Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Pathogen
2.2. Plasma Device and Properties
2.3. Inhibition of Mycelial Growth
2.4. Inhibition of Sporangiospore Germination
2.5. Fungal Morphology Studied by Scanning Electron Microscopy (SEM)
2.6. Inactivation of Fungal Pathogenicity
2.7. Visual Effects of Non-Thermal Plasma on Characteristics of Strawberry
2.8. Statistical Analyses
3. Results
3.1. Inhibition of Mycelial Growth
3.2. Inhibition of Sporangiospore Germination
3.3. Fungal Morphology with SEM
3.4. Reduction in Fungal Pathogenicity
3.5. Effects of NTPs on Characteristics of Strawberries
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DBD | Dielectric barrier discharge |
GA | Gliding arc |
NTP | Non-thermal plasma |
SEM | Scanning electron microscopy |
TC | Tesla coil |
References
- Aglave, B. Handbook of Plant Disease Identification and Management, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–70. [Google Scholar]
- Avis, T.J.; Martinez, C.; Tweddell, R.J. Effect of chlorine atmospheres on the development of Rhizopus rot (Rhizopus stolonifer) and gray mold (Botrytis cinerea) on stored strawberry fruits. Can. J. Plant Pathol. 2006, 28, 526–532. [Google Scholar] [CrossRef]
- Xu, X.; Agyare, S.; Browne, E.; Passey, T. Predicting infection of strawberry fruit by Mucor and Rhizopus spp. under protected conditions. Front. Hortic. 2024, 3, 1373717. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Q.; Liu, H.; Du, Y.; Jiao, W.; Sun, F.; Fu, M. Rhizopus stolonifer and related control strategies in postharvest fruit: A review. Heliyon 2024, 10, e29522. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.; Parisi, M.C.M.; Baggio, J.S.; Silva, P.P.M.; Paviani, B.; Spoto, M.H.F.; Gloria, E.M. Control of Rhizopus stolonifer in strawberries by the combination of essential T oil with carboxymethylcellulose. Int. J. Food Microbiol. 2019, 292, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.P.; Tsai, J.N.; Ann, P.J.; Chang, J.T.; Chen, P.R. First report of Rhizopus rot of strawberry fruit caused by Rhizopus stolonifer in Taiwan. Plant Dis. 2016, 101, 254. [Google Scholar] [CrossRef]
- Bautista-Banos, S.; Bosquez-Molina, E.; Barrera-Necha, L.L. Chapter 1—Rhizopus stolonifer (Soft Rot). In Postharvest Decay Control Strategies; Bautista-Banos, S., Ed.; Academic Press: London, UK, 2014; pp. 1–44. [Google Scholar]
- Conrads, H.; Schmidt, M. Plasma generation and plasma sources. Plasma Sources Sci. Technol. 2000, 9, 441. [Google Scholar] [CrossRef]
- Privat-Maldonado, A.; Schmidt, A.; Lin, A.; Weltmann, K.-D.; Wende, K.; Bogaerts, A.; Bekeschus, S. ROS from physical plasmas: Redox chemistry for biomedical therapy. Oxid. Med. Cell Longev. 2019, 2019, 9062098. [Google Scholar] [CrossRef]
- Liu, F.; Chen, S.; Yang, H.; Ma, L.; Guo, M.; Liu, Z. Cold plasma treatment improves seed germination and seedling growth of soybean. Sci. Rep. 2019, 9, 10245. [Google Scholar]
- Sera, B.; Sery, M.; Sera, J.; Gajdova, I. Effects of cold atmospheric plasma on plant growth and pathogen control: A review. Plants 2021, 10, 1896. [Google Scholar]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julák, J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Lukes, P.; Locke, B.R.; Brisset, J.-L. Aqueous-phase chemistry of electrical discharge plasma in water and in gas–liquid environments. In Plasma Chemistry and Catalysis in Gases and Liquids; Fridman, A., Locke, B.R., Shah, M.M., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 243–308. [Google Scholar]
- Adhikari, B.; Pangomm, K.; Veerana, M.; Mitra, S.; Park, G. Plant disease control by non-thermal atmospheric-pressure plasma. Front. Plant Sci. 2020, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; O’Donnell, C.P.; Cullen, P.J. Applications of cold plasma technology in food packaging. Trends Food Sci. Technol. 2018, 80, 123–131. [Google Scholar] [CrossRef]
- Ma, R.; Jiao, Z. Inactivation of fungi and fungal toxins by cold plasma. In Applications of Cold Plasma in Food Safety, 1st ed.; Ding, T., Cullen, P., Yan, W., Eds.; Springer: Singapore, 2022; pp. 113–166. [Google Scholar]
