Effects of Hydroponic Cultivation on Baby Plant Characteristics of Tetragonia tetragonioides (Pallas) O. Kunze at Harvest and During Storage as Minimally Processed Produce
Abstract
1. Introduction
2. Materials and Methods
2.1. Tetragonia Baby Plant Production
2.2. Agronomical and Morpho-Physiological Parameters
2.3. Chemical Determinations
2.4. Minimal Processing and Cold Storage
2.5. Statistics and Principal Component Analyses
3. Results
3.1. Morphological and Yield Characteristics of Tetragonia Tetragonioides Baby Plants
3.1.1. First Growing Period (Autumn–Winter)
3.1.2. Second Growing Period (Spring)
3.2. Biochemical Characteristics of Tetragonia Tetragonioides Baby Plants
3.2.1. First Growing Period (Autumn–Winter)
3.2.2. Second Growing Period (Spring)
3.3. Storage of Minimally Processed Baby Plants
3.3.1. First Growing Period (Autumn–Winter)
3.3.2. Second Growing Period (Spring)
3.4. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- López-González, L.; Becerra-Tomás, N.; Babio, N.; Martínez-González, M.Á.; Díaz-López, A.; Corella, D.; Goday, A.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; et al. Variety in fruits and vegetables, diet quality and lifestyle in an older adult mediterranean population. Clin. Nutr. 2021, 40, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, S.; Shekhar, C. Nutritional components in green leafy vegetables: A review. J. Pharmacogn. Phytochem. 2020, 9, 2498–2502. [Google Scholar]
- Jaenicke, H.; Höschle-Zeledon, I. Strategic Framework for Underutilized Plant Species Research and Development: With Special Reference to Asia and the Pacific, and to Sub-Saharan Africa; Bioversity International: Rome, Italy, 2006; ISBN 9551560027. [Google Scholar]
- Jena, A.K.; Deuri, R.; Sharma, P.; Singh, S.P. Underutilized vegetable crops and their importance. J. Pharmacogn. Phytochem. 2018, 7, 402–407. [Google Scholar]
- Taylor, C.M. Revision of Tetragonia (Aizoaceae) in South America. Syst. Bot. 1994, 19, 575–589. [Google Scholar] [CrossRef]
- Wilson, C. Growth Stage Modulates Salinity Tolerance of New Zealand Spinach (Tetragonia tetragonioides, Pall.) and Red Orach (Atriplex hortensis L.). Ann. Bot. 2000, 85, 501–509. [Google Scholar] [CrossRef]
- Roskruge, N. The commercialisation of Kokihi or New Zealand spinach (Tetragonia tetregonioides) on New Zealand. Proc. NZ Agron. 2011, 41, 149–156. [Google Scholar]
- Egamberdieva, D.; Alimov, J.; Shurigin, V.; Alaylar, B.; Wirth, S.; Bellingrath-Kimura, S.D. Diversity and plant growth-promoting ability of endophytic, halotolerant bacteria associated with Tetragonia tetragonioides (Pall.) kuntze. Plants 2022, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Friday, C.; Uchenna, O. Phytochemical and Nutritional Profiles of Tetragonia tetragonioides Leaves Grown in Southeastern Nigeria. Chem. Search. J. 2021, 12, 1–5. [Google Scholar]
- Onoiko, O.B.; Zolotareva, O.K. Bioactive compounds and pharmacognostic potential of Tetragonia tetragonioides. Biotechnol. Acta 2024, 17, 29–42. [Google Scholar] [CrossRef]
- Choi, H.S.; Cho, J.-Y.; Kim, S.-J.; Ham, K.-S.; Moon, J.-H. New lignan tyramide, phenolics, megastigmanes, and their glucosides from aerial parts of New Zealand spinach, Tetragonia tetragonoides. Food Sci. Biotechnol. 2020, 29, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Kovar, M.; Olsovska, K. Mechanisms of drought resistance in common spinach (Spinacia oleracea L.) and New Zealand spinach (Tetragonia tetragonoides (Pall.) Kuntze) plants under soil dehydration. J. Cent. Eur. Agric. 2020, 21, 275–284. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil. Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Çekin, D.; Hassanen, M.; Hassanen, M.; Hassan, N.; Lothmann, R.; Sewilam, H. Comparative Analysis of Closed Hydroponic Systems and Planting Seasons for Lettuces. Turk. J. Agric. For. 2024, 48, 344–353. [Google Scholar] [CrossRef]
- da Silva, M.G.; Gheyi, H.R.; da Silva, L.L.; de Souza, T.T.; Silva, P.C.C.; Queiroz, L.D.A.; dos Santos, T.S.; Soares, T.M. Evaluation of salt and root-zone temperature stresses in leafy vegetables using hydroponics as a clean production cultivation technique in northeastern Brazil. Hortic. Environ. Biotechnol. 2024, 65, 95–118. [Google Scholar] [CrossRef]
