Harnessing Koelreuteria paniculata Seed Extracts and Oil for Sustainable Woolly Apple Aphid Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orchard Location and Description
2.2. Koelreuteria Paniculata Seed Collection and Processing
2.3. Phenolic Content Characterization
2.4. Aphid Mortality Assays
2.5. Statistical Analysis
3. Results
3.1. In Vivo Efficacy of K. paniculata Seed Extract and Oil in Suppression of Wingless WAA Adults
3.2. In Vitro Efficacy of K. paniculata Seed Extract and Oil in Suppression of Wingless WAA Adults
3.3. Phenolic Content of Seed Ethanolic Extract and Oil
3.4. Matching Potential Biopesticide Development from IAS with UN Sustainable Development Goals (SDGs) and European Green Deal (EGD)
4. Discussion
- Do nature-based solutions utilize nature and natural processes?
- Do they provide/enhance social benefits?
- Do they provide/enhance economic benefits?
- Do they provide/enhance environmental benefits?
- Do they ensure net benefits for biodiversity?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 27 May 2024).
- Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 27 May 2024).
- Fruit Logistica, 2023. European Statistics Handbook 2023. Available online: https://cdn.portalfruticola.com/2023/02/european_statistics_handbook_fruit_logistica_2023.pdf (accessed on 25 May 2024).
- Alaphilippe, A.; Simon, S.; Brun, L.; Hayer, F.; Gaillard, G. Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production. Agron. Sustain. Dev. 2012, 33, 581–592. [Google Scholar] [CrossRef]
- Cai, J.; Xiong, J.; Hong, Y.; Hu, R. Pesticide overuse in apple production and its socioeconomics determinants: Evidence from Shaanxi and Shandong provinces, China. J. Clean. Prod. 2021, 315, 128179. [Google Scholar] [CrossRef]
- Zaller, G.J.; Oswald, A.; Wildenberg, M.; Burtscher-Schaden, H.; Nadeem, I.; Formayer, H.; Paredes, D. Potential to reduce pesticides in intensive apple production through management practices coulg be challenged by climatic estremes. Sci. Total Environ. 2023, 872, 162237. [Google Scholar] [CrossRef] [PubMed]
- Volk, G.M.; Chao, C.T.; Norelli, J.; Brown, S.K.; Fazio, G.; Peace, C.; McFerson, J.; Zhong, G.Y.; Bretting, P. The vulnerability of US apple (Malus) genetic resources. Genet. Resour. Crop Evol. 2015, 62, 765–794. [Google Scholar] [CrossRef]
- Bálint, J.; Thiesz, R.; Nyárádi, I.I.; Szabó, K.A. Field Evaluation of Traditional Apple Cultivars to Induced Diseases and Pests. Notulae. Bot. Horti. Agrobot. Cluj-Napoca 2013, 41, 238–243. [Google Scholar] [CrossRef]
- Jovičić, I. Eriosoma lanigerum (Woolly Aphid). CABI Compendium. 2024. Available online: https://www.cabi.org/isc/datasheet/21805 (accessed on 10 May 2024).
- Rodríguez-Gasol, N.; Avilla, J.; Aparicio, Y.; Arnó, J.; Gabarra, R.; Riudavets, J.; Alegre, S.; Lordan, J.; Alins, G. The Contribution of Surrounding Margins in the Promotion of Natural Enemies in Mediterranean Apple Orchards. Insects 2019, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Orpet, J.R.; Jones, P.V.; Reganold, P.J.; Crowder, W.D. Effects of restricting movement between root and canopy populations of wooly apple aphid. PLoS ONE 2019, 14, e0216424. [Google Scholar] [CrossRef] [PubMed]
- Kelderer, M.; Lardschneider, E.; Schütz, R. Efficacy evaluation of different methods for the control of wooly apple aphid (Erisoma lanigerum [Hausmann]) in organic apple growing. Agric. Food Sci. 2016, 77–84. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20163255404. (accessed on 27 May 2024).
