Flowering Characteristics and Expression Patterns of Key Genes in Response to Photoperiod in Different Chrysanthemum Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.2. Observations of Flowering Time and Other Phenotypic Traits
2.3. RT-qPCR and Gene Heat Map
2.4. Statistics and Analysis of Data
3. Results
3.1. Flowering Types of Different Chrysanthemum Varieties in Response to Photoperiod
3.2. Differences in the Floral Competent State of Different Chrysanthemum Varieties
3.3. Analysis of Tissue-Specific Expression Patterns of Key Flowering Genes
3.4. Expression Pattern of Key Floral Genes in Response to Photoperiod
3.5. Different Flowering Qualities of Chrysanthemums INDUCED to Flower in Different Vegetative Stages Under Different Photoperiods
4. Discussion
4.1. Chrysanthemums Exhibit Diverse Types of Flowering in Response to Photoperiodic Stimuli
4.2. Different Chrysanthemum Varieties Vary Widely in Reaching the Floral Competent State
4.3. The Mechanism of the Response to Photoperiod Flowering Varies Among Different Chrysanthemum Varieties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, L.H.; Yoon, J.; An, G. The control of flowering time by environmental factors. Plant J. 2017, 90, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Perrella, G.; Vellutini, E.; Zioutopoulou, A.; Patitaki, E.; Headland, L.R.; Kaiserli, E. Let it bloom: Cross-talk between light and flowering signaling in Arabidopsis. Physiol. Plant 2020, 169, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Richter, R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. J. Exp. Bot. 2020, 71, 2490–2504. [Google Scholar] [CrossRef]
- Song, Y.H.; Shim, J.S.; Kinmonth-Schultz, H.A.; Imaizumi, T. Photoperiodic flowering: Time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 2015, 66, 441–464. [Google Scholar] [CrossRef]
- Brambilla, V.; Gomez-Ariza, J.; Cerise, M.; Fornara, F. The importance of being on time: Regulatory networks controlling photoperiodic flowering in Cereals. Front. Plant Sci. 2017, 8, 665. [Google Scholar] [CrossRef]
- Osnato, M.; Cota, I.; Nebhnani, P.; Cereijo, U.; Pelaz, S. Photoperiod control of plant growth: Flowering time genes beyond flowering. Front. Plant Sci. 2022, 12, 805635. [Google Scholar] [CrossRef]
- Garner, W.W.; Allard, H.A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Mon. Weather Rev. 1920, 48, 415. [Google Scholar] [CrossRef]
- Higuchi, Y.; Narumi, T.; Oda, A.; Nakano, Y.; Sumitomo, K.; Fukai, S.; Hisamatsu, T. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in Chrysanthemums. Proc. Natl. Acad. Sci. USA 2013, 110, 17137–17142. [Google Scholar] [CrossRef]
