) fruit. Front. Plant Sci. 2022, 13, 923433. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Hou, J.; Huang, M.; Hu, M.; Deng, L.; Zeng, K.; Yao, S. A comprehensive review of segment drying (vesicle granulation and collapse) in citrus fruit: Current state and future directions. Sci. Hortic. 2023, 309, 111683. [Google Scholar] [CrossRef]
- Chen, K.; Xu, C.; Xu, C.; Li, F.; Zhang, S. Postharvest granulation of ‘Huyou’ (Citrus Changshanensis) fruit in response to calcium. Isr. J. Plant Sci. 2005, 53, 35–40. [Google Scholar] [CrossRef]
- Shi, M.; Liu, X.; Zhang, H.; He, Z.; Yang, H.; Chen, J.; Feng, J.; Yang, W.; Jiang, Y.; Yao, J.; et al. The IAA- and ABA-responsive transcription factor CgMYB58 upregulates lignin biosynthesis and triggers juice sac granulation in pummelo. Hortic. Res. 2020, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Che, X.; Han, P.; Chen, Z.; Chen, Z.; Chen, J.; Xiang, S.; Ding, P. Physiological and transcriptomic analysis reveals the potential mechanism of Morinda officinalis How in response to freezing stress. BMC Plant Biol. 2023, 23, 507. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Zhu, Y.; Cai, K.; Li, H.; Zhao, Q.; Zhang, Q.; Jiang, L.; Li, Y.; Jiang, T.; et al. Physiological and Transcriptomic Analysis Revealed the Molecular Mechanism of Pinus koraiensis Responses to Light. Int. J. Mol. Sci. 2022, 23, 13608. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Wu, W.; Zhu, M.; Rong, Z.; Zhang, T.; Tan, X.; He, Y.; Alqahtani, M.D.; Malhotra, S.K.; Srivastava, A.K.; et al. Comparative Response of Arbuscular Mycorrhizal Fungi versus Endophytic Fungi in Tangor Citrus: Photosynthetic Efficiency and P-Acquisition Traits. Horticulturae 2024, 10, 145. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, W.; Li, X. Experimental Manual of Plant Physiology, 4th ed.; Higher Education Press: Beijing, China, 2009. [Google Scholar]
- Jin, L.; Guo, D.; Ning, D.; Hussain, S.B.; Liu, Y. Covering the trees of Kinokuni tangerine with plastic film during fruit ripening improves sweetness and alters the metabolism of cell wall components. Acta Physiol. Plant. 2018, 40, 182. [Google Scholar] [CrossRef]
- Jin, L.; Liu, Y.; Du, W.; Fu, L.; Hussain, S.B.; Peng, S. Physiological and transcriptional analysis reveals pathways involved in iron deficiency chlorosis in fragrant citrus. Tree Genet. Genom. 2017, 13, 51. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Liu, J.H. Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata (L.) Raf.) in response to cold stress. BMC Genomes 2015, 16, 555. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Yao, S.; Cao, Q.; Xie, J.; Deng, L.; Zeng, K. Alteration of sugar and organic acid metabolism in postharvest granulation of Ponkan fruit revealed by transcriptome profiling. Postharvest Biol. Technol. 2018, 139, 2–11. [Google Scholar] [CrossRef]
- Li, Q.; Yao, S.; Deng, L.; Zeng, K. Changes in biochemical properties and pectin nanostructures of juice sacs during the granulation process of pomelo fruit (Citrus grandis). Food Chem. 2021, 376, 131876. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, L.; Wang, C.; Wang, Y.; He, L.; Wang, Z.; Ma, X.; Bai, F.; Feng, G.; Liu, J.; et al. Characterization of pectin methylesterase gene family and its possible role in juice sac granulation in navel orange (Citrus sinensis Osbeck). BMC Genom. 2022, 23, 185. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hou, J.; Huang, C.; Wang, W.; Liu, Y.; Zhang, H.; Yan, D.; Zeng, K.; Yao, S. Activation of the phenylpropanoid pathway in Citrus sinensis collapsed vesicles during segment drying revealed by physicochemical and targeted metabolomics analysis. Food Chem. 2023, 409, 135297. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yan, D.; Liu, Y.; Wang, W.; Hong, M.; He, M.; Yang, X.; Zeng, K.; Yao, S. Global changes in metabolic pathways in endocarp of ‘Dayagan’ hybrid citrus fruit during segment drying revealed by widely targeted metabolomics and transcriptomics analysis. Postharvest Biol. Technol. 2023, 198, 112255. [Google Scholar] [CrossRef]
