Optimizing Hyssop (Hyssopus officinalis L.) Cultivation: Effects of Different Manures on Plant Growth and Essential Oil Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Experiment, Growth Conditions, and Treatments
2.3. Field Measurements on Plants
2.3.1. Air-Dried Biomass
2.3.2. Isolation of Essential Oil
2.3.3. Analysis of EO Samples: Qualitative and Semi-Quantitative Approaches
2.3.4. Antioxidant Capacity
2.4. Statistical Analysis
3. Results
3.1. Biomass Production
3.2. Essential Oil Content
3.3. Essential Oil Yield
3.4. Essential Oil Composition
3.5. Antioxidant Capacity of Essential Oil
4. Discussion
4.1. Herbal Biomass
4.2. Essential Oil Content
4.3. Essential Oil Yield
4.4. Essential Oil Components
4.5. Antioxidant Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fallah, S.; Ghanbari-Odivi, A.; Rostaei, M.; Maggi, F.; Shahbazi, E. Improvement of production and quality of essential oils in multi-cut peppermint (Mentha piperita L.) through eco-friendly fertilizers in the semi-arid highlands. Ind. Crops Prod. 2024, 216, 118801. [Google Scholar] [CrossRef]
- Carrubba, A. Organic and chemical N fertilization on coriander (Coriandrum sativum L.) in a Mediterranean environment. Ind. Crops Prod. 2014, 57, 174–187. [Google Scholar] [CrossRef]
- Mirjalili, A.; Lebaschi, M.H.; Ardakani, M.R.; Heidari Sharifabad, H.; Mirza, M. Plant density and manure application affected yield and essential oil composition of Bakhtiari savory (Satureja bachtiarica Bunge.). Ind. Crops Prod. 2022, 177, 114516. [Google Scholar] [CrossRef]
- Serri, F.; Souri, M.K.; Rezapanah, M. Growth, biochemical quality and antioxidant capacity of coriander leaves under organic and inorganic fertilization programs. Chem. Biol. Technol. Agric. 2021, 8, 33. [Google Scholar] [CrossRef]
- Sajwan, M.Y.; Mishra, D.; Negi, M.S.; Bisht, P.S. Effect of organic manures on antioxidant activity and essential oil composition of Artemisia annua cv. CIM arogya. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3922–3930. [Google Scholar] [CrossRef]
- Nasiri, Y. Crop productivity and chemical compositions of dragonhead (Dracocephalum moldavica L.) essential oil under different cropping patterns and fertilization. Ind. Crops Prod. 2021, 171, 113920. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Stewart, B.A. Animal Waste Utilization: Effective Use of Manure as a Soil Resource; CRC Press: Boca Raton, FL, USA, 2019; 328p. [Google Scholar]
- Rostaei, M.; Fallah, S.; Lorigooini, Z.; Surki, A.A. Crop productivity and chemical compositions of black cumin essential oil in sole crop and intercropped with soybean under contrasting fertilization. Ind. Crops Prod. 2018, 125, 622–629. [Google Scholar] [CrossRef]
- Ayyobi, H.; Olfati, J.A.; Peyvast, G.A. The effects of cow manure vermicompost and municipal solid waste compost on peppermint (Mentha piperita L.) in Torbat-e-Jam and Rasht regions of Iran. Int. J. Recycl. Org. Waste Agric. 2014, 3, 147–153. [Google Scholar] [CrossRef]