- Panngom, K.; Lee, S.H.; Park, D.H.; Sim, G.B.; Kim, Y.H.; Uhm, S.H.; Park, G.; Choi, E.H. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. PLoS ONE 2014, 9, e99300. [Google Scholar] [CrossRef] [PubMed]
- Yudhistira, B.; Sulaimana, A.S.; Jumeri; Supartono, W.; Hsieh, C.-W. The use of low-pressure cold plasma optimization for microbial decontamination and physicochemical preservation of strawberries. J. Agric. Food Res. 2023, 14, 100844. [Google Scholar] [CrossRef]
- Siddique, S.S.; Hardy, G.E.S.J.; Bayliss, K.L. Cold plasma: A potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 2018, 67, 1011–1021. [Google Scholar] [CrossRef]
- Selcuk, M.; Oksuz, L.; Basaran, P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillium spp. by cold plasma treatment. Bioresour. Technol. 2008, 99, 5104–5109. [Google Scholar] [CrossRef]
- Khalaj, A.; Ahmadi, E.; Mirzaei, S.; Ghaemizadeh, F. Potential use of cold plasma treatment for disinfection and quality preservation of grape inoculated with Botrytis cinerea. Food Sci. Nutr. 2023, 12, 1818–1833. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Q.; Wang, X.; Wang, X. Investigation on the effect of cold plasma on the quality of apple during storage. Innov. Food Sci. Emerg. Technol. 2014, 21, 114–122. [Google Scholar]
- Wu, Y.; Cheng, J.-H.; Keener, K.M.; Sun, D.-W. Inhibitory effects of dielectric barrier discharge cold plasma on pathogenic enzymes and anthracnose for mango postharvest preservation. Postharvest Biol. Technol. 2023, 196, 112181. [Google Scholar] [CrossRef]
- Baier, M.; Foerster, J.; Schnabel, U.; Knorr, D.; Ehlbeck, J.; Herppich, W.B. Direct non-thermal plasma treatment for the sanitation of fresh strawberries. J. Food Eng. 2013, 116, 386–393. [Google Scholar]
- Zhou, R.; Zhou, R.; Zhang, X.; Yang, S.; Wang, Y. Effects of cold plasma on strawberry quality. J. Food Eng. 2016, 165, 17–25. [Google Scholar]
- Los, A.; Ziuzina, D.; Boehm, D.; Patil, S.; Bourke, P.; Cullen, P.J. Improving microbiological safety and quality of strawberries using cold plasma treatment. Int. J. Food Microbiol. 2020, 336, 108896. [Google Scholar]
- Supakitthanakorn, S.; Ruangwong, O.-U.; Boonyawan, D. Inactivation of Cercospora lactucae-sativa through application of non-thermal atmospheric pressure gliding arc, Tesla coil and dielectric barrier discharge plasmas. Appl. Sci. 2023, 13, 6643. [Google Scholar] [CrossRef]
- Supakitthanakorn, S.; Boonyawan, D. Inhibition of Rhizopus stolonifer causing soft rot disease of strawberry fruits through application of non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma. In Proceedings of the 7th Asian Conference on Plant Pathology, Changchun, China, 3–6 August 2025. [Google Scholar]
- Tarabova, B.; Lukes, P.; Janda, M.; Hensel, K.; Sikurova, L.; Machala, Z. Specificity of detection methods of nitrites and ozone in aqueous solutions activated by air plasma. Plasma Process. Polym. 2018, 15, 1800030. [Google Scholar] [CrossRef]
- Philippe, S.; Souaibou, F.; Guy, A.; Sebastien, D.T.; Boniface, Y.; Paulin, A.; Issaka, Y.; Dominique, S. Chemical composition and antifungal activity of essential oil of fresh leaves of Ocimum gratissimum from Benin against six mycotoxigenic fungi isolated from traditional cheese wagashi. Res. J. Biol. Sci. 2012, 1, 22–27. [Google Scholar]
- Adhikari, B.; Adhikari, M.; Ghimire, B.; Park, G. Cold plasma seed treatments for sustainable agriculture: Prospects and challenges. Agriculture 2020, 10, 191. [Google Scholar]
- Supakitthanakorn, S.; Ruangwong, O.-U.; Sawangrat, C.; Srisuwan, W.; Boonyawan, D. Potential of nonthermal atmospheric-pressure dielectric barrier discharge plasma for inhibition of Athelia rolfsii causing southern blight disease in lettuce. Agriculture 2023, 13, 167. [Google Scholar] [CrossRef]
- Gu, Y.; Shi, W.; Liu, R.; Xing, Y.; Yu, X.; Jiang, H. Cold plasma enzyme inactivation on dielectric properties and freshness quality in bananas. Innov. Food Sci. Emerg. Technol. 2021, 69, 102649. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Yang, Y.; Mulati, A.; Hong, J.; Wang, J. The effects of cold-plasma technology on the quality properties of fresh-cut produce: A review. Foods 2025, 14, 149. [Google Scholar] [CrossRef]