- Thomas, B.; Vince-Prue, D. Photoperiodism in Plants, 2nd ed.; Academic Press: Salt Lake City, UT, USA, 1997; pp. 3–4. [Google Scholar]
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef]
- Blümel, M.; Dally, N.; Jung, C. Flowering time regulation in crops—What did we learn from Arabidopsis? Curr. Opin. Biotechnol. 2015, 32, 121–129. [Google Scholar] [CrossRef]
- Venkat, A.; Muneer, S. Role of circadian rhythms in major plant metabolic and signaling pathways. Front Plant Sci. 2022, 13, 836244. [Google Scholar] [CrossRef] [PubMed]
- Komeda, Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol. 2004, 55, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.Y.; Fujiwara, S.; Suh, S.S.; Kim, J.; Kim, Y.; Han, L.; David, K.; Putterill, J.; Nam, H.G.; Somers, D.E. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 2007, 449, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Rizzini, L.; Favory, J.J.; Cloix, C.; Faggionato, D.; O’Hara, A.; Kaiserli, E.; Baumeister, R.; Schäfer, E.; Nagy, F.; Jenkins, G.I.; et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011, 332, 103–106. [Google Scholar] [CrossRef]
- Lin, C. Photoreceptors and regulation of flowering time. Plant Physiol. 2000, 123, 39–50. [Google Scholar] [CrossRef]
- Endo, M.; Araki, T.; Nagatani, A. Tissue-specific regulation of flowering by photoreceptors. Cell Mol. Life Sci. 2016, 73, 829–839. [Google Scholar] [CrossRef]
- Zhu, Y.; Klasfeld, S.; Wagner, D. Molecular regulation of plant developmental transitions and plant architecture via PEPB family proteins: An update on mechanism of action. J. Exp. Bot. 2021, 72, 2301–2311. [Google Scholar] [CrossRef]
- Yang, M.; Lin, W.; Xu, Y.; Xie, B.; Yu, B.; Chen, L.; Huang, W. Flowering-time regulation by the circadian clock: From Arabidopsis to crops. Crop J. 2023, 12, 17–27. [Google Scholar] [CrossRef]
- Wang, X.; Hao, Y.; Altaf, M.A.; Shu, H.; Cheng, S.; Wang, Z.; Zhu, G. Evolution and dynamic transcriptome of key genes of photoperiodic flowering pathway in Water Spinach (Ipomoea aquatica). Int. J. Mol. Sci. 2024, 25, 1420. [Google Scholar] [CrossRef]
- Second Botanical Nomenclature Review Committee. Chinese Terms in Botany, 2nd ed.; Science Press: Beijing, China, 2019; pp. 250–254. [Google Scholar]
- Adams, S.R.; Pearson, S.; Hadley, P.; Patefield, W.M. The effects of temperature and light integral on the phases of photoperiod sensitivity in Petunia × hybrida. Ann. Bot. 1999, 83, 263–269. [Google Scholar] [CrossRef]
- Grigoras, C.D.; Toma, F. Photoperiodism, an important element for the growth and flowering of Chrysanthemums. Sci. Pap. Ser. B Hortic. 2021, 65, 215–224. [Google Scholar]