- Bus, V.G.M.; Chagné, D.; Bassett, H.C.M.; Bowatte, D.; Calenge, F.; Celton, J.M.; Durel, C.E.; Malone, M.T.; Patocchi, A.; Ranatunga, A.C.; et al. Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet. Genomes 2008, 4, 223–236. [Google Scholar] [CrossRef]
- Ateyyat, M.; Al-Antary, T. Susceptibility of nine apple cultivars to woolly apple aphid, Eriosoma lanigerum (Homoptera: Aphididae) in Jordan. Int. J. Pest Manag. 2009, 55, 79–84. [Google Scholar] [CrossRef]
- Galli, M.; Feldmann, F.; Vogler, U.K.; Kogel, K.H. Can biocontrol be the game-changer in integrated pest management? A review of definitions, methods and strategies. J. Plant. Dis. Prot. 2024, 131, 265–291. [Google Scholar] [CrossRef]
- EC2022 European Commission 2022-Commission Implementing Regulation (EU) 2022/489 of 25 March 2022 Amending Implementing Regulation (EU) No 540/2011 as Regards the Approval Periods of the Active Substances Flubendiamide, L-ascorbic Acid, Spinetoram and Spirotetramat Official Journal of the European Union. 2022. Available online: http://data.europa.eu/eli/reg_impl/2022/489/oj (accessed on 27 May 2024).
- Khursheed, A.; Rather, M.A.; Jain, V.; Rasool, S.; Nazir, R.; Malik, N.A.; Majid, S.A. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef] [PubMed]
- Swapan, C.; Banerjee, M.; Deewa, B.; Tanmoy, M. Natural pesticides for pest control in agricultural crops: An alternative and eco-friendly method. Plant Sci. Today 2023, 11, 433–450. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Biopesticides in Sustainable Agriculture: A Critical Sustainable Development Driver Governed by Green Chemistry Principles. Front. Sustain. Food Syst. 2021, 5, 619058. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Nurmahomed, W.; Matambo, T. The Potential and Green Chemistry Attributes of Biopesticides for Sustainable Agriculture. Sustainability 2022, 14, 14417. [Google Scholar] [CrossRef]
- EC2020-European Commission: Circular Economy Action Plan. 2020. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 27 May 2024).
- EC2021-European Commission: Zero Pollution Action Plan. 2021. Available online: https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en (accessed on 27 May 2024).
- EC2020-European Commission: Farm to Fork Strategy. 2020. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 27 May 2024).
- EC2020-European Commission: EU Biodiversity Strategy for 2030. 2020. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en?prefLang=el (accessed on 27 May 2024).
- EC2018-European Commission. 2018. Available online: https://knowledge4policy.ec.europa.eu/bioeconomy/bioeconomy-strategy_en (accessed on 27 May 2024).
- Lahlali, R.; El Hamss, H.; Jemâa, J.M.-B.; Barka, E.A. Editorial: The Use of Plant Extracts and Essential Oils as Biopesticides. Front. Agron. 2022, 4, 921–965. [Google Scholar] [CrossRef]
- Kacho, N.F.; Hussain, M.; Hussain, N.; Hussain, M.; Asmat, S. Comparative effect of synthetic and botanical insecticide against woolly apple aphid, Eriosoma lanigerum (Hausamann) on apple in cold arid zone of Kargil, Ladakh, India. J. Entomol. Zool. Stud. 2020, 8, 1107–1109. [Google Scholar]
- Kumar, V.; Gupta, D. Evaluation of insecticides against woolly apple aphid Eriosoma lanigerum and its parasitoid Aphelinus mali. Indian J. Entomol. 2019, 81, 467–471. [Google Scholar] [CrossRef]
