Bacillus thuringiensis and Trichoderma asperellum as Biostimulants in Hydroponic Tendril Pea (Pisum sativum) Microgreens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Experiment
2.2. Plant Material
2.3. Microorganims
2.4. Preparation of Bacterial Inoculum
2.5. Preparation of Fungal Inoculum
2.6. Establisment of the Experiment
2.7. Morphological Parameters
2.8. Biochemical Parameters
2.8.1. pH Determination
2.8.2. Determination of Total Soluble Solids (TSS)
2.8.3. Color Index
2.8.4. Photosynthetic Pigment Content
2.8.5. Antioxidant Activity
2.8.6. Nitrate Content
2.9. Foliar Nutrient Content
2.10. Microgreens Quality
2.11. Yield
2.12. Statistical Analysis
3. Results
3.1. Morphological Parameters
3.2. Biochemical Parameters
3.3. Foliar Nutrient Content
3.4. Quality
3.5. Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rouphael, Y.; Colla, G.; De Pascale, S. Sprouts, microgreens, and edible flowers as novel functional foods. Agronomy 2021, 11, 2568. [Google Scholar] [CrossRef]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and “Baby leaf” vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R.C., Eds.; Springer: Boston, MA, USA, 2017; pp. 403–432. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Castellino, M.; Renna, M.M.; Gattullo, C.E.; Calasso, M.; Terzano, R.; Allegretha, I.; Leoni, B.; Caponio, F.; Santamaria, P. Nutritional Characterization, and shelf-life of packaged microgreens. Food Funct. 2018, 9, 5629–5640. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Microgreens: Production, shelf life, and bioactive components. Crit. Rev. Food Sci. Nutr 2017, 57, 2730–2736. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Tan, L.; Nuffer, H.; Feng, J.; Kwan, S.H.; Chen, H.; Tong, X.; Kong, L. Antioxidant properties and sensory evaluation of microgreens from commercial and local farms. Food Sci. H. Wellness 2020, 9, 45–51. [Google Scholar] [CrossRef]
- Xiao, Z.; Raush, S.R.; Luo, Y.; Sun, J.; Yu, L.; Wang, Q.; Chen, P.; Yu, L.; Stommel, J.R. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. Lwt 2019, 101, 731–737. [Google Scholar] [CrossRef]
- Ebert, A.W. Sprouts and microgreens-Novel food sources for health diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef]
- Alloggia, F.P.; Bafumo, R.F.; Ramirez, D.A.; Maza, M.A.; Camargo, A.B. Brassicaceae microgreens: A novel and promissory source of sustainable bioactive compunds. Curr. Res. Food Sci. 2023, 6, 100480. [Google Scholar] [CrossRef]
- Avato, P.; Argentieri, M.P. Brassicaceae: A rich source of health improving phytochemicals. Phytochem. Rev. 2015, 14, 1019–1033. [Google Scholar] [CrossRef]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional Ingredients From Brassicaceae Species: Overview and Perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef]
- Fusari, C.M.; Nazareno, M.A.; Locatelli, D.A.; Fontana, A.; Beretta, V.; Camargo, A.B. Phytochemical profile and functionality of Brassicaceae species. Food Biosci. 2020, 36, 100606. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-Scale vegetable production and the rice microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Katsenios, N.; Christopoulos, N.V.; Kakabouki, I.; Vlachakis, D.; Kavvadias, V.; Efthimiadou, A. Effect of pulsed electromagnetic field on growth, physiology, and postharvest quality of kale (Brassica oleracea), wheat (Triticum durum) and spinach (Spinacia oleracea) microgreens. Agronomy 2021, 11, 1364. [Google Scholar] [CrossRef]