- Lu, S.; Yang, Z.; Yang, L.; Zhang, Y.; Zheng, H. Effects of different photoperiods on the growth and development process and endogenous hormones of Chrysanthemum. Acta Agric. Boreali Sin. (In Chinese). 2021, 36, 106–115. [Google Scholar]
- Mao, H.; Gu, Z.; Zhu, P. Effects of different photoperiods on floral bud differentiation and flowering of Chrysanthemum ‘C029’. Acta Bot. Boreali Occident. Sin. 2010, 30, 2074–2080. (In Chinese) [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, L.J.; Sun, J.; Ren, L.P.; Zhou, M.; Han, X.Y.; Ding, L.; Zhang, F.; Guan, Z.Y.; Fang, W.M.; Chen, S.M.; et al. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer Chrysanthemum. Plant Biotechnol. J. 2020, 18, 1562–1572. [Google Scholar] [CrossRef]
- Wang, L.J.; Cheng, H.; Wang, Q.; Si, C.N.; Yang, Y.M.; Yu, Y.; Zhou, L.J.; Ding, L.; Song, A.P.; Xu, D.Q.; et al. CmRCD1 represses flowering by directly interacting with CmBBX8 in summer Chrysanthemum. Hortic. Res. 2021, 8, 79. [Google Scholar] [CrossRef]
- Kotoda, N.; Hayashi, H.; Suzuki, M.; Igarashi, M.; Hatsuyama, Y.; Kidou, S.; Igasaki, T.; Nishiguchi, M.; Yano, K.; Shimizu, T.; et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol. 2010, 51, 561–575. [Google Scholar] [CrossRef]
- Yang, L.W.; Fu, J.X.; Qi, S.; Hong, Y.; Huang, H.; Dai, S.L. Molecular cloning and function analysis of ClCRY1a and ClCRY1b, two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition. Gene 2017, 617, 32–43. [Google Scholar] [CrossRef]
- Yang, L.W.; Wen, X.H.; Fu, J.X.; Dai, S.L. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. Hortic. Res. 2018, 5, 58. [Google Scholar] [CrossRef]
- Kawata, J. The phasic development of Chysanthemum as a basis for the regulation of vegetative growth and flowerring in Japan. Acta Hortic. 1987, 197, 115–124. [Google Scholar] [CrossRef]
- Lyu, J.; Aiwaili, P.; Gu, Z.Y.; Xu, Y.J.; Zhang, Y.H.; Wang, Z.L.; Huang, H.F.; Zeng, R.H.; Ma, C.; Gao, J.P.; et al. Chrysanthemum MAF2 regulates flowering by repressing gibberellin biosynthesis in response to low temperature. Plant J. 2022, 112, 1159–1175. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.X. Molecular Mechanism of Floral Transition Induced by Short-Day in Chrysanthemum lavandulifolium. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2014. [Google Scholar]
- Zhang, Q.L.; Li, J.Z.; Deng, C.Y.; Chen, J.Q.; Han, W.J.; Yang, X.Z.; Wang, Z.M.; Dai, S.L. The mechanisms of optimal nitrogen conditions to accelerate flowering of Chrysanthemum vestitum under short day based on transcriptome analysis. J. Plant Physiol. 2023, 285, 153982. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Z.L.; Dai, S.L. Light induction on flowering characteristics of cut Chrysanthemum ‘Reagan’. J. Beijing For. Univ. 2015, 37, 133–138. (In Chinese) [Google Scholar]
