Effects of Apical, Late-Season Leaf Removal on Vine Performance and Wine Properties in Sangiovese Grapevines (Vitis vinifera L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Vegetative Growth, Yield Components, and Grape Composition
2.3. Winemaking
2.4. Wine Analyses
2.5. Wine Sensory Evaluation
2.6. Statistical Analysis
3. Results
Descriptors | C | D1 | D2 | T (Friedman) sig. |
---|---|---|---|---|
Olfactory intensity | 3.50 | 3.25 | 4.50 | 3.47 * |
Body | 3.75 a | 3.50 a | 5.37 b | 7.17 ** |
Acidity | 3.50 | 5.01 | 4.75 | 1.75 ns |
Bitter | 1.75 a | 2.50 ab | 2.75 b | 4.59 * |
Astringency | 2.50 | 2.88 | 3.63 | 1.92 ns |
Fruits | 3.87 a | 4.00 a | 4.75 b | 3.26 * |
Flowers | 2.29 | 2.38 | 2.88 | 1.62 ns |
Vegetables | 2.38 | 3.63 | 3.38 | 2.39 ns |
Spicy | 2.50 | 2.75 | 3.00 | 0.68 ns |
Balance | 3.38 a | 3.37 a | 5.00 b | 16.06 ** |
Olfactory preference | 3.38 | 3.25 | 4.13 | 1.67 ns |
Aftertaste preference | 3.75 a | 3.37 a | 4.75 b | 4.45 * |
Global preference | 3.50 a | 3.13 a | 5.13 b | 30.77 ** |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez-Gamboa, G.; Zheng, W.; Martinez de Toda, F. Strategies in vineyard establishment to face global warming in viticulture: A mini review. J. Sci. Food Agric. 2021, 101, 1261–1269. [Google Scholar] [CrossRef]
- Palliotti, A.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Gatti, M.; Poni, S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Sci. Hortic. 2014, 178, 43–54. [Google Scholar] [CrossRef]
- Varela, C.; Dry, P.; Kutyna, D.; Francis, I.; Henschke, P.; Curtin, C.; Chambers, P. Strategies for reducing alcohol concentration in wine. Aust. J. Grape Wine Res. 2015, 21, 670–679. [Google Scholar] [CrossRef]
- Hendriks, H.F. Alcohol and human health: What is the evidence? Annu. Rev. Food Sci. Technol. 2020, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Liguori, L.; Albanese, D.; Crescitelli, A.; Di Matteo, M.; Russo, P. Impact of dealcoholization on quality properties in white wine at various alcohol content levels. J. Food Sci. Technol. 2019, 56, 3707–3720. [Google Scholar] [CrossRef]
- European Commission. Council Regulation 479/2008 on the Common Organisation of the Market in Wine; European Commission: Brussels, Belgium, 2008; p. 61. [Google Scholar]
- Kirschbaum, M. Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol. 2004, 6, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Wohlfahrt, Y.; Smith, J.; Tittmann, S.; Honermeier, B.; Stoll, M. Primary productivity and physiological responses of Vitis vinifera L. cvs. under Free Air Carbon dioxide Enrichment (FACE). Eur. J. Agron. 2018, 101, 149–162. [Google Scholar] [CrossRef]
- Coulter, A.; Henschke, P.; Simos, C.; Pretorius, I. When the heat is on, yeast fermentation runs out of puff. Aust. N. Z. Wine Ind. J. 2008, 23, 26–30. [Google Scholar]
- Steakley, J.; Steakley, B.; Steakley, J.; Steakley, B. Red Wine Imbalance Problem Solving with Cause and Effect Analysis. In A Quest for Quality Wine, Every Time. A Guide for Root Cause Analysis; Springer: Cham, Switzerland, 2020; pp. 133–189. [Google Scholar]
- Robinson, A.L.; Ebeler, S.E.; Heymann, H.; Boss, P.K.; Solomon, P.S.; Trengove, R.D. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J. Agric. Food Chem. 2009, 57, 10313–10322. [Google Scholar] [CrossRef]