- Lee, J.S.; Pill, W.G.; Cobb, B.B.; Olszewski, M. Seed treatments to advance greenhouse establishment of beet and chard microgreens. J. Hortic. Sci. Biotechnol. 2004, 79, 565–570. [Google Scholar] [CrossRef]
- Saengha, W.; Karirat, T.; Buranrat, B.; Matra, K.; Deeseenthum, S.; Katisart, T.; Luang-In, V. Cold plasma treatment on mustard green seeds and its effect on growth, isothiocyanates, antioxidant activity and anticancer activity of microgreens. Int. J. Agric. Biol. 2021, 25, 667–676. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hort. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Rajput, R.S.; Ram, R.M.; Vaishnav, A.; Singh, H.B. Microbe-based novel biostimulants for sustainable crop production. In Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications; Satynarayan, T., Ed.; Springer: Singapore, 2019; pp. 109–144. [Google Scholar] [CrossRef]
- Verbon, E.H.; Liberman, L.M. Beneficial Microbes Affect Endogenous Mechanisms Controlling Root Development. Trends Plant Sci. 2016, 21, 218–229. [Google Scholar] [CrossRef]
- Hamid, B.; Zaman, M.; Farooq, S.; Fatima, S.; Sayyed, R.Z.; Baba, Z.A.; Sheikh, T.A.; Reddy, M.S.; El Enshasy, H.; Gafur, A.; et al. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. Sustainability 2021, 13, 2856. [Google Scholar] [CrossRef]
- Visconti, D.; Fiorentino, N.; Cozzolino, E.; Woo, S.L.; Fagnano, M.; Rouphael, Y. Can Trichoderma-Based Biostimulants Optimize N Use Efficiency and Stimulate Growth of Leafy Vegetables in Greenhouse Intensive Cropping Systems? Agronomy 2020, 10, 121. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; Raimondi, G.; Pannico, A.; Di Stasio, E.; Cardarelli, M.; Bonini, P.; de Pascale, S. Endophytic fungi induce salt stress tolerance in greenhouse-grown basil. Acta Hortic. 2020, 1268, 125–131. [Google Scholar] [CrossRef]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Waguespack, E.; Bush, E.; Fontenot, K. The effect of organic biostimulants on beneficial soil microorganism activity. Open J. Ecol. 2022, 12, 499–512. [Google Scholar] [CrossRef]
- Briatia, X.; Jomduang, S.; Park, C.H.; Lumyong, S.; Kanpiengjai, A.; Khaongnuch, C. Enhancing growth of buckwheat sprouts and microgreens by endophytic bacterium inoculation. Int. J. Agric. Biol. 2017, 19, 19374–19380. [Google Scholar] [CrossRef]
- Eissa, N.H.; Zayed, M.S.; Hassanein, M.K.; Abdallah, M.M.F. Green pea sprout response to microbial inoculation and increasing atmospheric CO2 concentration. Arab. Univ. J. Agric. Sci. 2018, 26, 2513–2523. [Google Scholar] [CrossRef]
- Wang, R.; Li, B.; Jin, T.; Weng, Q.; Liu, P. Bacillus velezesis stimulated the absorption of iodine to improve antioxidants and delay post-harvest senescence in microgreens. LWT 2024, 1997, 115898. [Google Scholar] [CrossRef]
- Maleva, M.; Borisova, G.; Ahamuefule, C.; Darkazanli, M.; Kumar, A. Effect of PGPR Anthrobacter sp. CTF1 and foliar iodine spraying on pea microgreens growth in hydroponic culture. Bio Web Conf. 2024, 121, 02008. [Google Scholar] [CrossRef]
- Moraru, P.I.; Rusu, T.; Mintas, O.S. Trial Protocol for Evaluating Platforms for Growing Microgreens in Hydroponic Conditions. Foods 2022, 11, 1327. [Google Scholar] [CrossRef]
- Verlinden, S. Microgreens: Definitions, Product Types, and Production Practices. Hortic. Rev. 2020, 47, 85–124. [Google Scholar] [CrossRef]