- Nakano, Y.; Higuchi, Y.; Sumitomo, K.; Hisamatsu, T. Flowering retardation by high temperature in Chrysanthemums: Involvement of FLOWERING LOCUS T-like 3 gene repression. J. Exp. Bot. 2013, 64, 909–920. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, C.; Xu, Y.J.; Wang, T.L.; Chen, Y.Y.; Lü, J.; Zhang, L.L.; Jiang, C.Z.; Hong, B.; Gao, J.P. Control of Chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 2017, 8, 829. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, W.W.; Aiwaili, P.; Zhang, H.; Xu, Y.J.; Gu, Z.Y.; Gao, J.P.; Hong, B. PHOTOLYASE/BLUE LIGHT RECEPTOR2 regulates Chrysanthemum flowering by compensating for gibberellin perception. Plant Physiol. 2023, 193, 2848–2864. [Google Scholar] [CrossRef]
- Gao, H.; Jin, M.N.; Zheng, X.M.; Chen, J.; Yuan, D.Y.; Xin, Y.Y.; Wang, M.Q.; Huang, D.Y.; Zhang, Z.; Zhou, K.N.; et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. USA 2014, 111, 16337–16342. [Google Scholar] [CrossRef]
- Song, J.; Zhang, S.B.; Wang, X.T.; Sun, S.; Liu, Z.Q.; Wang, K.T.; Wan, H.J.; Zhou, G.Z.; Li, R.; Yu, H.; et al. Variations in both FTL1 and SP5G, two tomato FT Paralogs, control day-neutral flowering. Mol. Plant. 2020, 13, 939–942. [Google Scholar] [CrossRef]
- Hiraoka, K.; Yamaguchi, A.; Abe, M.; Araki, T. The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant Cell Physiol. 2013, 54, 352–368. [Google Scholar] [CrossRef]
- Mimida, N.; Kidou, S.; Iwanami, H.; Moriya, S.; Abe, K.; Voogd, C.; Varkonyi-Gasic, E.; Kotoda, N. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiol. 2011, 31, 555–566. [Google Scholar] [CrossRef] [PubMed]
Varieties | Treatment | Varieties | Treatment | Varieties | Treatment | Varieties | Treatment | Varieties | Treatment | Varieties | Treatment | Varieties | Treatment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘A44’ | L16 | ‘C60’ | L18 | ‘183’ | L10 | ‘A20’ | L18 | ‘C1’ | L16 | ‘C27’ | L18 | ‘C31’ | L16 |
L18 | L20 | L14 | L20 | L18 | L20 | L18 | |||||||
L20 | L22 | L28 | L22 | L20 | L22 | L20 | |||||||
L22 | L24 | L22 | L24 | L22 | L24 | L22 | |||||||
L24 | L26 | L26 | L26 | L24 | L26 | L24 | |||||||
CK | CK | CK | CK | CK | CK | CK |
Varieties | Treatment | Plant Height (cm) | Plant Crown Width (cm) | Number of Leaves | Number of Capitula per Plant | Diameter of Ray Florets (cm) | Diameter of Disk Florets (cm) | Flowering Rate (%) |
---|---|---|---|---|---|---|---|---|
‘A44’ | L16 | 20.77 ± 0.56 d | 16.7 ± 0.79 a | 22.67 ± 0.47 b | 17.00 ± 0.82 a | 4.40 ± 0.29 b | 1.14 ± 0.1 b | 100.00 |
L18 | 23.71 ± 0.74 b | 14.12 ± 1.26 b | 26 ± 0.82 a | 14.33 ± 0.47 a | 4.98 ± 0.13 ab | 1.34 ± 0.03 a | 100.00 | |
L20 | 22.5 ± 0.14 c | 15.56 ± 0.14 a | 27.33 ± 1.89 a | 11.33 ± 2.49 c | 4.77 ± 0.25 b | 1.30 ± 0.04 a | 100.00 | |