- Jankovský, M.; Landa, T. Genus Hyssopus L.—Recent knowledge: A review. Hort. Sci. 2002, 29, 119–123. [Google Scholar] [CrossRef]
- Skrypnik, L.; Feduraev, P.; Styran, T.; Golovin, A.; Katserov, D.; Nebreeva, S.; Maslennikov, P. Biomass, Phenolic Compounds, Essential Oil Content, and Antioxidant Properties of Hyssop (Hyssopus officinalis L.) Grown in Hydroponics as Affected by Treatment Type and Selenium Concentration. Horticulturae 2022, 8, 1037. [Google Scholar] [CrossRef]
- Pirnia, M.; Shirani, K.; Tabatabaee Yazdi, F.; Moratazavi, S.A.; Mohebbi, M. Characterization of antioxidant active biopolymer bilayer film based on gelatin-frankincense incorporated with ascorbic acid and Hyssopus officinalis essential oil. Food Chem. 2022, 14, 100300. [Google Scholar] [CrossRef]
- Aghaei, K.; Ghasemi Pirbalouti, A.; Mousavi, A.; Naghdi-Badi, H.A.; Mehnatkesh, A.M. Effects of foliar spraying of L-phenylalanine and application of bio-fertilizers on growth, yield, and essential oil of hyssop [Hyssopus officinalis L. subsp. angustifolius (Bieb.)]. Biocatal. Agric. Biotechnol. 2019, 21, 101318. [Google Scholar] [CrossRef]
- Ahmadi, H.; Babalar, M.; Sarcheshmeh, M.A.A.; Morshedloo, M.R.; Shokrpour, M. Effects of exogenous application of citrulline on prolonged water stress damages in hyssop (Hyssopus officinalis L.): Antioxidant activity, biochemical indices, and essential oils profile. Food Chem. 2020, 333, 127433. [Google Scholar] [CrossRef]
- Kizil, S.; Güler, V.; Kirici, S.; Turk, M. Some agronomic characteristics and essential oil composition of hyssop (Hyssopus officinalis L.) under cultivation conditions. Acta Sci. Pol. Hortorum Cultus 2016, 15, 193–207. [Google Scholar]
- Pandey, V.; Verma, R.S.; Chauhan, A.; Tiwari, R. Compositional variation in the leaf, flower and stem essential oils of Hyssop (Hyssopus officinalis L.) from Western-Himalaya. J. Herb. Med. 2014, 4, 89–95. [Google Scholar] [CrossRef]
- Naderi, G.; Mohammadi, A.; Younesi-Alamouti, M. The Effect of Bio Fertilizers, Manure and Chemical Fertilizer on Quantity and Quality of Essential Oil of Hyssop (Hyssopus officinalis L.). J. Med. Plants By-Prod. 2023, 12, 439–447. [Google Scholar] [CrossRef]
- Honorato, A.D.; Maciel, J.F.A.; de Assis, R.M.A.; Nohara, G.A.; de Carvalho, A.A.; Pinto, J.E.B.P.; Bertolucci, S.K.V. Combining green manure and cattle manure to improve biomass, essential oil, and thymol production in Thymus vulgaris L. Ind. Crops Prod. 2022, 187, 115469. [Google Scholar] [CrossRef]
- Mwithiga, G.; Maina, S.; Gitari, J.; Muturi, P. Rosemary (Rosmarinus officinalis L.) growth rate, oil yield and oil quality under differing soil amendments. Heliyon 2022, 8, e09277. [Google Scholar] [CrossRef]