- Khatri, L.; Kunwar, A.; Bist, D.R. Hydroponics: Advantages and Challenges in Soilless Farming. Big Data Agric. 2024, 6, 81–88. [Google Scholar] [CrossRef]
- Kumari, M.; Swarupa, P.; Kesari, K.K.; Kumar, A. Microbial Inoculants as Plant Biostimulants: A Review on Risk Status. Life 2023, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgio, D.; Cellini, A.; Donati, I.; Pastore, C.; Onofrietti, C.; Spinelli, F. Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. Agronomy 2020, 10, 794. [Google Scholar] [CrossRef]
- Sheikh, B.A. Hydroponics: Key to sustain agriculture in water stressed and urban environment. Pak. J. Agric. Agric. Eng. Vet. Sci. 2006, 22, 53–57. [Google Scholar]
- Chandrasekaran, M.; Belachew, S.T.; Yoon, E. Expression of β-1,3-glucanase (GLU) and phenylalanine ammonia-lyase (PAL) genes and their enzymes in tomato plants induced after treatment with Bacillus subtilis CBR05 against Xanthomonas campestris pv. vesicatoria. J. Gen. Plant Pathol. 2017, 83, 7–13. [Google Scholar] [CrossRef]
- Morgan, L. The pH factor in hydroponics. Grow. Edge 1998, 9, 25–33. [Google Scholar]
- Cordoba-Novoa, H.A.; Gómez, S.V.; Ñústez, C.E. Yield and phenology evaluation of three tomato cherry genotypes (Solanum lycopersicum L.) under greenhouse conditions. Rev. Colomb. Cienc. Hortíc. 2018, 12, 113–125. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 2013, 136, 206–212. [Google Scholar] [CrossRef]
- Toscano, S.; Cavallaro, V.; Ferrante, A.; Romano, D.; Patané, C. Effects of different light spectra on final biomass production and nutritional quality of two microgreens. Plants 2021, 10, 1584. [Google Scholar] [CrossRef]
- Smith, M.W.; Cheary, B.; Carrol, B. Response of pecan to nitrogen rate and nitrogen application time. HortScience 2004, 39, 1412–1415. [Google Scholar] [CrossRef]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of soil, plant, and water analysis. Man. West Asia North Afr. Reg. 2013, 3, 65–119. [Google Scholar]
- Rennie, T.J.; Vigneault, C.; Raghavan, G.S.V.; DeEll, J.R. Effect of pressure reduction rate on vacuum cooled lettuce quality during storage. Can. Biosyst. Eng. 2001, 43, 3–39. [Google Scholar] [CrossRef]
- Arkhipova, T.N.; Veselov, S.U.; Melentiev, A.I.; Martynenko, E.V.; Kudoyarova, G.R. Ability of Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil. 2005, 272, 201–209. [Google Scholar] [CrossRef]
- Nieto-Jacobo, M.F.; Steyaert, J.M.; Salazar Badillo, F.B.; Nguyen, D.V.; Rostás, M.; Braithwaite, M.; DeSouza, J.T.; Jimenez-Bremont, J.F.; Ohkura, M.; Stewart, A.; et al. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci. 2017, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Blake, C.; Christensen, M.N.; Kovács, A.T. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol. Plant Microbe. Interact. 2021, 34, 15–25. [Google Scholar] [CrossRef]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Oulebsir-Mohandkaci, H.; Benzina-Tihar, F.; Hadjouti, R. Exploring biofertilizer potential of plant growth-promoting rhizobacteria Bacillus clausii strain B8 (MT305787) on Brassica napus and Medicago sativa. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12484. [Google Scholar] [CrossRef]
- Turan, M.; Ekinci, M.; Yildirim, E.; Günes, A.; Karagöz, K.; Kotan, R.; Dursun, A. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedling. Turk J. Agri. For. 2024, 38, 38327–38333. [Google Scholar] [CrossRef]