- Li, T.; Lv, M.; Wen, H.; Wang, Y.; Thapa, S.; Zhang, S.; Xu, H. Synthesis of Piperine-Based Ester Derivatives with Diverse Aromatic Rings and Their Agricultural Bioactivities against Tetranychus cinnabarinus Boisduval, Aphis citricola Van der Goot, and Eriosoma lanigerum Hausmann. Insects 2023, 14, 40. [Google Scholar] [CrossRef]
- Tanasković, S.; Gvozdenac, S.; Kolarov, R.; Bursić, V.; Konstantinović, B.; Prvulović, D. Antifeeding and Insecticidal Activity of Ailanthus altissima and Morus alba Extracts Against Gipsy Moth (Lymantria dispar (L.), Lepidoptera, Lymantridae) Larvae Under Laboratory Conditions. J. Entomol. Res. Soc. 2021, 23, 197–212. [Google Scholar] [CrossRef]
- Anjum, S.I.; Husain, S.; Khan, H.U.; Attaullah, M.; Rajput, S.; Shah, A.H.; Buneri, I.D.; Shah, A.H. Toxicity assessment of the methanol extract from Elaeagnus angustifolia against larvae of Drosophila melanogaster meign (Diptera/Drosophilidae). J. Entomol. Zool. Stud. 2017, 5, 217–220. [Google Scholar]
- Wens, A.; Geuens, J. In vitro and in vivo antifungal activity of plant extracts against common phytopathogenic fungi. J. Biosci. Biotechnol. 2022, 11, 15–21. [Google Scholar]
- Jiang, H.; Wang, J.; Song, L.I.; Cao, X.; Yao, X.I.; Tang, F.; Yue, Y. Chemical composition of an insecticidal extract from Robinia pseudacacia L. seeds and it’s efficacy against aphids in oilseed rape. Crop Prot. 2018, 104, 1–6. [Google Scholar] [CrossRef]
- Macedo, M.L.R.; Damico, D.C.S.; Freire, M.D.G.M.; Toyama, M.H.; Marangoni, S.; Novello, J.C. Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae). J. Agric. Food Chem. 2003, 51, 2980–2986. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.H.Z.; Freire, M.D.G.M.; Roberto, J.; Parra, P.; Macedo, M.L.R. Physiological and biochemical effects of an aqueous extract of Koelreuteria paniculata (Laxm.) seeds on Anticarsia gemmatalis (Huebner) (Lepidoptera: Noctuidae). SOAJ Entomol. Stud. 2012, 1, 81–93. [Google Scholar]
- Pušić, M.; Ljubojević, M.; Prvulović, D.; Kolarov, R.; Tomić, M.; Simikić, M.; Vejnović, S.; Narandžić, T. Bioenergy and Biopesticides Production in Serbia—Could Invasive Alien Species Contribute to Sustainability? Processes 2024, 12, 407. [Google Scholar] [CrossRef]
- Fetting, C. The European Green Deal. ESDN Rep. 2020, 53. Available online: https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf (accessed on 29 April 2023).
- Rajić, M.; Štula, S. Climatic Changes Impact on Tendency of Drought in South Bačka Region (In Serbian: Klimatske promene i pojava suša na području Južne Bačke). Ann. Agron. 2007, 31, 80–89, UDK: 551.583:551.557.38(497.113). [Google Scholar]
- Sekulić, P.; Ninkov, J.; Hristov, N.; Vasin, J.; Šeremešić, S.; Zeremski-Škorić, T. Organic Matter Content in Vojvodina Soils and the Possibility of Using Harvest Residues as Renewable Source of Energy (In Serbian: Sadržaj organske materije u zemljištima AP Vojvodine i mogućnost korišćenja žetvenih ostataka kao obnovljivog izvora energije). Field Veg. Crop Res. (Serbian Ratar. Povrt.) 2010, 47, 591–598. [Google Scholar]
- Ljubojević, M.; Tomić, M.; Simikić, M.; Savin, L.; Narandžić, T.; Pušić, M.; Grubač, M.; Vejnović, S.; Marinković, M. Koelreuteria paniculata invasiveness, yielding capacity and harvest date influence on biodiesel feedstock properties. J. Environ. Manag. 2021, 25, 113102. [Google Scholar] [CrossRef]
- Rehman, S.; Park, I.H. Effect of scarification, GA and chilling on the germination of goldenrain-tree (Koelreuteria paniculata Laxm.) seeds. Sci. Hortic. 2000, 85, 319–324. [Google Scholar] [CrossRef]