- Fallah, S.; Mouguee, S.; Rostaei, M.; Adavi, Z.; Lorigooini, Z. Chemical compositions and antioxidant activity of essential oil of wild and cultivated Dracocephalum kotschyi grown in different ecosystems: A comparative study. Ind. Crops Prod. 2020, 143, 111885. [Google Scholar] [CrossRef]
- British Pharmacopoeia. British Pharmacopoeia; HMSO: London, UK, 1988; Volume 2, pp. 137–138. [Google Scholar]
- Plugatar, Y.V.; Bulavin, I.V.; Ivanova, N.N.; Miroshnichenko, N.N.; Saplev, N.M.; Shevchuk, O.M.; Feskov, S.A.; Naumenko, T.S. Study of the Component Composition of Essential Oil, Morphology, Anatomy and Ploidy Level of Hyssopus officinalis f. cyaneus Alef. Horticulturae 2023, 9, 480. [Google Scholar] [CrossRef]
- Aćimović, M.; Pezo, L.; Zeremski, T.; Lončar, B.; Marjanović Jeromela, A.; Stanković Jeremic, J.; Cvetković, M.; Sikora, V.; Ignjatov, M. Weather Conditions Influence on Hyssop Essential Oil Quality. Processes 2021, 9, 1152. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Rostaei, M.; Fallah, S.; Lorigooini, Z.; Surki, A.A. The effect of organic manure and chemical fertilizer on essential oil, chemical compositions and antioxidant activity of dill (Anethum graveolens) in sole and intercropped with soybean (Glycine max). J. Clean. Prod. 2018, 199, 18–26. [Google Scholar] [CrossRef]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, 147–153. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Alizadeh, P.; Fallah, S.; Raiesi, F. Potential N mineralization and availability to irrigated maize in a calcareous soil amended with organic manures and urea under field conditions. Int. J. Plant Prod. 2012, 6, 493–512. [Google Scholar] [CrossRef]
- Fallah, S.; Mouguee, S.; Rostaei, M.; Adavi, Z.; Lorigooini, Z.; Shahbazi, E. Productivity and essential oil quality of Dracocephalum kotschyi under organic and chemical fertilization conditions. J. Clean. Prod. 2020, 255, 120189. [Google Scholar] [CrossRef]
- Tripathi, Y.C.; Hazarika, P. Impact of harvesting cycle, maturity stage, drying and storage on essential oil content of patchouli leaves grown in Northeast region of India. J. Essent. Oil-Bear. Plants 2014, 17, 1389–1396. [Google Scholar] [CrossRef]
- Eiasu, B.K.; Dyafta, V.; Araya, H.T. Effect of Leaf Age on Essential Oil Yield and Composition in Rose-scented Geranium. HortScience 2022, 57, 1524–1528. [Google Scholar] [CrossRef]
- Bustamante, M.Á.; Michelozzi, M.; Barra Caracciolo, A.; Grenni, P.; Verbokkem, J.; Geerdink, P.; Safi, C.; Nogues, I. Effects of soil fertilization on terpenoids and other carbon-based secondary metabolites in Rosmarinus officinalis plants: A comparative study. Plants 2020, 9, 830. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Ind. Crops Prod. 2021, 167, 113516. [Google Scholar] [CrossRef]
