UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Instruments and Reagents
2.3. Crude Extraction
2.4. Total Polyphenol Content Assay
2.5. Total Flavonoid Content Assay
2.6. Phytochemical Detection by Ultra-Performance Liquid Chromatography (UPLC), Quadrupole Time-of-Flight Mass Spectrometry (QTOF-MS), and Electrospray Ionization (ESI) (UPLC-QTOF-ESI-MS/MS)
2.7. Quantification of Flavonoid Glycosides by HPLC
2.8. Calibration Curves
2.9. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenol and Total Flavonoid (TPC and TFC) Content
3.2. UPLC-QTOF-ESI-MS/MS Profiling
3.3. HPLC Quantitative Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Nien, C.; Chen, L.; Huang, K.; Chang, W.; Huang, H. Effects of Sapindus mukorossi seed oil on skin wound healing: In vivo and in vitro testing. Int. J. Mol. Sci. 2019, 20, 2579. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Dobhal, P.; Ashfaqullah, S.; Chauhan, H.K.; Tamta, S. Review of the botany, traditional uses, pharmacology, threats and conservation of Zanthoxylum armatum (Rutaceae). S. Afr. J. Bot. 2022, 150, 920–927. [Google Scholar] [CrossRef]
- Vlčko, T.; Rathod, N.B.; Kulawik, P.; Ozogul, Y.; Ozogul, F. The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. Adv. Food Nutr. Res. 2022, 99, 275–339. [Google Scholar]
- Xu, Y.; Gao, Y.; Chen, Z.; Liu, J.; Wang, X.; Jia, L. Metabolomics analysis of the soapberry (Sapindus mukorossi Gaertn.) pericarp during fruit development and ripening based on UHPLC-HRMS. Sci. Rep. 2021, 11, 11657. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, A.; Song, L.; He, C.; He, H. Evaluation of Sapindus mukorossi Gaertn flower water extract on in vitro anti-acne activity. Curr. Issues Mol. Biol. 2025, 47, 316. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, D. Pharmacological effects of Sapindus mukorossi. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 273–280. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on saponins: Food functionality and applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef]
- Zhou, M.; Fan, J.; Gao, Y.; Zheng, C.; Xu, Y.; Jia, L.; An, X.; Chen, Z. Identification and analysis of UGT genes associated with triterpenoid saponin in soapberry (Sapindus mukorossi Gaertn.). BMC Plant Biol. 2024, 24, 588. [Google Scholar] [CrossRef]
- Meshram, P.D.; Shingade, S.; Madankar, C.S. Comparative study of saponin for surfactant properties and potential application in personal care products. Mater. Today Proc. 2021, 45, 5010–5013. [Google Scholar] [CrossRef]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res. Int. 2022, 2022, 83. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, S.; Chen, Z.; Zhao, G.; Liu, J.; Wang, L.; Wang, X.; Jia, L.; Zhang, D. Contents of the total saponins and total flavonoids in different organs of Sapindus mukorossi. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2021, 45, 83. [Google Scholar]
- Sochacki, M.; Vogt, O. Triterpenoid saponins from washnut (Sapindus mukorossi Gaertn.)—A source of natural surfactants and other active components. Plants 2022, 11, 2355. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.M.A.; Da Silva, K.P.A.; De Oliveira, L.P.M.; Costa, E.V.; Koolen, H.H.; Pinheiro, M.L.B.; De Souza, A.Q.L.; De Souza, A.D.L. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz 2020, 115, e200207. [Google Scholar] [CrossRef] [PubMed]