- Na, Y.H.; Park, G.; Choi, E.H.; Uhm, H.S. 2013. Effects of the physical parameters of a microwave plasma jet on the inactivation of fungal spores. Thin Solid Films 2013, 547, 125–131. [Google Scholar] [CrossRef]
- Kang, M.H.; Pengkit, A.; Choi, K.; Jeon, S.S.; Choi, H.W.; Shin, D.B.; Choi, E.H.; Uhm, S.H.; Park, G. Differential inactivation of fungal spores in water and on seeds by ozone and arc discharge plasma. PLoS ONE 2015, 10, e0139263. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, C.; Hu, H.; Lei, J.; Han, L. Indirect treatment effects of water air MHCD jet on the inactivation of Penicillium digitatum suspension. IEEE Trans. Plasma Sci. 2016, 44, 2729–2737. [Google Scholar] [CrossRef]
- Misra, N.N.; Jo, C.; Mushtaq, M.; Keener, K.M.; Bourke, P. Cold plasma in food and agriculture. In Cold Plasma in Food and Agriculture: Fundamentals and Applications; Academic Press: Cambridge, MA, USA, 2016; pp. 1–20. [Google Scholar]
- Ouf, S.A.; Basher, A.H.; Mohamed, A.A.H. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J. Sci. Food Agric. 2015, 95, 3204–3210. [Google Scholar] [CrossRef]
- Nikzadfar, M.; Kazemi, A.; Abooei, R.; Abbaszadeh, R.; Firouz, M.S.; Akbarnia, A.; Rashvand, M. Application of cold plasma technology on the postharvest preservation of in-packaged fresh fruit and vegetables: Recent challenges and development. Food Bioprocess Technol. 2024, 17, 4473–4505. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Yang, X.; Cheng, J.-H. Versatile dielectric barrier discharge cold plasma for safety and quality control in fruits and vegetables products: Principles, configurations and applications. Food Res. Int. 2024, 196, 115117. [Google Scholar] [CrossRef]
- Ziuzina, D.; Patil, S.; Cullen, P.J.; Keener, K.M.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J. Appl. Microbiol. 2014, 116, 851–860. [Google Scholar] [CrossRef]
- Giannoglou, M.; Xanthou, Z.-M.; Chanioti, S.; Stergiou, P.; Christopoulos, M.; Dimitrakellis, P.; Efthimiadou, A.; Gogolides, E.; Katsaros, G. Effect of cold atmospheric plasma and pulsed electromagnetic fields on strawberry quality and shelf-life. Innov. Food Sci. Emerg. Technol. 2021, 68, 102631. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, Q.; Shi, W.; Yu, X.; Wang, S. Food preservation by cold plasma from dielectric barrier discharges in agri-food industries. Front. Nutr. 2022, 9, 1015980. [Google Scholar] [CrossRef]
- Harikrishna, S.; Anil, P.P.; Shams, R.; Dash, K.K. Cold plasma as an emerging nonthermal technology for food processing: A comprehensive review. J. Agri. Food Res. 2023, 14, 100747. [Google Scholar] [CrossRef]
- Sojithamporn, P.; Leksakul, K.; Sawangrat, C.; Charoenchai, N.; Boonyawan, D. Degradation of pesticide residues in water, soil, and food products via cold plasma technology. Foods 2023, 12, 4386. [Google Scholar] [CrossRef]
- Yawut, N.; Mekwilai, T.; Vichiansan, N.; Braspaiboon, S.; Leksakul, K.; Boonyawan, D. Cold plasma technology: Transforming food processing for safety and sustainability. J. Agri. Food Res. 2024, 18, 101383. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonyawan, D.; Jørgensen, H.J.L.; Supakitthanakorn, S. Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry. Horticulturae 2025, 11, 818. https://doi.org/10.3390/horticulturae11070818
Boonyawan D, Jørgensen HJL, Supakitthanakorn S. Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry. Horticulturae. 2025; 11(7):818. https://doi.org/10.3390/horticulturae11070818
Chicago/Turabian StyleBoonyawan, Dheerawan, Hans Jørgen Lyngs Jørgensen, and Salit Supakitthanakorn. 2025. "Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry" Horticulturae 11, no. 7: 818. https://doi.org/10.3390/horticulturae11070818
APA StyleBoonyawan, D., Jørgensen, H. J. L., & Supakitthanakorn, S. (2025). Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry. Horticulturae, 11(7), 818. https://doi.org/10.3390/horticulturae11070818