- Villamor, R.R.; Ross, C.F. Wine matrix compounds affect perception of wine aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef]
- Chu-Ky, S.; Tourdot-Marechal, R.; Marechal, P.-A.; Guzzo, J. Combined cold, acid, ethanol shocks in Oenococcus oeni: Effects on membrane fluidity and cell viability. Biochim. Biophys. Acta (BBA)-Biomembr. 2005, 1717, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Production of low-alcohol beverages: Current status and perspectives. In Food Processing for Increased Quality and Consumption; Elsevier: Amsterdam, The Netherlands, 2018; pp. 347–382. [Google Scholar]
- Pham, D.-T.; Ristic, R.; Stockdale, V.J.; Jeffery, D.W.; Tuke, J.; Wilkinson, K. Influence of partial dealcoholization on the composition and sensory properties of Cabernet Sauvignon wines. Food Chem. 2020, 325, 126869. [Google Scholar] [CrossRef]
- Fornari, T.; Hernández, E.J.; Ruiz-Rodriguez, A.; Señorans, F.J.; Reglero, G. Phase equilibria for the removal of ethanol from alcoholic beverages using supercritical carbon dioxide. J. Supercrit. Fluids 2009, 50, 91–96. [Google Scholar] [CrossRef]
- Petrozziello, M.; Panero, L.; Guaita, M.; Prati, R.; Marani, G.; Zinzani, G.; Bosso, A. Effect of the extent of ethanol removal on the volatile compounds of a Chardonnay wine dealcoholized by vacuum distillation. In BIO Web of Conferences, Proceedings of the 41st World Congress of Vine and Wine, Punta del Este, Uruguay, 19–23 November 2018; EDP Sciences: Ulis, France, 2019; p. 02020. [Google Scholar]
- Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Partial dealcoholization of red wines by membrane contactor technique: Effect on sensory characteristics and volatile composition. Food Bioprocess Technol. 2013, 6, 2289–2305. [Google Scholar] [CrossRef]
- Diban, N.; Arruti, A.; Barceló, A.; Puxeu, M.; Urtiaga, A.; Ortiz, I. Membrane dealcoholization of different wine varieties reducing aroma losses. Modeling and experimental validation. Innov. Food Sci. Emerg. Technol. 2013, 20, 259–268. [Google Scholar] [CrossRef]
- Frioni, T.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Bellincontro, A.; Sabbatini, P.; Gatti, M.; Poni, S.; Palliotti, A. Postbudburst spur pruning reduces yield and delays fruit sugar accumulation in Sangiovese in central Italy. Am. J. Enol. Vitic. 2016, 67, 419–425. [Google Scholar] [CrossRef]
- Gatti, M.; Pirez, F.J.; Chiari, G.; Tombesi, S.; Palliotti, A.; Merli, M.C.; Poni, S. Phenology, canopy aging and seasonal carbon balance as related to delayed winter pruning of Vitis vinifera L. cv. Sangiovese grapevines. Front. Plant Sci. 2016, 7, 659. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; del Galdo, V.; García, J.; Balda, P.; de Toda, F.M. Use of minimal pruning to delay fruit maturity and improve berry composition under climate change. Am. J. Enol. Vitic. 2017, 68, 136–140. [Google Scholar] [CrossRef]
- Valentini, G.; Allegro, G.; Pastore, C.; Colucci, E.; Filippetti, I. Post-veraison trimming slow down sugar accumulation without modifying phenolic ripening in Sangiovese vines. J. Sci. Food Agric. 2019, 99, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Palliotti, A.; Panara, F.; Silvestroni, O.; Lanari, V.; Sabbatini, P.; Howell, G.S.; Gatti, M.; Poni, S. Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Aust. J. Grape Wine Res. 2013, 19, 369–377. [Google Scholar] [CrossRef]