- Rani, I.; Kalsi, A.; Kaur, G.; Sharma, P.; Gupta, S.; Gautam, R.K.; Chopra, H.; Bibi, S.; Ahmad, S.U.; Singh, I.; et al. Modern drug discovery applications for the identification of novel candidates for COVID-19 infections. Ann. Med. Surg. 2022, 80, 104294. [Google Scholar] [CrossRef]
- Chehlh, T.C.; Rincon-Cervera, M.A.; Gomez-Mercado, F.; Lopez-Ruiz, R.; Gallon-Bedoya, M.; Ezzaitouni, M.; Guil-Guerrero, J.L. Wild asparagus shoots constitute a healthy source of bioactive compounds. Molecules 2023, 28, 5786. [Google Scholar] [CrossRef]
- Lee, C.; Cho, H.; Shim, J.; Tran, G.H.; Lee, H.; Ahn, K.H.; Yoo, E.; Chung, M.J.; Lee, S. Characteristics of phenolic compounds in Peucedanum japonicum according to various stem and seed colors. Molecules 2023, 28, 6266. [Google Scholar] [CrossRef]
- Ma, C. Simultaneous quantification of eight compounds of Lonicera japonica by HPLC-DAD. Nat. Prod. Sci. 2024, 30, 52–58. [Google Scholar] [CrossRef]
- Singh, R.; Kumari, N. Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorossi Gaertn—A valuable medicinal tree. Ind. Crops Prod. 2015, 73, 1–8. [Google Scholar] [CrossRef]
- Shah, M.; Parveen, Z.; Khan, M.R. Evaluation of antioxidant, anti-inflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC Complement. Altern. Med. 2017, 17, 526. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of extraction conditions on the phenolic composition and antioxidant capacity of grape stem extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef]
- Silva, D.B.; Turatti, I.C.C.; Gouveia, D.R.; Ernst, M.; Teixeira, S.P.; Lopes, N.P. Mass spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species. Sci. Rep. 2014, 4, 4309. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Ishita, I.J.; Jung, H.A.; Choi, J.S. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem. Toxicol. 2014, 69, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Meng, C.; Zhang, Z.; Ma, H.; Lv, T.; Xie, S.; Liu, Y.; Wang, C. Comparative metabolism of schaftoside in healthy and calcium oxalate kidney stone rats by UHPLC-Q-TOF-MS/MS method. Anal. Biochem. 2020, 597, 113673. [Google Scholar] [CrossRef]
- Kim, Y.; Pyeon, J.; Lee, J.; Kim, E.; La, I.; Lee, O.; Kim, K.; Sung, J.; Kim, Y. Chemical fingerprint analysis of fermented Morinda citrifolia L. (noni) juice by UHPLC Q-TOF/MS combined with chemometric analysis. Appl. Biol. Chem. 2024, 67, 59. [Google Scholar] [CrossRef]
- Fan, S.; Ma, J.; Yuan, X.; Wang, X.; Wang, Y.; Zhang, Y. Determination of icariside, hyperoside and psoralen in food by liquid chromatography-tandem mass spectrometry. J. Future Foods 2023, 3, 263–272. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Yong, Y.S.; Razali, F.N.; Stephenie, S.; Shah, M.D.; Tan, J.K.; Gnanaraj, C.; Esa, N.M. LC-MS/MS and GC-MS analysis for the identification of bioactive metabolites responsible for the antioxidant and antibacterial activities of Lygodium microphyllum (Cav.) R. Br. Separations 2023, 10, 215. [Google Scholar] [CrossRef]
- Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, Q.; Zhong, W.; Chen, M.; Gong, H.; He, S.; Liang, R.; Lv, J.; Song, L. Rapid identification and analysis of the major chemical constituents from the fruits of Sapindus mukorossi by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Res. 2019, 34, 2144–2150. [Google Scholar] [CrossRef]
- Sun, C.; Wang, J.; Duan, J.; Zhao, G.; Weng, X.; Jia, L. Association of fruit and seed traits of Sapindus mukorossi germplasm with environmental factors in southern China. Forests 2017, 8, 491. [Google Scholar] [CrossRef]