- Tomić, M.; Ljubojević, M.; Mićić, R.; Simikić, M.; Dulić, J.; Narandžić, T.; Čukanović, J.; Sentić, I.; Dedović, N. Oil from Koelreuteria paniculata Laxm. 1772 as possible feedstock for biodiesel production. Fuel 2020, 277, 118162. [Google Scholar] [CrossRef]
- Vasylieva, N.; James, H. Production and trade patterns in the world apple market. Innov. Mark. 2021, 17, 16–25. [Google Scholar] [CrossRef]
- Eyduran, S.P.; Akın, M.; Çelik, Ş.; Aliyev, P.; Aykol, S.; Eyduran, E. Forecasting Apple Production in Turkey. Erwerbs-Obstbau 2022, 64, 9–14. [Google Scholar] [CrossRef]
- Narandžić, T.; Ružičić, S.; Grubač, M.; Pušić, M.; Ostojić, J.; Šarac, V.; Ljubojević, M. Landscaping with Fruits: Citizens’ Perceptions toward Urban Horticulture and Design of Urban Gardens. Horticulturae 2023, 9, 1152. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Dabić Zagorac, D.; Gašić, U.; Tosti, T.; Natić, M.; Meland, M. Analysis of Apple Fruit (Malus × domestica Borkh.) Quality Attributes Obtained from Organic and Integrated Production Systems. Sustainability 2022, 14, 5300. [Google Scholar] [CrossRef]
- Šarac, V.; Milić, D.; Vukelić, N.; Novaković, T.; Novaković, D.; Ljubojević, M.; Rodić, V. Assessment of Beef Manure Economic Value by the Method of Equivalent Green and Mineral Fertilizer Substituton. Horticulturae 2024, 10, 125. [Google Scholar] [CrossRef]
- Praneetvatakul, S.; Schreinemachers, P.; Vijitsrikamol, K.; Potchanasin, C. Policy options for promoting wider use of biopesticides in Thai agriculture. Heliyon 2024, 10, e24486. [Google Scholar] [CrossRef]
- Kovaříková, K.; Pavela, R. United Forces of Botanical Oils: Efficacy of Neem and Karanja Oil against Colorado Potato Beetle under Laboratory Conditions. Plants 2019, 8, 608. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Safaralizade, M.H.; Valizadegan, O. Contact toxicity of Azadirachta indica (Adr. Juss.), Eucalyptus camaldulensis (Dehn.) and Laurus nobilis (L.) essential oils on mortality cotton aphids, aphis gossypii glover (hem.: Aphididae). Arch. Phytopathol. Plant Prot. 2013, 46, 2153–2162. [Google Scholar] [CrossRef]
- Chohan, T.A.; Chohan, T.A.; Zhou, L.; Yang, Q.; Min, L.; Cao, H. Repellency, Toxicity, Gene Expression Profiling and In Silico Studies to Explore Insecticidal Potential of Melaleuca alternifolia Essential Oil against Myzus persicae. Toxins 2018, 10, 425. [Google Scholar] [CrossRef] [PubMed]
- Czerniewicz, P.; Chrzanowski, G.; Sytykiewicz, H.; Sprawka, I.; Leszczynski, B. Aphidicidal and deterrent activity of phenolic acid extracts from some herbal plants towards Myzus persicae Sulz. and Rhopalosiphum padi L. Fresenius Environ. Bull 2016, 25, 5714–5721. [Google Scholar]
- Gantner, M.; Najda, A.; Piesik, D. Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid. Plant Prot. Sci. 2019, 55, 116–122. [Google Scholar] [CrossRef]
- Ozay, Y.; Ozdemir, S.; Gonca, S.; Canli, O.; Dizge, N. Phenolic compounds recovery from pistachio hull using pressure-driven membrane process and a cleaner production of biopesticide. Environ. Technol. Innov. 2021, 24, 101993. [Google Scholar] [CrossRef]
- Özbek, H.N.; Halahlih, F.; Göğüş, F.; Yanık, K.D.; Azaizeh, H. Pistachio (Pistacia vera L.) Hull as a Potential Source of Phenolic Compounds: Evaluation of Ethanol–Water Binary Solvent Extraction on Antioxidant Activity and Phenolic Content of Pistachio Hull Extracts. Waste Biomass Valor. 2020, 11, 2101–2110. [Google Scholar] [CrossRef]