- Cockson, P.; Schroeder-Moreno, M.; Veazie, P.; Barajas, G.; Logan, D.; Davis, M.; Whipker, B.E. Impact of phosphorus on Cannabis sativa reproduction, cannabinoids, and terpenes. Appl. Sci. 2020, 10, 7875. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A. Antibacterial activity and chemical composition of the leaf essential oil of Mentha rotundifolia from Morocco. Electron. J. Environ. Agric. Food Chem. 2011, 9, 19–28. [Google Scholar]
- Benabdallah, A.; Boumendjel, M.; Aissi, O.; Rahmoune, C.; Boussaid, M.; Messaoud, C. Chemical composition, antioxidant activity and acetylcholinesterase inhibitory of wild Mentha species from northeastern Algeria. S. Afr. J. Bot. 2018, 116, 131–139. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef]
- Ozliman, S.; Yaldiz, G.; Camlica, M.; Ozsoy, N. Chemical components of essential oils and biological activities of the aqueous extract of Anethum graveolens L. grown under inorganic and organic conditions. Chem. Biol. Technol. Agric. 2021, 8, 20. [Google Scholar] [CrossRef]
Treatment | Dose (Mg ha−1) | ||
---|---|---|---|
Low | Medium | High | |
Poultry (Np) | 2.2 | 3.2 | 5.6 |
Sheep (Ns) | 3.8 | 5.4 | 9.5 |
Cattle (Nc) | 4.3 | 6.2 | 10.8 |
Control (C) | No manure |
Source | Electrical Conductivity (µS cm−1) | Organic Carbon (g kg−1) | N (%) | P (%) | K (%) |
---|---|---|---|---|---|
Soil | 760 | 7.6 | 0.08 | 8 × 10−4 | 328 × 10−4 |
Np | 4750 | 312 | 4.5 | 1.70 | 9.8 |
Ns | 4380 | 175 | 2.6 | 0.59 | 12.5 |
Nc | 1980 | 195 | 2.3 | 0.56 | 6.2 |
Compounds (%) | RI | Pr > F | Manure Treatments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Low-Np | Medium-Np | High-Np | Low-Ns | Medium-Ns | High-Ns | Low-Nc | Medium-Nc | High-Nc | |||
α-thujene (MT) | 937 | 0.023 | 0.30 abc | 0.25 cd | 0.27 bcd | 0.20 d | 0.34 ab | 0.36 a | 0.30 abc | 0.30 abc | 0.28 bc | 0.26 bcd |
α-pinene (MT) | 949 | < 0.000 | 0.62 c | 0.57 c | 0.62 c | 0.65 bc | 0.78 b | 0.69 bc | 0.67 bc | 1.03 a | 0.78 b | 0.66 bc |
Camphene (MT) | 966 | < 0.000 | 0.04 de | 0.04 de | 0.09 cd | 0.00 e | 0.09 cd | 0.15 bc | 0.10 cd | 0.28 a | 0.18 b | 0.08 cd |
Sabinene (MT) | 978 | 0.044 | 1.46 ab | 1.29 bc | 1.54 ab | 1.35 bc | 1.67 a | 1.49 ab | 1.56 ab | 1.40 abc | 1.14 c | 1.47 ab |
β-pinene (MT) | 1010 | 0.007 | 11.97 cde | 11.39 de | 12.03 cde | 10.85 e | 14.77 a | 12.70 bcd | 13.24 abc | 14.23 ab | 12.75 bcd | 13.42 abc |
Myrcene (MT) | 1043 | 0.244 | 0.18 | 0.14 | 0.00 | 0.12 | 0.11 | 0.92 | 0.17 | 0.12 | 0.14 | 0.12 |
Limonene (MT) | 1055 | 0.002 | 0.59 bc | 0.51 cd | 0.56 bc | 0.39 d | 0.61 bc | 0.67 ab | 0.56 bc | 0.74 a | 0.61 bc | 0.56 bc |
1,8-cineole (MT) | 1060 | 0.234 | 1.98 | 0.69 | 0.63 | 0.26 | 0.55 | 0.66 | 0.56 | 0.53 | 0.52 | 0.47 |
(Z)-β-ocimene (MT) | 1063 | < 0.000 | 0.00 e | 0.52 a | 0.22 d | 0.46 ab | 0.44 abc | 0.23 cd | 0.29 bcd | 0.46 ab | 0.18 de | 0.56 a |
γ-terpinene (MT) | 1084 | 0.458 | 0.36 | 0.28 | 0.25 | 0.26 | 0.35 | 0.32 | 0.33 | 0.53 | 0.27 | 0.41 |
cis-sabinene hydrate (MT) | 1100 | < 0.000 | 0.32 bc | 0.14 cd | 0.38 bc | 0.72 a | 0.30 c | 0.55 ab | 0.31 bc | 0.00 d | 0.00 d | 0.00 d |