L22 | 24.79 ± 0.51 a | 13.58 ± 0.82 c | 26 ± 2.16 a | 11.00 ± 0.82 c | 5.57 ± 0.40 a | 1.35 ± 0.02 a | 100.00 | |
L24 | 25.5 ± 0.75 a | 13.27 ± 0.85 c | 26 ± 0.82 a | 12.00 ± 0.82 b | 4.92 ± 0.08 a | 1.11 ± 0.01 b | 100.00 | |
CK | − | − | − | − | − | − | − | |
‘C60’ | L18 | 19.96 ± 0.44 c | 13.51 ± 0.21 c | 26.33 ± 0.47 d | 3.33 ± 0.47 d | 4.55 ± 0.06 bc | 0.78 ± 0.02 c | 20.00 |
L20 | 30.87 ± 1.79 b | 15.69 ± 0.26 b | 32 ± 0.82 a | 10.00 ± 1.63 b | 5.14 ± 0.44 a | 1.01 ± 0.09 ab | 86.67 | |
L22 | 32.25 ± 0.27 a | 15.61 ± 0.58 b | 29.67 ± 1.25 b | 10.33 ± 0.94 b | 4.93 ± 0.36 b | 1.06 ± 0.04 a | 80.00 | |
L24 | 32.01 ± 0.43 a | 15.39 ± 0.64 b | 29.33 ± 0.47 b | 6.33 ± 0.94 c | 5.28 ± 0.26 a | 0.97 ± 0.04 b | 100.00 | |
L26 | 30.83 ± 1.27 b | 16.93 ± 0.66 a | 28.33 ± 0.47 c | 13.67 ± 1.25 a | 4.19 ± 0.09 c | 1.07 ± 0.05 a | 80.00 | |
CK | − | − | − | − | − | − | − | |
‘183’ | L10 | 20.7 ± 0.26 d | 14.6 ± 0.66 c | 24.33 ± 1.25 c | 4.67 ± 0.47 c | 4.62 ± 0.09 b | 1.05 ± 0.04 a | 100.00 |
L14 | 23.63 ± 0.4 c | 15.01 ± 0.07 c | 26 ± 0.82 c | 8.00 ± 0.82 b | 3.87 ± 0.12 d | 0.90 ± 0.08 b | 100.00 | |
L28 | 24.63 ± 1.21 b | 17.03 ± 0.38 b | 28.67 ± 0.47 b | 7.67 ± 0.94 b | 4.18 ± 0.14 cd | 0.87 ± 0.05 b | 100.00 | |
L22 | 28.18 ± 0.58 a | 17.48 ± 0.38 b | 30.33 ± 1.7 ab | 5.33 ± 0.47 c | 5.43 ± 0.33 a | 1.07 ± 0.05 a | 100.00 | |
L26 | 25.39 ± 0.99 b | 18.42 ± 0.31 a | 31.33 ± 0.47 a | 13.33 ± 1.25 a | 4.52 ± 0.01 bc | 1.03 ± 0.02 a | 100.00 | |
CK | − | − | − | − | − | − | − | |
‘A20’ | L18 | 26.79 ± 1.71 c | 15.18 ± 0.67 a | 30.67 ± 0.47 b | 18.67 ± 5.73 a | 3.97 ± 0.16 ab | 1.05 ± 0.04 a | 100.00 |
L20 | 28.96 ± 0.30 a | 14.72 ± 0.82 a | 30.67 ± 0.47 b | 21.33 ± 0.47 a | 3.88 ± 0.12 a | 0.86 ± 0.09 b | 100.00 | |
L22 | 30.07 ± 0.25 a | 14.94 ± 1.15 a | 33.67 ± 0.94 a | 22.67 ± 1.25 a | 3.82 ± 0.03 b | 1.00 ± 0.02 ab | 100.00 | |
L24 | 27.93 ± 0.42 b | 13.41 ± 0.53 b | 29.67 ± 0.94 b | 19.00 ± 2.94 a | 4.06 ± 0.05 a | 0.87 ± 0.10 b | 100.00 | |
L26 | 26.39 ± 0.74 d | 14.38 ± 0.54 a | 29.00 ± 0.82 c | 11.67 ± 1.25 b | 4.01 ± 0.01 a | 1.00 ± 0.02 ab | 100.00 | |
CK | 28.46 ± 0.06 a | 15.41 ± 0.29 a | 29.00 ± 0.82 c | 12.00 ± 0.82 b | 3.59 ± 0.03 c | 0.89 ± 0.08 ab | 100.00 | |
‘C1’ | L16 | − | − | − | − | − | − | − |
L18 | 16.1 ± 0.15 b | 9.13 ± 0.08 b | 31.67 ± 0.47 a | 7.00 ± 1.41 b | 2.93 ± 0.11 c | 0.96 ± 0.07 a | 100.00 | |
L20 | 15.87 ± 0.21 b | 9.96 ± 0.69 ab | 30 ± 0.82 b | 7.00 b | 3.87 ± 0.09 a | 0.99 ± 0.01 a | 100.00 | |
L22 | 17.67 ± 2.03 a | 7.51 ± 0.51 c | 30 ± 0.82 b | 8.33 ± 1.70 ab | 3.37 ± 0.12 b | 0.89 ± 0.02 a | 100.00 | |
L24 | 20.18 ± 0.14 a | 8.25 ± 0.18 c | 30 ± 0.10 b | 6.33 ± 0.47 b | 3.47 ± 0.05 b | 0.90 ± 0.02 a | 100.00 | |