- Cao, J.; Kang, C.; Chen, Y.; Karim, N.; Wang, Y.; Sun, C. Physiochemical changes in Citrus reticulata cv. Shatangju fruit during vesicle collapse. Postharvest Biol. Technol. 2020, 165, 111180. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Chai, S.; Ren, Y.; Guan, M.; Ma, F.; Liu, J. An aquaporin gene MdPIP1;2 from Malus domestica confers salt tolerance in transgenic Arabidopsis. J. Plant Physiol. 2022, 273, 153711. [Google Scholar] [CrossRef] [PubMed]
- Maurel, C.; Boursiac, Y.; Luu, D.; Santoni, V.; Shahzad, Z.; Verdoucq, L. Aquaporins in plants. Physiol. Rev. 2015, 95, 1321–1358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, R.; Liu, H.; Yang, H.; Li, X.; Wang, P.; Zhu, F.; Xu, R.; Xue, S.; Cheng, Y. Citrus NIP5;1 aquaporin regulates cell membrane water permeability and alters PIPs plasma membrane localization. Plant Mol. Biol. 2021, 106, 449–462. [Google Scholar] [CrossRef]
- Zhu, T.; De Lima, C.F.F.; De Smet, I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. J. Exp. Bot. 2021, 72, 7359–7373. [Google Scholar] [CrossRef]
- Lu, W.; Hao, W.; Liu, K.; Liu, J.; Yin, C.; Su, Y.; Hang, Z.; Peng, B.; Liu, H.; Xiong, B.; et al. Analysis of sugar components and identification of SPS genes in citrus fruit development. Front. Plant Sci. 2024, 15, 1372809. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Yang, L.; Fang, Z.; Zhang, Y.; Zhuang, M.; Lv, H.; Wang, Y. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 2022, 12, 205. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Wu, J.; Xu, Y.; Lu, L.; Yi, H. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. Plant Biotechnol. J. 2021, 19, 1337–1353. [Google Scholar] [CrossRef]
- Kumar, M.; Campbell, L.; Turner, S. Secondary cell walls: Biosynthesis and manipulation. J. Exp. Bot. 2016, 67, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, H.; Cheng, X.; Su, X.; Zhao, Y.; Jiang, T.; Jin, Q.; Lin, Y.; Cai, Y. Comparative genomic analysis of the PAL genes in five Rosaceae species and functional identification of Chinese white pear. PeerJ 2019, 7, e8064. [Google Scholar] [CrossRef]
- Cao, Y.; Han, Y.; Li, D.; Lin, Y.; Cai, Y. Systematic Analysis of the 4-Coumarate: Coenzyme A Ligase (4CL) Related Genes and Expression Profiling during Fruit Development in the Chinese Pear. Genes 2016, 7, 89. [Google Scholar] [CrossRef]
- Lv, Y.; Ren, S.; Wu, B.; Jiang, C.; Jiang, B.; Zhou, B.; Zhong, G.; Zhong, Y.; Yan, H. Transcriptomic and physiological comparison of Shatangju (Citrus reticulata) and its late-maturing mutant provides insights into auxin regulation of citrus fruit maturation. Tree Physiol. 2023, 43, 1841–1854. [Google Scholar] [CrossRef]
- Romero, P.; Lafuente, M.T.; Rodrigo, M.J. A sweet orange mutant impaired in carotenoid biosynthesis and reduced ABA levels results in altered molecular responses along peel ripening. Sci. Rep. 2019, 9, 9813. [Google Scholar] [CrossRef]
- Tan, Y.; Wen, B.; Xu, L.; Zong, X.; Sun, Y.; Wei, G.; Wei, H. High temperature inhibited the accumulation of anthocyanin by promoting ABA catabolism in sweet cherry fruits. Front. Plant Sci. 2023, 14, 1079292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Wen, M.; Liu, F.; Huang, B.; Wang, P. Physiological and Transcriptomic Analysis of Citrus Fruit Segment Drying under Facility-Forcing Cultivation. Horticulturae 2024, 10, 807. https://doi.org/10.3390/horticulturae10080807
Jin L, Wen M, Liu F, Huang B, Wang P. Physiological and Transcriptomic Analysis of Citrus Fruit Segment Drying under Facility-Forcing Cultivation. Horticulturae. 2024; 10(8):807. https://doi.org/10.3390/horticulturae10080807
Chicago/Turabian StyleJin, Longfei, Mingxia Wen, Feng Liu, Bei Huang, and Peng Wang. 2024. "Physiological and Transcriptomic Analysis of Citrus Fruit Segment Drying under Facility-Forcing Cultivation" Horticulturae 10, no. 8: 807. https://doi.org/10.3390/horticulturae10080807
APA StyleJin, L., Wen, M., Liu, F., Huang, B., & Wang, P. (2024). Physiological and Transcriptomic Analysis of Citrus Fruit Segment Drying under Facility-Forcing Cultivation. Horticulturae, 10(8), 807. https://doi.org/10.3390/horticulturae10080807