- Dal Santo, S.; Tucker, M.R.; Tan, H.-T.; Burbidge, C.A.; Fasoli, M.; Böttcher, C.; Boss, P.K.; Pezzotti, M.; Davies, C. Auxin treatment of grapevine (Vitis vinifera L.) berries delays ripening onset by inhibiting cell expansion. Plant Mol. Biol. 2020, 103, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Parada, F.; Espinoza, C.; Arce-Johnson, P. Phytohormonal control over the grapevine berry development. In Phytohormones: Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses; IntechOpen: London, UK, 2017. [Google Scholar]
- Poni, S.; Intrieri, C.; Silvestroni, O. Interactions of leaf age, fruiting, and exogenous cytokinins in Sangiovese grapevines under non-irrigated conditions. I. Gas exchange. Am. J. Enol. Vitic. 1994, 45, 71–78. [Google Scholar] [CrossRef]
- Christensen, P. Response of ‘Thompson Seedless’ Grapevines to the Timing of Preharvest Irrigation Cut-Off. Am. J. Enol. Vitic. 1975, 26, 188–194. [Google Scholar] [CrossRef]
- Gatti, M.; Galbignani, M.; Garavani, A.; Bernizzoni, F.; Tombesi, S.; Palliotti, A.; Poni, S. Manipulation of ripening via antitranspirants in cv. Barbera (Vitis vinifera L.). Aust. J. Grape Wine Res. 2016, 22, 245–255. [Google Scholar] [CrossRef]
- Poni, S.; Del Zozzo, F.; Santelli, S.; Gatti, M.; Magnanini, E.; Sabbatini, P.; Frioni, T. Double cropping in Vitis vinifera L. cv. Pinot Noir: Agronomical and physiological validation. Aust. J. Grape Wine Res. 2021, 27, 508–518. [Google Scholar] [CrossRef]
- Poni, S.; Frioni, T.; Gatti, M. Summer pruning in Mediterranean vineyards: Is climate change affecting its perception, modalities, and effects? Front. Plant Sci. 2023, 14, 1227628. [Google Scholar] [CrossRef]
- Gatti, M.; Bernizzoni, F.; Civardi, S.; Poni, S. Effects of cluster thinning and preflowering leaf removal on growth and grape composition in cv. Sangiovese. Am. J. Enol. Vitic. 2012, 63, 325–332. [Google Scholar] [CrossRef]
- Verdenal, T.; Zufferey, V.; Dienes-Nagy, A.; Bourdin, G.; Gindro, K.; Viret, O.; Spring, J.-L. Timing and intensity of grapevine defoliation: An extensive overview on five cultivars in Switzerland. Am. J. Enol. Vitic. 2019, 70, 427–434. [Google Scholar] [CrossRef]
- Sternad Lemut, M.; Trost, K.; Sivilotti, P.; Arapitsas, P.; Vrhovsek, U. Early versus late leaf removal strategies for Pinot Noir (Vitis vinifera L.): Effect on colour-related phenolics in young wines following alcoholic fermentation. J. Sci. Food Agric. 2013, 93, 3670–3681. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Holzapfel, B.P.; Stoll, M.; Friedel, M. Sunburn in grapes: A review. Front. Plant Sci. 2021, 11, 2123. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- Poni, S.; Casalini, L.; Bernizzoni, F.; Civardi, S.; Intrieri, C. Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. Am. J. Enol. Vitic. 2006, 57, 397–407. [Google Scholar] [CrossRef]
- VanderWeide, J.; Schultze, S.R.; Nasrollahiazar, E.; Poni, S.; Sabbatini, P. Impacts of pre-bloom leaf removal on wine grape production and quality parameters: A systematic review and meta-analysis. Front. Plant Sci. 2021, 11, 621585. [Google Scholar] [CrossRef]