- Zha, L.; Wang, Z.; Huang, C.; Duan, Y.; Tian, Y.; Wang, H.; Zhang, J. Comparative Analysis of Leaf Vegetable Productivity, Quality, and Profitability among Different Cultivation Modes: A Case Study. Agronomy 2024, 14, 76. [Google Scholar] [CrossRef]
- Croft, M.M.; Hallett, S.G.; Marshall, M.I. Hydroponic production of vegetable Amaranth (Amaranthus cruentus) for improving nutritional security and economic viability in Kenya. Renew. Agric. Food Syst. 2017, 32, 552–561. [Google Scholar] [CrossRef]
- He, J.; You, X.; Qin, L. High Salinity Reduces Plant Growth and Photosynthetic Performance but Enhances Certain Nutritional Quality of C4 Halophyte Portulaca oleracea L. Grown Hydroponically Under LED Lighting. Front. Plant Sci. 2021, 12, 651341. [Google Scholar] [CrossRef] [PubMed]
- Anaclerio, M.; Renna, M.; Di Venere, D.; Sergio, L.; Santamaria, P. Smooth Golden Fleece and Prickly Golden Fleece as Potential New Vegetables for the Ready-to-Eat Production Chain. Agriculture 2021, 11, 74. [Google Scholar] [CrossRef]
- Miceli, A.; Vetrano, F.; Moncada, A. Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce. Horticulturae 2021, 7, 440. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-90-481-2531-9. [Google Scholar]
- Baligar, V.C.; Fageria, N.K. Nutrient Use Efficiency in Plants: An Overview. Nutr. Use Effic. Basics Adv. 2015, 32, 1–14. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International; Latimer, G.W., Ed.; Oxford University Press: New York, NY, USA, 2023; ISBN 9780197610138. [Google Scholar]
- Palazzolo, E.; Letizia Gargano, M.; Venturella, G. The nutritional composition of selected wild edible mushrooms from Sicily (southern Italy). Int. J. Food Sci. Nutr. 2012, 63, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Morand, P.; Gullo, J.L. Mineralisation des tissus vegetaux en vue du dosage de P, Ca, Mg, Na, K. Ann. Agron. 1970, 21, 229–236. [Google Scholar]
- Barros, L.; Baptista, P.; Correia, D.M.; Casal, S.; Oliveira, B.; Ferreira, I.C.F.R. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem. 2007, 105, 140–145. [Google Scholar] [CrossRef]
- Okutani, I.; Sugiyama, N. Relationship between Oxalate Concentration and Leaf Position in Various Spinach Cultivars. HortScience 1994, 29, 1019–1021. [Google Scholar] [CrossRef]
- Manzocco, L.; Foschia, M.; Tomasi, N.; Maifreni, M.; Dalla Costa, L.; Marino, M.; Cortella, G.; Cesco, S. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb’s lettuce (Valerianella locusta L. Laterr). J. Sci. Food Agric. 2011, 91, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Fabek, S.; Toth, N.; Benko, B.; Borošić, J.; Zutić, I.; Novak, B. Lamb’s Lettuce Growing Cycle and Yield as Affected by Abiotic Factors. In Proceedings of the International Symposium on High Technology for Greenhouse Systems: GreenSys2009 893, Quebec City, QC, Canada, 14–19 June 2009; pp. 887–894. [Google Scholar]
- Cockshull, K.E.; Graves, C.J.; Cave, C.R.J. The influence of shading on yield of glasshouse tomatoes. J. Hortic. Sci. 1992, 67, 11–24. [Google Scholar] [CrossRef]
- Maboko, M.M.; Du Plooy, C.P. Effect of plant spacing on growth and yield of lettuce (Lactuca sativa L.) in a soilless production system. S. Afr. J. Plant Soil. 2009, 26, 195–198. [Google Scholar] [CrossRef]
- Maboko, M.M. Effect of plant density and harvesting frequency on yield components of hydroponically grown mustard spinach (Brassica juncea). Acta Hortic. 2013, 1007, 515–521. [Google Scholar] [CrossRef]
- Jadhav, V.; Grondona, T.; Pistillo, A.; Pennisi, G.; Ghio, M.; Gianquinto, G.; Orsini, F. Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms. Horticulturae 2025, 11, 343. [Google Scholar] [CrossRef]
- Van Brenk, J.B.; Courbier, S.; Kleijweg, C.L.; Verdonk, J.C.; Marcelis, L.F.M. Paradise by the far-red light: Far-red and red:blue ratios independently affect yield, pigments, and carbohydrate production in lettuce, Lactuca sativa. Front. Plant Sci. 2024, 15, 1383100. [Google Scholar] [CrossRef]