- Punia, A.; Chauhan, N.S.; Singh, D.; Kesavan, A.K.; Kaur, S.; Sohal, S.K. Effect of gallic acid on the larvae of Spodoptera litura and its parasitoid Bracon hebetor. Sci. Rep. 2021, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Dolma, S.K.; Singh, P.P.; Reddy, S.G.E. Insecticidal and Enzyme Inhibition Activities of Leaf/Bark Extracts, Fractions, Seed Oil and Isolated Compounds from Triadica sebifera (L.) Small against Aphis craccivora Koch. Molecules 2022, 27, 1967. [Google Scholar] [CrossRef] [PubMed]
- Marques, T.R.; Caetano, A.A.; Alves, D.S.; Ramos, V.D.; Simao, A.A.; Carvalho, G.A.; Correa, A.D. Malpighia emarginata DC. bagasse acetone extract: Phenolic compounds and their effect on Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Chil. J. Agric. Res. 2016, 76, 55–61. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Saadaoui, N.; Kiai, H.; Raiti, J.; Hafidi, A. Potential applications of olive mill wastewater as biopesticide for crops protection. Sci. Total Environ. 2017, 576, 10–21. [Google Scholar] [CrossRef]
- Larif, M.; Zarrouk, A.; Soulaymani, A.; Elmidaoui, A. New innovation in order to recover the polyphenols of olive mill wastewater extracts for use as a biopesticide against the Euphylluraolivina and Aphis citricola. Res. Chem. Intermed. 2013, 39, 4303–4313. [Google Scholar] [CrossRef]
- Di Ilio, V.; Cristofaro, M. Polyphenolic extracts from the olive mill wastewater as a source of biopesticides and their effects on the life cycle of the Mediterranean fruit fly Ceratitis capitata (Diptera, Tephriditae). Int. J. Trop. Insect Sci. 2021, 41, 359–366. [Google Scholar] [CrossRef]
- Casanova, L.M.; Macrae, A.; de Souza, J.E.; Neves Junior, A.; Vermelho, A.B. The Potential of Allelochemicals from Microalgae for Biopesticides. Plants 2023, 12, 1896. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowski, G. Impact of Selected Phenylpropanoid Acids on the Growth and Development of Grain Aphid Sitobion avenae (F.). Aphids Other Hemipterous Insects 2007, 13, 175–181. [Google Scholar]
- Chrzanowski, G.; Leszczyński, B.; Czerniewicz, P.; Sytykiewicz, H.; Matok, H.; Krzyżanowski, R.; Sempruch, C. Effect of phenolic acids from black currant, sour cherry and walnut on grain aphid (Sitobion avenae F.) development. Crop. Prot. 2012, 35, 71–77. [Google Scholar] [CrossRef]
- Santiago, R.; Malvar, R.A.; Baamonde, M.D.; Revilla, P.; Souto, X.C. Free Phenols in Maize Pith and Their Relationship with Resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) Attack. J. Econ. Entomol. 2005, 98, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Boualem, M.; Mokhtar, M.; Saiah, F.; Benourand, F.; Bouhadiba, R.; Berkani, A. Identification of Menta piperita L. and Ricinus communis L. polyphenols by HPLC-DAD-ESI-MS and evaluation of their insecticidal properties against. Aphis Spiraecola P. South Asian J. Exp. Biol. 2017, 7, 28–34. [Google Scholar] [CrossRef]
- Gupta, G.S.; Miles, P.W. Studies on the Susceptibility of Varieties of Apple to the Feeding of Two Strains of Woolly Aphis (Homoptera) and Relation to the Chemical Content of the Tissues of the Host. Aust. J. Agric. Res. 1975, 26, 157–168. [Google Scholar] [CrossRef]
- Ateyyat, M.; Al-Antary, T.; Al Mazrawi, M.; Abu-Romman, S. Efficacy of different extracts of Rhamnus dispermus Ehrenb.(Rhamnales: Rhamnaceae) as aphicides against Eriosoma lanigerum (Hausmann) (Homoptera: Aphididae) and its parasitoid, Aphelinus mali (Hald.) (Hymenoptera: Aphelinidae). IOBC/Wprs Bull. 2012, 74, 39–45. [Google Scholar]