- Iqbal, M.; Naveed, M.; Sanaullah, M.; Brtnicky, M.; Hussain, M.I.; Kucerik, J.; Mustafa, A. Plant microbe medicated enhancement in growth and yield of canola (Brassica napus L.) plant through auxin production and increased nutrient acquisition. J. Soils Sediments 2023, 23, 1233–1249. [Google Scholar] [CrossRef]
- Ryu, C.M.; Farag, M.A.; Hu, C.H.; Reddy, M.S.; Wei, H.X.; Par’e, P.W.; Kloepper, J.W. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 4927–4932. [Google Scholar] [CrossRef]
- Zhang, H.; Kim, M.S.; Krishnamachari, V.; Payton, P.; Sun, Y.; Grimson, M.; Farag, M.A.; Ruy, C.M.; Allen, R.; Melo, I.S.; et al. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 2007, 226, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Wonglom, P.; Ito, S.I.; Sunpapao, A. Volatile Organic Compounds Emitted from Endophytic Fungus Trichoderma asperellum T1 Mediate Antifungal Activity, Defense Response and Promote Plant Growth in Lettuce (Lactuca sativa). Fungal Ecol. 2020, 43, 100867. [Google Scholar] [CrossRef]
- Arif, S.; Liaquat, F.; Yang, S.; Shah, I.H.; Zhao, L.; Xiong, X.; Garcia, D.; Zhang, Y. Exogenous Inoculation of Endophytic Bacterium Bacillus cereus Suppresses Clubroot (Plasmodiophora brassicae) Occurrence in Pak Choi (Brassica campestris sp. Chinensis L.). Planta 2021, 253, 25. [Google Scholar] [CrossRef] [PubMed]
- Azarmi, R.; Hajieghrari, B.; Gigloul, A. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. Afr. J. Biotechnol. 2011, 10, 5850–5855. [Google Scholar] [CrossRef]
- Kang, S.M.; Hamayun, M.; Khan, M.A.; Iqbal, A.; Lee, I.J. Bacillus subtilis JW1 enhances plant growth and nutrient uptake of Chinese cabbage through gibberellins secretion. J. Appl. Bot. Food Qual. 2019, 92, 172–178. [Google Scholar] [CrossRef]
- Akntar, N.; IIyas, N.; Yasmin, H.; Sayyed, R.Z.; Hasnain, Z.; Elsayed, A.; El Enshasy, H.A. Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules 2021, 26, 1569. [Google Scholar] [CrossRef]
- Naing, A.H.; Maung, T.T.; Kim, C.K. The ACC deaminase-producing plant growth-promoting bacteria: Influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress. Physiol. Plant. 2021, 173, 1992–2012. [Google Scholar] [CrossRef]
- Misra, S.; Chauhan, P.S. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 2020, 10, 119. [Google Scholar] [CrossRef]
- Sari, N.; Andansari, P. Microgreen quality of broccoli plants (Brassica oleracea L.) and correlation between parameters. J. Phys. Conf. Ser. 2020, 1569, 042093. [Google Scholar]
- Renger, G. (Ed.) Primary Processes of Photosynthesis, Part 2: Principles and Apparatus; Royal Society of Chemistry: Cambridge, UK, 2007. [Google Scholar]
- Brautigam, A.; Weber, A.P.M. Do metabolite transport processes limit photosynthesis? Plant Physiol. 2011, 155, 43–48. [Google Scholar] [CrossRef]
- Wang, J.; Qu, F.; Liang, J.; Yang, M.; Hu, X. Bacillus velezensis SX13 promoted cucumber growth and production by accelerating the absorption of nutrients and increasing plant photosynthetic metabolism. Sci. Hortic. 2022, 301, 111151. [Google Scholar] [CrossRef]
- Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; De Pascale, S.; Rouphael, Y. Sensory Attributes and Consumer Acceptability of 12 Microgreens Species. Agronomy 2020, 10, 1043. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Park, E.; Saftner, R.A.; Luo, Y.; Wang, Q. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biol. Technol. 2015, 110, 140–148. [Google Scholar] [CrossRef]