CK | 20.51 ± 0.17 a | 10.61 ± 0.13 a | 31.67 ± 0.47 a | 10.67 ± 0.47 a | 3.43 ± 0.05 b | 0.90 ± 0.02 a | 100.00 | |
‘C27’ | L18 | 23.7 ± 0.54 a | 12.12 ± 0.4 c | 25.33 ± 0.47 b | 18.67 ± 2.36 a | 3.14 ± 0.05 b | 1.17 ± 0.05 a | 100.00 |
L20 | 22.71 ± 0.09 c | 14.08 ± 0.3 b | 27.67 ± 0.94 a | 15.33 ± 1.70 a | 3.51 ± 0.05 a | 0.98 ± 0.02 b | 100.00 | |
L22 | 25.88 ± 2.02 a | 13.93 ± 0.33 b | 26.67 ± 1.25 a | 19.67 ± 0.47 a | 3.37 ± 0.26 ab | 0.87 ± 0.02 cd | 100.00 | |
L24 | 23.09 ± 1.89 b | 13.45 ± 0.66 b | 26.67 ± 0.47 a | 20.33 ± 2.87 a | 3.29 ± 0.18 ab | 0.98 ± 0.05 b | 100.00 | |
L26 | 19.46 ± 0.49 d | 13.09 ± 0.24 b | 29 ± 0.82 a | 14.33 ± 4.19 b | 3.13 ± 0.09 b | 0.81 ± 0.01 d | 100.00 | |
CK | 25.5 ± 0.41 a | 16.77 ± 1.16 a | 27.67 ± 2.05 a | 6.67 ± 1.89 c | 2.57 ± 0.05 c | 0.93 ± 0.09 bc | 18.33 | |
‘C31’ | L16 | 20.53 ± 0.2 c | 11.47 ± 0.11 c | 21.67 ± 0.47 a | 4.67 ± 0.47 c | 3.58 ± 0.03 b | 0.89 ± 0.03 b | 100.00 |
L18 | 19.95 ± 0.22 c | 11.63 ± 0.32 c | 21.33 ± 0.47 a | 7.67 ± 0.47 b | 3.42 ± 0.03 c | 0.83 ± 0.06 c | 100.00 | |
L20 | 20.11 ± 0.84 c | 12.91 ± 0.41 b | 22.33 ± 0.47 a | 6 ± 0.82 bc | 3.56 ± 0.08 b | 1.03 ± 0.07 a | 100.00 | |
L22 | 22.58 ± 0.11 b | 12.79 ± 0.19 b | 22 ± 0.82 a | 9 ± 1.63 a | 3.58 ± 0.03 b | 0.97 ± 0.02 a | 100.00 | |
L24 | 25.09 ± 0.67 a | 15.27 ± 0.11 a | 22.33 ± 0.47 a | 9.67 ± 1.25 a | 3.98 ± 0.12 a | 0.93 ± 0.06 a | 100.00 | |
CK | 16.48 ± 0.76 d | 7.51 ± 0.37 d | 17.33 ± 0.47 b | 5 ± 0.82 c | 3.57 ± 0.1 b | 0.76 ± 0.04 d | 60.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, X.; Cai, S.; Li, J.; Wang, J.; Li, Y.; Dai, S. Flowering Characteristics and Expression Patterns of Key Genes in Response to Photoperiod in Different Chrysanthemum Varieties. Horticulturae 2025, 11, 5. https://doi.org/10.3390/horticulturae11010005
Zhang Q, Li X, Cai S, Li J, Wang J, Li Y, Dai S. Flowering Characteristics and Expression Patterns of Key Genes in Response to Photoperiod in Different Chrysanthemum Varieties. Horticulturae. 2025; 11(1):5. https://doi.org/10.3390/horticulturae11010005
Chicago/Turabian StyleZhang, Qiuling, Xueru Li, Shuyu Cai, Junzhuo Li, Jiaying Wang, Yanfei Li, and Silan Dai. 2025. "Flowering Characteristics and Expression Patterns of Key Genes in Response to Photoperiod in Different Chrysanthemum Varieties" Horticulturae 11, no. 1: 5. https://doi.org/10.3390/horticulturae11010005
APA StyleZhang, Q., Li, X., Cai, S., Li, J., Wang, J., Li, Y., & Dai, S. (2025). Flowering Characteristics and Expression Patterns of Key Genes in Response to Photoperiod in Different Chrysanthemum Varieties. Horticulturae, 11(1), 5. https://doi.org/10.3390/horticulturae11010005