Linalool (OMT) | 1113 | 0.004 | 0.85 a | 0.74 ab | 0.62 b | 0.42 c | 0.83 a | 0.81 a | 0.77 ab | 0.84 a | 0.72 ab | 0.82 a |
trans-pinocamphone (OMT) | 1214 | 0.006 | 9.81 e | 12.58 b-e | 18.17 a | 10.05 de | 14.42 a–d | 11.85 cde | 15.58 abc | 17.19 ab | 16.64 abc | 9.89 de |
Pinocarvone (OMT) | 1228 | 0.173 | 0.56 | 0.43 | 0.42 | 0.40 | 1.71 | 0.00 | 0.56 | 0.45 | 0.40 | 0.00 |
cis-pinocamphone (OMT) | 1239 | 0.002 | 58.9 ab | 54.8 a–d | 50.0 de | 60.6 a | 50.8 cde | 56.5 a-c | 53.4 b-e | 47.4 e | 49.1 de | 58.8 ab |
Myrtenol (OMT) | 1247 | 0.006 | 1.46 d | 2.19 bc | 2.30 bc | 2.33 bc | 2.13 bcd | 2.21 bc | 1.77 cd | 2.74 ab | 3.10 a | 2.64 ab |
β-bourbonene (ST) | 1434 | < 0.000 | 0.77 bcd | 0.96 ab | 0.55 d | 0.69 cd | 1.06 a | 1.06 a | 0.67 cd | 1.07 a | 1.10 a | 0.88 abc |
(E)-caryophyllene (ST) | 1476 | < 0.000 | 1.08 cd | 0.61 e | 1.10 bcd | 1.16 abc | 1.20 abc | 0.86 d | 1.22 abc | 1.38 a | 1.33 ab | 1.10 bcd |
allo-aromadendrene (ST) | 1520 | 0.004 | 0.52 bcd | 0.61 abc | 0.39 de | 0.43 cde | 0.57 a–d | 0.67 ab | 0.53 bcd | 0.75 a | 0.58 a–d | 0.30 e |
Germacrene D (ST) | 1534 | < 0.000 | 1.35 ab | 1.43 a | 0.96 d | 1.40 a | 1.38 ab | 1.37 ab | 1.39 ab | 1.20 bc | 1.26 ab | 1.04 cd |
Bicyclogermacrene (ST) | 1548 | < 0.000 | 1.10 a | 1.16 a | 0.71 b | 1.18 a | 1.15 a | 1.11 a | 1.02 a | 1.00 a | 1.02 a | 0.73 b |
Elemol (OST) | 1586 | 0.002 | 2.05 bc | 2.82 a | 1.76 bcd | 2.28 ab | 2.02 bc | 1.54 cd | 1.52 cd | 2.00 cd | 2.00 cd | 1.32 d |
γ-eudesmol (OST) | 1696 | 0.010 | 0.30 ab | 0.29 b | 0.05 c | 0.53 a | 0.14 bc | 0.20 bc | 0.20 bc | 0.15 bc | 0.31 ab | 0.00 c |
β-eudesmol (OST) | 1728 | <0.000 | 0.58 ab | 0.77 a | 0.23 cd | 0.40 bc | 0.34 cd | 0.34 cd | 0.14 d | 0.68 a | 0.62 ab | 0.12 d |
Total (%) | 96.2 | 95.2 | 93.6 | 97.1 | 97.8 | 97.3 | 96.9 | 96.5 | 95.0 | 95.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanbari-Odivi, A.; Fallah, S.; Carrubba, A. Optimizing Hyssop (Hyssopus officinalis L.) Cultivation: Effects of Different Manures on Plant Growth and Essential Oil Yield. Horticulturae 2024, 10, 894. https://doi.org/10.3390/horticulturae10090894
Ghanbari-Odivi A, Fallah S, Carrubba A. Optimizing Hyssop (Hyssopus officinalis L.) Cultivation: Effects of Different Manures on Plant Growth and Essential Oil Yield. Horticulturae. 2024; 10(9):894. https://doi.org/10.3390/horticulturae10090894
Chicago/Turabian StyleGhanbari-Odivi, Askar, Sina Fallah, and Alessandra Carrubba. 2024. "Optimizing Hyssop (Hyssopus officinalis L.) Cultivation: Effects of Different Manures on Plant Growth and Essential Oil Yield" Horticulturae 10, no. 9: 894. https://doi.org/10.3390/horticulturae10090894
APA StyleGhanbari-Odivi, A., Fallah, S., & Carrubba, A. (2024). Optimizing Hyssop (Hyssopus officinalis L.) Cultivation: Effects of Different Manures on Plant Growth and Essential Oil Yield. Horticulturae, 10(9), 894. https://doi.org/10.3390/horticulturae10090894