- Cavallo, C.; Caracciolo, F.; Cicia, G.; Del Giudice, T. Extra-virgin olive oil: Are consumers provided with the sensory quality they want? A hedonic price model with sensory attributes. J. Sci. Food Agric. 2018, 98, 1591–1598. [Google Scholar] [CrossRef]
- Maciel, G.M.; Fernandes, M.A.R.; Hillebrand, V.; Azevedo, B.N.R. Influência da época de colheita no teor de sólidos solúveis em frutos de minitomate. Sci. Plena 2015, 11, 120203. [Google Scholar] [CrossRef]
- Wieth, A.R.; Pinheiro, W.D.; Duarte, T.S. Purple cabbage microgreens grown in different substrates and nutritive solution concentrations | Microgreens de repolho roxo cultivado em diferentes substratos e concentrações de solução nutritiva. Rev. Caatinga 2019, 32, 976–985. [Google Scholar] [CrossRef]
- Senevirathne, G.I.; Gama-Arachchige, N.S.; Karunaratne, A.M. Germination, Harvesting Stage, Antioxidant Activity and Consumer Acceptance of Ten Microgreens. Ceylon J. Sci. 2019, 48, 91–96. [Google Scholar] [CrossRef]
- de la Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Liu, R.; Lu, Z.; Marcone, M.F.; Tsao, R. Amber, red and blue LEDs modulate phenolic contents and antioxidant activities in eight Cruciferous microgreens. J. Food Bioact. 2020, 11, 95–109. [Google Scholar] [CrossRef]
- Pandey, A.; Man, L.; Palni, S.; Bisht, D. Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions. Microbiol. Res. 2001, 156, 377–382. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef] [PubMed]
- Palmitessa, O.D.; Renna, M.; Crupi, P.; Lovece, A.; Corbo, F.; Santamaria, P. Yield and Quality Characteristics of Brassica Microgreens as Affected by the NH4:NO3 Molar Ratio and Strength of the Nutrient Solution. Foods 2020, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- Luetic, S.; Knezovic, Z.; Jurcic, K.; Majic, Z.; Tripkovic, K.; Sutlovic, D. Leafy Vegetable Nitrite and Nitrate Content: Potential Health Effects. Foods 2023, 12, 1655. [Google Scholar] [CrossRef]
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. N. Z. J. Crop. Hortic. Sci. 2016, 45, 119–129. [Google Scholar] [CrossRef]
- Singh, S.K.; Wu, X.; Shao, C.; Zhang, H. Microbial enhancement of plant nutrient acquisition. Stress Biol. 2022, 2, 3. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; Antes, F.G.; Maldaner, J.; Pereira, L.B.; Tabaldi, L.A.; Rauber, R.; Rossato, L.V.; Bisognin, D.A.; Dressler, V.L.; de Moraes Flores, E.M. Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol. Biochem. 2009, 47, 814–821. [Google Scholar] [CrossRef]
- Lastochkina, O.; Seifikalhor, M.; Aliniaeifard, S.; Baymiev, A.; Pusenkova, L.; Garipova, S.; Kulabuhova, D.; Maksimov, I. Bacillus spp.: Efficient Biotic Strategy to Control Postharvest Diseases of Fruits and Vegetables. Plants 2019, 8, 97. [Google Scholar] [CrossRef]
- Galieni, A.; Falcinelli, B.; Stagnari, F.; Datti, A.; Benincasa, P. Sprouts and Microgreens: Trends, Opportunities, and Horizons for Novel Research. Agronomy 2020, 10, 1424. [Google Scholar] [CrossRef]
Score | Description | Visual Quality |
---|---|---|
9 | Essentially defect-free, freshly harvested.
| Excellent |
7 | Minor, non-objectionable defects.
| Good |
5 | Moderately objectionable defects, threshold of commerciality.
| Fair |
3 | Excessive, unsellable defects.
| Poor |
1 | Degraded and unusable product
| Very poor |
Parameters | Treatments | |||
---|---|---|---|---|
Control | Ta | Bt | Bt + Ta | |
Stem length (cm) 1 | 5.30 ± 0.86 c | 8.97 ± 1.09 a | 8.39 ± 1.57 b | 7.86 ± 1.04 b |