- Naga, K.C.; Subramanian, S.; Sharma, R.K. Relative toxicity of phenolics against apple woolly aphid Eriosoma lanigerum. Indian J. Entomol. 2018, 80, 693–697. [Google Scholar] [CrossRef]
- Karthi, S.; Uthirarajan, K.; Manohar, V.; Venkatesan, M.; Chinnaperumal, K.; Vasantha-Srinivasan, P.; Krutmuang, P. Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules against Three Medically Challenging Arthropod Vectors. Molecules 2020, 25, 3844. [Google Scholar] [CrossRef]
- Jayaprakas, C.A.; Ratheesh, S.; Rajeswari, L.S. Biopesticidal Activity of Cassava (Manihot esculenta Crantz) Seed Oil Against Bihar Hairy Caterpillar (Spilarctia obliqua) and Cowpea Aphid (Aphis craccivora). J. Root Crops 2014, 39, 73–77. [Google Scholar]
- Farag, A.A.; Abd El-Rahman, H.A. Impact of some plant oils and hexaflumuron against Phenacoccus solenopsis (Hemiptera: Pseudococcidae) and Tetranychus urticae (Acari: Tetranychidae) on cotton plants. Egypt J. Plant Prot. Res. Inst. 2021, 4, 612–622. [Google Scholar]
- Trigui, M.; Gasmi, L.; Zouari, I.; Tounsi, S. Seasonal variation in phenolic composition, antibacterial and antioxidant activities of Ulva rigida (Chlorophyta) and assessment of antiacetylcholinesterase potential. J. Appl. Phycol. 2013, 25, 319–328. [Google Scholar] [CrossRef]
- Karagounis, C.; Kourdoumbalos, A.K.; Margaritopoulos, J.T.; Nanos, G.D.; Tsitsipis, J.A. Organic farming-compatible insecticides against the aphid Myzus persicae (Sulzer) in peach orchards. J. Appl. Entomol. 2006, 130, 150–154. [Google Scholar] [CrossRef]
- Raudonis, L.; Duchovskiene, L.; Valiuškaitė, A.; Survilienė, E. Toxicity of biopesticides to green apple aphid, predatory insects and mite in an apple-tree orchard. Zemdirb. (Agric.) 2010, 97, 49–54. [Google Scholar]
- Balwan, W.K.; Singh, A.; Kour, S. 5R’s of Zero Waste Management to Save Our Green Planet: A Narrative Review. Eur. J. Biotechnol. Biosci. 2022, 10, 7–11. [Google Scholar]
- Butu, M.; Stef, R.; Grozea, I.; Corneanu, M.; Butnariu, M. Biopesticides: Clean and Viable Technology for Healthy Environment. In Bioremediation and Biotechnology; Springer: Cham, Switzerland, 2020; pp. 107–151. [Google Scholar] [CrossRef]
- Ikhwani, I.; Rahayuningsih, S.; Yuniarti, E.; Kusuma, H.S.; Darmokoesomo, H.; Putra, N.R. Mapping the trend of evolution: A bibliometric analysis of biopesticides in fruit crop protection. J. Plant. Dis. Prot. 2024, 131, 645–664. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. A new evaluation framework for nature-based solutions (NBS) projects based on the application of performance questions and indicators approach. Sci. Total Environ. 2021, 787, 147615. [Google Scholar] [CrossRef]
- EC2021-European Commission FUTURE BRIEF: The Solution is in Nature-Issue 24. Available online: https://environment.ec.europa.eu/publications/future-brief-solution-nature-issue-24_en (accessed on 30 May 2024).
Treatment | Number of Live Wingless WAA Adults | Apple Trunk | Apple Branch | Apple Trunk | Apple Branch | Apple Trunk | Apple Branch |
---|---|---|---|---|---|---|---|
24 February | 16 March | 1 April | |||||
2.5% IBP * | Before | 79 | 58 | 61 | 37 | 49 | 28 |
After | 6 | 5 | 3 | 4 | 5 | 4 | |
Mortality % | 92 b ** | 91 b | 95 b | 90 c | 90 c | 86 c | |
5% IBP | Before | 67 | 52 | 53 | 41 | 68 | 37 |
After | 4 | 0 | 2 | 2 | 3 | 2 | |
Mortality % | 94 b | 100 a | 96 b | 95 b | 96 b | 96 b | |
2.5% Oil | Before | 102 | 36 | 97 | 58 | 84 | 43 |
After | 0 | 0 | 0 | 0 | 0 | 0 | |