- Frioni, T.; Acimovic, D.; Tombesi, S.; Sivilotti, P.; Palliotti, A.; Poni, S.; Sabbatini, P. Changes in within-shoot carbon partitioning in Pinot noir grapevines subjected to early basal leaf removal. Front. Plant Sci. 2018, 9, 1122. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Bernizzoni, F.; Civardi, S.; Bobeica, N.; Magnanini, E.; Palliotti, A. Late leaf removal aimed at delaying ripening in cv. Sangiovese: Physiological assessment and vine performance. Aust. J. Grape Wine Res. 2013, 19, 378–387. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, X.; Needs, S.; Liu, D.; Fuentes, S.; Howell, K. The influence of apical and basal defoliation on the canopy structure and biochemical composition of Vitis vinifera cv. Shiraz grapes and wine. Front. Chem. 2017, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Lucchetta, V.; Volta, B.; Tononi, M.; Zanotelli, D.; Andreotti, C. Effects of pre-harvest techniques in the control of berry ripening in grapevine cv. Sauvignon blanc. In BIO Web of Conferences; EDP Sciences: Ulis, France, 2019; p. 04016. [Google Scholar]
- Gatti, M.; Garavani, A.; Krajecz, K.; Ughini, V.; Parisi, M.G.; Frioni, T.; Poni, S. Mechanical mid-shoot leaf removal on Ortrugo (Vitis vinifera L.) at pre-or mid-veraison alters fruit growth and maturation. Am. J. Enol. Vitic. 2019, 70, 88–97. [Google Scholar]
- Lanari, V.; Lattanzi, T.; Borghesi, L.; Silvestroni, O.; Palliotti, A. Post-veraison mechanical leaf removal delays berry ripening on ‘Sangiovese’ and ‘Montepulciano’ grapevines. In Proceedings of the I International Workshop on Vineyard Mechanization and Grape and Wine Quality 978, Piacenza, Italy, 27–29 June 2012; pp. 327–333. [Google Scholar]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar]
- Buesa, I.; Caccavello, G.; Basile, B.; Merli, M.C.; Poni, S.; Chirivella, C.; Intrigliolo, D.S. Delaying berry ripening of Bobal and Tempranillo grapevines by late leaf removal in a semi-arid and temperate-warm climate under different water regimes. Aust. J. Grape Wine Res. 2019, 25, 70–82. [Google Scholar] [CrossRef]
- Iland, P.G.; Cynkar, W.; Francis, I.; Williams, P.; Coombe, B.G. Optimisation of methods for the determination of total and red-free glycosyl glucose in black grape berries of Vitis vinifera. Aust. J. Grape Wine Res. 1996, 2, 171–178. [Google Scholar] [CrossRef]
- Camin, F.; Bontempo, L.; Larcher, R.; Grando, M.S.; Sanz, P.M.; Fauhl-Hassek, C.; Hajslova, J.; Hurkova, K.; Uttl, L.; Thomas, F. Wine and must. In Foodintegrity Handbook: A Guide to Food Authenticity Issues and Analytical Solutions; Eurofins Analytics France: Nantes, France, 2018; pp. 205–228. [Google Scholar]
- Glories, Y. La couleur des vins rouges. Conn. Vigne Vin 1984, 18, 253–271. [Google Scholar]
- Di Stefano, R.; Cravero, M. Metodi per lo studio dei polifenoli dell’uva. Riv. Vitic. Enol. 1991, 44, 37–45. [Google Scholar]
- CIE Colorimetry. Official Recommendations of the International Commission on Illumination; Publication CIE No. 15.2; CIE Colorimetry: Vienna, Austria, 1986. [Google Scholar]
- Fracassetti, D.; Gabrielli, M.; Corona, O.; Tirelli, A. Characterisation of Vernaccia Nera (Vitis vinifera L.) grapes and wine. S. Afr. J. Enol. Vitic. 2017, 38, 72–81. [Google Scholar]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Sensory Evaluation Practices; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- ISO 8529-2007; Nuclear Energy—Reference Neutron Radiations—Part 1: Characteristics and Methods of Measurement. International Organization for Standardization: Geneva, Switzerland, 2007.