Stem diameter (mm) 1 | 1.75 ± 0.14 c | 2.86 ± 0.18 a | 2.45 ± 0.18 b | 2.55 ± 0.22 b |
Tendrills 2 | 3.70 ± 0.46 b | 4.10 ± 0.30 a | 3.84 ± 0.37 b | 3.86 ± 0.35 b |
Leaf area stipulate (cm2) 2 | 3.86 ± 1.11 b | 7.09 ± 1.42 a | 7.21 ± 2.01 a | 6.65 ± 1.94 a |
Fresh shoot weight (g) 2 | 0.30 ± 0.04 c | 0.72 ± 0.07 a | 0.64 ± 0.08 b | 0.60 ± 0.09 b |
Dry shoot weight (g) | 0.038 ± 0.007 c | 0.070 ± 0.008 a | 0.067 ± 0.011 a | 0.061 ± 0.009 b |
Water content (%) 2 | 87.32 ± 1.90 c | 90.26 ± 0.96 a | 89.48 ± 1.75 b | 89.76 ± 1.39 ab |
Parameters | Treatments | |||
---|---|---|---|---|
Control | Ta | Bt | Bt + Ta | |
pH | 6.6 ± 0.08 a | 6.5 ± 0.06 b | 6.5 ± 0.07 ab | 6.5 ± 0.08 ab |
TSS 1 | 9.4 ± 0.36 a | 7.9 ± 0.22 b | 8.2 ± 0.11 b | 8.3 ± 0.13 b |
Color Index | −21.3 ± 3.66 a | −23.0 ± 3.89 a | −23.7 ± 2.09 a | −21.80 ± 2.16 a |
Chlorophyll a | 1.05 ± 0.022 a | 1.05 ± 0.007 a | 1.06 ± 0.008 a | 1.06 ± 0.008 a |
Chlorophyll b | 0.568 ± 0.052 b | 0.693 ± 0.106 ab | 0.829 ± 0.125 a | 0.831 ± 0.105 a |
Carotenoids 1 | 0.571 ± 0.015 b | 0.597 ± 0.031 ab | 0.622 ± 0.015 a | 0.615 ± 0.017 a |
Antioxidant Capacity | 46.75 ± 0.46 a | 46.72 ± 0.96 a | 46.70 ± 0.46 a | 44.48 ± 0.44 b |
Nitrates | 1193 ± 270 a | 734 ± 171 b | 706 ± 238 b | 1025 ± 126 ab |
Parameters | Treatments | |||
---|---|---|---|---|
Control | Ta | Bt | Bt + Ta | |
N 1 (%) | 6.9 ± 0.10 a | 6.6 ± 0.05 ab | 6.4 ± 0.17 b | 6.2 ± 0.44 b |
P (%) | 0.7 ± 0.05 a | 0.6 ± 0.05 a | 0.7 ± 0.05 a | 0.6 ± 0.05 a |
K (%) | 2.4 ± 0.05 a | 2.6 ± 0.15 a | 2.4 ± 0.10 ab | 2.3 ± 0.09 b |
Ca 1 (%) | 1.1 ± 0.02 b | 1.4 ± 0.07 a | 1.3 ± 0.11 a | 1.1 ± 0.05 b |
Mg 1 (%) | 0.9 ± 0.05 a | 0.8 ± 0.02 a | 0.8 ± 0.05 a | 0.8 ± 0.01 a |
Cu 1 (ppm) | 15.7 ± 1.44 a | 13.7 ± 0.27 ab | 15.8 ± 0.76 a | 14.9 ± 1.08 a |
Fe 1 (ppm) | 154 ± 3.67 a | 147 ± 1.78 b | 162 ± 8.28 a | 165 ± 4.08 ab |
Mn (ppm) | 80.7 ± 1.15 ab | 80.5 ± 1.19 b | 83.5 ± 1.97 a | 82.8 ± 1.74 ab |
Zn (ppm) | 47.6 ± 1.71 a | 45.4 ± 1.47 a | 48.2 ± 2.51 a | 46.5 ± 2.18 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Leal, R.; Rodríguez-Roque, M.J.; Acevedo-Barrera, A.A.; Villa-Martínez, A.; Guerrero, B.I.; Gutiérrez-Chávez, A.; Hernández-Huerta, J. Bacillus thuringiensis and Trichoderma asperellum as Biostimulants in Hydroponic Tendril Pea (Pisum sativum) Microgreens. Horticulturae 2025, 11, 39. https://doi.org/10.3390/horticulturae11010039
Pérez-Leal R, Rodríguez-Roque MJ, Acevedo-Barrera AA, Villa-Martínez A, Guerrero BI, Gutiérrez-Chávez A, Hernández-Huerta J. Bacillus thuringiensis and Trichoderma asperellum as Biostimulants in Hydroponic Tendril Pea (Pisum sativum) Microgreens. Horticulturae. 2025; 11(1):39. https://doi.org/10.3390/horticulturae11010039
Chicago/Turabian StylePérez-Leal, Ramona, María Janeth Rodríguez-Roque, Angélica Anahí Acevedo-Barrera, Alejandra Villa-Martínez, Brenda I. Guerrero, Aldo Gutiérrez-Chávez, and Jared Hernández-Huerta. 2025. "Bacillus thuringiensis and Trichoderma asperellum as Biostimulants in Hydroponic Tendril Pea (Pisum sativum) Microgreens" Horticulturae 11, no. 1: 39. https://doi.org/10.3390/horticulturae11010039
APA StylePérez-Leal, R., Rodríguez-Roque, M. J., Acevedo-Barrera, A. A., Villa-Martínez, A., Guerrero, B. I., Gutiérrez-Chávez, A., & Hernández-Huerta, J. (2025). Bacillus thuringiensis and Trichoderma asperellum as Biostimulants in Hydroponic Tendril Pea (Pisum sativum) Microgreens. Horticulturae, 11(1), 39. https://doi.org/10.3390/horticulturae11010039