- Aboud, N.M.A. Unlocking the genetic potential: Strategies for enhancing secondary metabolite biosynthesis in plants. J. Saudi Soc. Agric. Sci. 2024, 23, 542–554. [Google Scholar] [CrossRef]
- Deng, B.; Cao, Y.; Fang, S.; Shang, X.; Yang, W.; Qian, C. Variation and stability of growth and leaf flavonoid content in Cyclocarya paliurus across environments. Ind. Crops Prod. 2015, 76, 386–393. [Google Scholar] [CrossRef]
- Bai, Y.; Gu, Y.; Liu, S.; Jiang, L.; Han, M.; Geng, D. Flavonoids metabolism and physiological response to ultraviolet treatments in Tetrastigma hemsleyanum Diels et Gilg. Front. Plant Sci. 2022, 13, 926197. [Google Scholar] [CrossRef] [PubMed]
- Wisetkomolmat, J.; Suppakittpaisarn, P.; Sommano, S.R. Detergent plants of northern Thailand: Potential sources of natural saponins. Resources 2019, 8, 10. [Google Scholar] [CrossRef]
- Al-Rajhi, A.M.H.; Ghany, T.M.A. In vitro repress of breast cancer by bio-product of edible Pleurotus ostreatus loaded with chitosan nanoparticles. Appl. Biol. Chem. 2023, 66, 33. [Google Scholar] [CrossRef]
- Yu, S.; Guo, Q.; Jia, T.; Zhang, X.; Guo, D.; Jia, Y.; Li, J.; Sun, J. Mechanism of action of nicotiflorin from Tricyrtis maculata in the treatment of acute myocardial infarction: From network pharmacology to experimental pharmacology. Drug Des. Dev. Ther. 2021, 15, 2179–2191. [Google Scholar] [CrossRef]
- El-Alfy, M.S.; Mostafa, M.E.; Dawidar, A.M.; Abdel-Mogib, M. Phytochemical composition and green insecticides from Citrus aurantifolia fruit peels against whitefly, Bemisia tabaci. Appl. Biol. Chem. 2024, 67, 85. [Google Scholar] [CrossRef]
a tR | Molecular Formula | Molecular Weight | Tentative Identification |
---|---|---|---|
13.60 | C33H40O21 | 772.2 | Quercetin 3-rutinoside-7-glucoside |
15.71 | C27H30O15 | 594.2 | Vicenin-2 |
18.00 | C26H28O14 | 564.1 | Schaftoside |
19.67 | C27H30O16 | 610.2 | Rutin |
20.06 | C21H20O12 | 464.1 | Hyperoside |
21.04 | C27H30O15 | 594.2 | Nicotiflorin |
21.40 | C28H32O16 | 624.2 | Narcissin |
Compound | a tR | Regression Equation | b R2 |
---|---|---|---|
1 | 20.77 | y = 9846.2x + 95,280 | 0.9991 |
2 | 21.51 | y = 10,370x + 72,185 | 0.9997 |
3 | 21.63 | y = 16,616x +323,207 | 0.9983 |
Sample | Content (mg/g) | |||
---|---|---|---|---|
1 | 2 | 3 | Total | |
SLE | 54.37 ± 0.63 b | 14.25 ± 0.38 a | 5.19 ± 0.25 a | 78.31 |
SST | 11.59 ± 0.10 c | 0.92 ± 0.04 c | 2.78 ± 0.04 c | 15.29 |
SFR | 1 ND | ND | ND | ND |
SPF | 1.89 ± 0.07 f | tr | tr | 1.89 |
SSE | 2 tr | tr | tr | tr |
DLE | 70.21 ± 0.23 a | 11.21 ± 0.11 b | 4.02 ± 0.05 b | 85.44 |
DST | 5.89 ± 0.65 d | 0.41 ± 0.04 d | 0.76 ± 0.08 d | 7.06 |
DFR | 4.71 ± 0.20 e | 0.02 ± 0.12 d | 0.62 ± 0.17 d | 5.35 |
DPF | tr | tr | tr | tr |
DSE | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uy, N.P.; Lee, H.-D.; Ku, J.; Choi, K.; Lee, S. UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi. Horticulturae 2025, 11, 682. https://doi.org/10.3390/horticulturae11060682
Uy NP, Lee H-D, Ku J, Choi K, Lee S. UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi. Horticulturae. 2025; 11(6):682. https://doi.org/10.3390/horticulturae11060682
Chicago/Turabian StyleUy, Neil Patrick, Hak-Dong Lee, Jajung Ku, Kyung Choi, and Sanghyun Lee. 2025. "UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi" Horticulturae 11, no. 6: 682. https://doi.org/10.3390/horticulturae11060682
APA StyleUy, N. P., Lee, H.-D., Ku, J., Choi, K., & Lee, S. (2025). UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi. Horticulturae, 11(6), 682. https://doi.org/10.3390/horticulturae11060682