- MacFie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.-T.; Ferrara, G.; Matarrese, A.M.S.; Gallotta, A.; Bellincontro, A. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef]
- Caccavello, G.; Giaccone, M.; Scognamiglio, P.; Forlani, M.; Basile, B. Influence of intensity of post-veraison defoliation or shoot trimming on vine physiology, yield components, berry and wine composition in Aglianico grapevines. Aust. J. Grape Wine Res. 2017, 23, 226–239. [Google Scholar] [CrossRef]
- Filippetti, I.; Movahed, N.; Allegro, G.; Valentini, G.; Pastore, C.; Colucci, E.; Intrieri, C. Effect of post-veraison source limitation on the accumulation of sugar, anthocyanins and seed tannins in Vitis vinifera cv. Sangiovese berries. Aust. J. Grape Wine Res. 2015, 21, 90–100. [Google Scholar] [CrossRef]
- Diago, M.-P.; de Toda, F.M.; Vilanova, M. Effects of timing of leaf removal on yield, berry maturity, wine composition and sensory properties of CV. grenache grown. J. Int. Sci. Vigne Vin 2008, 42, 221–229. [Google Scholar]
- De Bei, R.; Wang, X.; Papagiannis, L.; Cocco, M.; O’Brien, P.; Zito, M.; Ouyang, J.; Fuentes, S.; Gilliham, M.; Tyerman, S. Postveraison leaf removal does not consistently delay ripening in Sémillon and Shiraz in a hot Australian climate. Am. J. Enol. Vitic. 2019, 70, 398–410. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar] [CrossRef]
- Bledsoe, A.; Kliewer, W.; Marois, J. Effects of timing and severity of leaf removal on yield and fruit composition of Sauvignon blanc grapevines. Am. J. Enol. Vitic. 1988, 39, 49–54. [Google Scholar] [CrossRef]
- Bobeica, N.; Poni, S.; Hilbert, G.; Renaud, C.; Gomès, E.; Delrot, S.; Dai, Z. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Front. Plant Sci. 2015, 6, 142952. [Google Scholar] [CrossRef] [PubMed]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar] [CrossRef]
- Zhu, J.; Génard, M.; Poni, S.; Gambetta, G.A.; Vivin, P.; Vercambre, G.; Trought, M.C.; Ollat, N.; Delrot, S.; Dai, Z. Modelling grape growth in relation to whole-plant carbon and water fluxes. J. Exp. Bot. 2019, 70, 2505–2521. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, S.; Parpinello, G.P.; Segade, S.R.; Ricci, A.; Paissoni, M.A.; Curioni, A.; Marangon, M.; Mattivi, F.; Arapitsas, P.; Moio, L. Diversity of Italian red wines: A study by enological parameters, color, and phenolic indices. Food Res. Int. 2021, 143, 110277. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Wardle, D.A.; Naylor, A.P. Impact of training system, vine spacing, and basal leaf removal on Riesling. Vine performance, berry composition, canopy microclimate, and vineyard labor requirements. Am. J. Enol. Vitic. 1996, 47, 63–76. [Google Scholar] [CrossRef]
- Mosetti, D.; Herrera, J.; Sabbatini, P.; Green, A.; Alberti, G.; Peterlunger, E.; Lisjak, K.; Castellarin, S.D. Impact of leaf removal after berry set on fruit composition and bunch rot in ‘Sauvignon blanc’. Vitis 2016, 55, 57–64. [Google Scholar]
- Martin, D.; Grose, C.; Fedrizzi, B.; Stuart, L.; Albright, A.; McLachlan, A. Grape cluster microclimate influences the aroma composition of Sauvignon blanc wine. Food Chem. 2016, 210, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Kozina, B.; Karoglan, M.; Herjavec, S.; Jeromel, A.; Orlic, S. Influence of basal leaf removal on the chemical composition of Sauvignon Blanc and Riesling wines. J. Food Agric. Environ. 2008, 6, 28. [Google Scholar]