Mortality % | 100 a | 100 a | 100 a | 100 a | 100 a | 100 a | |
5% Oil | Before | 87 | 48 | 81 | 24 | 112 | 25 |
After | 0 | 0 | 0 | 0 | 0 | 0 | |
Mortality % | 100 a | 100 a | 100 a | 100 a | 100 a | 100 a | |
Distilled water | Before | 92 | 39 | 96 | 28 | 54 | 31 |
After | 92 | 39 | 96 | 28 | 54 | 31 | |
Mortality % | 0 | 0 | 0 | 0 | 0 | 0 |
Treatment | Number of Live Wingless WAA Adults | 24 February | 16 March | 1 April |
---|---|---|---|---|
2.5% IBP * | Before | 19 | 12 | 11 |
After | 0 | 1 | 0 | |
Mortality % | 100 a ** | 92 c | 100 a | |
5% IBP | Before | 21 | 25 | 20 |
After | 0 | 1 | 0 | |
Mortality % | 100 a | 96 b | 100 a | |
2.5% Oil | Before | 36 | 30 | 17 |
After | 0 | 0 | 0 | |
Mortality % | 100 a | 100 a | 100 a | |
5% Oil | Before | 29 | 20 | 38 |
After | 0 | 0 | 0 | |
Mortality % | 100 a | 100 a | 100 a | |
Distilled water | Before | 22 | 12 | 15 |
After | 22 | 12 | 15 | |
Mortality % | 0 | 0 | 0 |
Compound | Abbr. | c (μg/mL) | c (mg/g DW) | Equation | R2 | LOQ | LOD |
---|---|---|---|---|---|---|---|
Gallic acid | GalA | 4.2661 | 1.823 | y = 55033x + 7774 | 0.999 | 5.25 | 1.73 |
Protocatechuic acid | PCA | 13.8079 | 5.901 | y = 92394x − 44370 | 0.999 | 10.1 | 3.33 |
p-Coumaric acid derivative | p-CoumA | 20.8849 | 8.925 | y = 178713x − 45820 | 0.999 | 7.04 | 2.32 |
Quercetin derivative | Que | 17.7682 | 7.593 | y = 107707x − 26982 | 0.999 | 7.21 | 2.38 |
Luteolin derivative | Lut | 2.3668 | 1.011 | y = 111276x − 88071 | 0.999 | 8.05 | 2.66 |
Sum | 59.0939 | 25.253 |
SDG | Direct Link | Indirect Link | GD Matching | |
---|---|---|---|---|
1 | No Poverty | ✓ | ||
2 | Zero Hunger | ✓ | GD7 * | |
3 | Good Health and Well-Being | ✓ | GD7 | |
4 | Quality Education | |||
5 | Gender Equality | ✓ | ||
6 | Clean Water and Sanitation | ✓ | ||
7 | Affordable and Clean Energy | ✓ | GD2 | |
8 | Decent Work and Economic Growth | ✓ | ||
9 | Industry, Innovation, and Infrastructure | ✓ | ||
10 | Reduced Inequalities | |||
11 | Sustainable Cities and Communities | ✓ | GD7 | |
12 | Responsible Consumption and Production | ✓ | GD5 | |
13 | Climate Action | ✓ | GD1 | |
14 | Life below Water | ✓ | ||
15 | Life on Land | ✓ | GD6 | |
16 | Peace, Justice, and Strong Institutions | |||
17 | Partnerships for the Goals | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šarac, V.; Narandžić, T.; Rodić, V.; Popović, B.M.; Uka, D.; Tomaš Simin, M.; Ljubojević, M. Harnessing Koelreuteria paniculata Seed Extracts and Oil for Sustainable Woolly Apple Aphid Control. Horticulturae 2024, 10, 826. https://doi.org/10.3390/horticulturae10080826
Šarac V, Narandžić T, Rodić V, Popović BM, Uka D, Tomaš Simin M, Ljubojević M. Harnessing Koelreuteria paniculata Seed Extracts and Oil for Sustainable Woolly Apple Aphid Control. Horticulturae. 2024; 10(8):826. https://doi.org/10.3390/horticulturae10080826
Chicago/Turabian StyleŠarac, Veljko, Tijana Narandžić, Vesna Rodić, Boris M. Popović, Denis Uka, Mirela Tomaš Simin, and Mirjana Ljubojević. 2024. "Harnessing Koelreuteria paniculata Seed Extracts and Oil for Sustainable Woolly Apple Aphid Control" Horticulturae 10, no. 8: 826. https://doi.org/10.3390/horticulturae10080826
APA StyleŠarac, V., Narandžić, T., Rodić, V., Popović, B. M., Uka, D., Tomaš Simin, M., & Ljubojević, M. (2024). Harnessing Koelreuteria paniculata Seed Extracts and Oil for Sustainable Woolly Apple Aphid Control. Horticulturae, 10(8), 826. https://doi.org/10.3390/horticulturae10080826