- Kemp, B. The Effect of the Timing of Leaf Removal on Berry Ripening, Flavour and Aroma Compounds in Pinot Noir Wine. Doctoral Dissertation, Lincoln University, Lincoln, PA, USA, 2010. [Google Scholar]
- Scheiner, J.J.; Sacks, G.L.; Pan, B.; Ennahli, S.; Tarlton, L.; Wise, A.; Lerch, S.D.; Heuvel, J.E.V. Impact of severity and timing of basal leaf removal on 3-isobutyl-2-methoxypyrazine concentrations in red winegrapes. Am. J. Enol. Vitic. 2010, 61, 358–364. [Google Scholar] [CrossRef]
- Šuklje, K.; Česnik, H.B.; Janeš, L.; Kmecl, V.; Vanzo, A.; Deloire, A.; Sivilotti, P.; Lisjak, K. The effect of leaf area to yield ratio on secondary metabolites in grapes and wines of Vitis vinifera L. cv. Sauvignon blanc. OENO ONE 2013, 47, 83–97. [Google Scholar] [CrossRef]
Variables | C | D1 | D2 | F Defoliation (D) | F Blocks (B) | F (B × D) |
---|---|---|---|---|---|---|
Vegetative growth, yield and vine balance | ||||||
Nodes/vine (n) | 11.7 | 13.4 | 12.2 | - | - | - |
Clusters/vine (n) | 17.0 | 14.92 | 17.08 | 0.722 ns | 0.928 ns | 1.139 ns |
Clusters/shoot (n) | 1.49 | 1.17 | 1.45 | 1.432 ns | 1.882 ns | 2.531 ns |
Cluster weight (g) | 299 | 319 | 260 | 1.722 ns | 0.867 ns | 0.590 ns |
Berry weight (g) | 2.45 | 2.63 | 2.54 | 1.421 ns | 1.195 ns | 3.131 ns |
Yield/vine (kg) | 4.98 | 4.65 | 4.49 | 0.272 ns | 1.654 ns | 2.026 ns |
Cluster length (cm) | 22.61 | 23.11 | 21.11 | 0.409 ns | 2.750 ns | 0.730 ns |
Compactness index (g/cm) | 13.92 | 14.24 | 12.73 | 0.446 ns | 1.777 ns | 0.536 ns |
Total leaf area/vine (m2) | 5.50 b | 3.54 a | 3.31 a | 30.50 ** | 0.516 ns | 1.082 ns |
Leaf area to yield (m2/kg) | 1.35 b | 0.90 a | 0.81 a | 3.556 * | 1.098 ns | 1.256 ns |
Wood weight (primary)/vine (g) | 635 | 508 | 597 | 1.414 ns | 1.266 ns | 1.910 ns |
Wood weight (lateral)/vine (g) | 40.01 | 50.83 | 73.33 | 0.757 ns | 0.866 ns | 1.221 ns |
Total wood weight2/vine (g) | 675 | 559 | 670 | 1.203 ns | 1.778 ns | 1.034 ns |
Ravaz index (kg/kg) | 12.59 | 10.04 | 10.83 | 0.403 ns | 1.192 ns | 0.769 ns |
Grape quality | ||||||
Sugars (°Brix) | 21.27 b | 19.34 a | 21.14 b | 9.935 ** | 1.755 ns | 1.434 ns |
pH | 3.29 | 3.28 | 3.31 | 0.444 ns | 0.634 ns | 1.143 ns |
Titratable acidity (g/L) | 6.09 | 5.93 | 5.67 | 1.064 ns | 0.644 ns | 2.540 ns |
Tartaric acid (g/L) | 6.25 | 6.42 | 6.24 | 0.121 ns | 0.877 ns | 0.752 ns |
Malic acid (g/L) | 2.91 | 2.69 | 2.57 | 1.007 ns | 1.032 ns | 3.070 ns |
Citric acid (g/L) | 0.185 | 0.169 | 0.174 | 1.077 ns | 1.424 ns | 5.089 ** |
Tartaric/Malic | 2.20 | 2.50 | 2.51 | 2.968 ns | 0.790 ns | 3.632 * |
Anthocyanins (mg/g) | 0.541 b | 0.394 a | 0.578 b | 8.393 ** | 4.688 * | 1.726 ns |
Anthocyanins (mg/berry) | 1.312 b | 1.025 a | 1.459 b | 6.973 ** | 3.338 * | 1.958 ns |
Polyphenols (mg/g) | 1.560 | 1.496 | 1.635 | 1.484 ns | 3.580 * | 1.343 ns |
Polyphenols (mg/berry) | 3.820 | 3.915 | 4.135 | 0.690 ns | 1.072 ns | 1.404 ns |
Berry K+ (mg/L) | 1789 | 1918 | 1926 | 0.310 ns | 1.277 ns | 4.724 ** |
Attributes | C | D1 | D2 | F sig. |
---|---|---|---|---|
Density | 0.9930 b | 0.9943 a | 0.9927 b | 5.443 ** |
Ethanol (% vol) | 12.15 a | 10.41 b | 12.49 a | 16.875 ** |
Total acidity (g tartaric acid/L) | 5.64 | 5.59 | 5.63 | 0.090 ns |
pH | 3.50 | 3.46 | 3.54 | 2.717 ns |
Total SO2 (mg/L) | 44.37 b | 49.92 b | 61.44 a | 8.439 ** |
Free SO2 (mg/L) | 9.39 | 11.95 | 11.95 | 4.000 ns |
Combined SO2 (mg/L) | 34.99 b | 37.97 b | 49.49 a | 5.655 ** |
Volatile Acidity (g acetic acid/L) | 0.11 | 0.08 | 0.11 | 4.200 ns |
Tartaric acid (g/L) | 2.62 a | 2.50 b | 2.67 a | 6.259 ** |
Malic acid (g/L) | 2.23 a | 2.06 b | 2.07 b | 5.131 ** |
Acetic acid (g/L) | 0.06 | 0.06 | 0.07 | 0.855 ns |
Variables | C | D1 | D2 | F sig. |
---|---|---|---|---|
Total Polyphenols (mg gallic acid/L) | 1989 | 1975 | 2168 | 0.764 ns |
Total Anthocyanins (mg malvidin-3-glucoside/L) | 161 a | 75 b | 178 a | 6.188 ** |
Total Flavonoids (mg (+)-catechin/L) | 806 | 721 | 799 | 0.592 ns |
Proanthocyanidins (mg cyanidin chloride/L) | 996 | 831 | 1105 | 2.096 ns |
Flavans Reactive Vanillin (mg (+)-catechin/L) | 1080 | 993 | 1106 | 0.682 ns |
L* (brightness) | 52.9 b | 67.4 a | 49.3 b | 6.799 ** |
a* (red/green) | 47.6 a | 34.9 b | 52.3 a | 11.560 ** |
b* (yellow/blue) | 9.2 | 7.4 | 11.5 | 2.521 ns |
ΔE | - | 19.3 | 25.4 | - |
% Yellow | 38.5 ab | 41.3 a | 37.5 b | 5.780 ** |
% Red | 52.1 ab | 48.4 b | 53.7 a | 6.277 ** |
% Blu | 9.5 | 10.3 | 8.8 | 1.241 ns |
IC | 3.26 | 2.24 | 3.81 | 3.985 ns |
Tint | 0.74 b | 0.86 a | 0.70 b | 6.443 ** |
Delphinidin-3-glucoside | 6.61 | 5.31 | 8.55 | 2.388 ns |
Cyanidin-3-glucoside | 2.77 | 1.83 | 3.65 | 1.550 ns |
Petunidin-3-glucoside | 17.78 a | 11.45 b | 18.45 a | 6.469 ** |
Peonidin 3-glucoside | 8.26 | 3.74 | 9.06 | 3.084 ns |
Malvidin-3-glucoside | 82.53 ab | 42.25 b | 110.54 a | 6.065 ** |
Cyanidin-3-(6-acetyl)-glucoside | 1.51 a | 0.14 b | 0.51 b | 19.479 ** |
Malvidin-3-(6-acetyl)-glucoside | 0.29 b | 0.71b | 1.58 a | 10.379 ** |
Petunidin3-(6-p-coumaryl)-glucoside | 0.24 | 0.19 | 0.68 | 3.007 ns |
Malvidin-3-(6-p-coumaryl)-glucoside | 0.48 | 0.44 | 0.54 | 0.226 ns |
Total | 120.46 ab | 66.06 b | 153.57 a | 6.053 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vercesi, A.; Gabrielli, M.; Garavani, A.; Poni, S. Effects of Apical, Late-Season Leaf Removal on Vine Performance and Wine Properties in Sangiovese Grapevines (Vitis vinifera L.). Horticulturae 2024, 10, 929. https://doi.org/10.3390/horticulturae10090929
Vercesi A, Gabrielli M, Garavani A, Poni S. Effects of Apical, Late-Season Leaf Removal on Vine Performance and Wine Properties in Sangiovese Grapevines (Vitis vinifera L.). Horticulturae. 2024; 10(9):929. https://doi.org/10.3390/horticulturae10090929
Chicago/Turabian StyleVercesi, Alberto, Mario Gabrielli, Alessandra Garavani, and Stefano Poni. 2024. "Effects of Apical, Late-Season Leaf Removal on Vine Performance and Wine Properties in Sangiovese Grapevines (Vitis vinifera L.)" Horticulturae 10, no. 9: 929. https://doi.org/10.3390/horticulturae10090929
APA StyleVercesi, A., Gabrielli, M., Garavani, A., & Poni, S. (2024). Effects of Apical, Late-Season Leaf Removal on Vine Performance and Wine Properties in Sangiovese Grapevines (Vitis vinifera L.). Horticulturae, 10(9), 929. https://doi.org/10.3390/horticulturae10090929