- Hutchinson, G.K.; Nguyen, L.X.; Ames, Z.R.; Nemali, K.; Ferrarezi, R.S. Substrate system outperforms water-culture systems for hydroponic strawberry production. Front. Plant Sci. 2025, 16, 1469430. [Google Scholar] [CrossRef] [PubMed]
- Ferrarezi, R.S.; Qin, K.; Nguyen, L.X.; Poole, S.D.; Cárdenas-Gallegos, J.S.; de Oliveira, H.F.E.; Housley, M.J. Multi-season Evaluation of Substrates for Optimized Arugula and Lettuce Production in Hydroponics. HortScience 2024, 59, 403–411. [Google Scholar] [CrossRef]
- Zappelini, J.; Pescador, R.; Girardello, G.M.; Souza, P.F.D.; Borghezan, M.; Oliveira, J.L.B. Physiological alterations in ‘Rubinela’lettuce (Lactuca sativa L.) cultivated in conventional and hydroponic systems. Acta Sci. Agron. 2024, 46, e62502. [Google Scholar] [CrossRef]
- Choi, E.; Yoon, Y.; Choi, K.; Lee, Y.-B. Environmentally sustainable production of tomato in a coir substrate hydroponic system using a frequency domain reflectometry sensor. Hortic. Environ. Biotechnol. 2015, 56, 167–177. [Google Scholar] [CrossRef]
- Choi, K.; Choi, E.; Kim, I.; Lee, Y.-B. Improving water and fertilizer use efficiency during the production of strawberry in coir substrate hydroponics using a FDR sensor-automated irrigation system. Hortic. Environ. Biotechnol. 2016, 57, 431–439. [Google Scholar] [CrossRef]
- Chhetri, S.; Dulal, S.; Subba, S.; Gurung, K. Effect of different growing media on growth and yield of leafy vegetables in nutrient film technique hydroponics system. Arch. Agric. Environ. Sci. 2022, 7, 12–19. [Google Scholar] [CrossRef]
- Hazrati, S.; Pignata, G.; Casale, M.; Binello, A.; Cravotto, G.; Devecchi, M.; Nicola, S. Impact of four hydroponic nutrient solutions and regrowth on yield, safety and essential oil profile of basil (Ocimum basilicum L.) cultivated in soilless culture systems. Folia Hortic. 2024, 36, 517–531. [Google Scholar] [CrossRef]
- Yang, T.; Samarakoon, U.; Altland, J.; Ling, P. Photosynthesis, Biomass Production, Nutritional Quality, and Flavor-Related Phytochemical Properties of Hydroponic-Grown Arugula (Eruca sativa Mill.) ‘Standard’ under Different Electrical Conductivities of Nutrient Solution. Agronomy 2021, 11, 1340. [Google Scholar] [CrossRef]
- Djidonou, D.; Leskovar, D.I. Seasonal changes in growth, nitrogen nutrition, and yield of hydroponic lettuce. HortScience 2019, 54, 76–85. [Google Scholar] [CrossRef]
- Murphy, C.; Pill, W. Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. Sativa). J. Hortic. Sci. Biotechnol. 2010, 85, 171–176. [Google Scholar] [CrossRef]
- Maludin, A.J.; Lum, M.S.; Mohd Lassim, M. Optimal plant density, nutrient concentration and rootzone temperature for higher growth and yield of Brassica rapa L.‘Curly Dwarf Pak Choy’in raft hydroponic system under tropical climate. Trans. Sci. Technol. 2020, 7, 178–188. [Google Scholar]
- Atzori, G.; Nissim, W.; Macchiavelli, T.; Vita, F.; Azzarello, E.; Pandolfi, C.; Masi, E.; Mancuso, S. Tetragonia tetragonioides (Pallas) Kuntz. as promising salt-tolerant crop in a saline agricultural context. Agric. Water Manag. 2020, 240, 106261. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Jaworska, G.; Kmiecik, W. Content of selected mineral compounds, nitrates III and V, and oxalates in spinach [Spinacia oleracea L.] and New Zealand spinach [Tetragonia expansa Murr.] from spring and autumn growing seasons. Electron. J. Pol. Agric. Univ. Ser. Food Sci. Technol. 1999, 2, 1–7. [Google Scholar]
- USDA (U.S. Department of Agriculture) New Zealand Spinach, Raw. Available online: https://fdc.nal.usda.gov/food-details/168440/nutri (accessed on 31 May 2025).
- FDA U.S. Food and Drug Administration Reference Guide: Daily Values for Nutrients. Available online: https://www.fda.gov/food/nutrition-facts-label/daily-value-nutrition-and-supplement-facts-labels (accessed on 31 May 2025).
- Kader, A.A. Postharvest Technology of Horticultural Crops; University of California Agriculture and Natural Resources: Richmond, CA, USA, 2002; Volume 3311, ISBN 1879906511. [Google Scholar]
- Siddiqui, M.W. Postharvest Biology and Technology of Horticultural Crops: Principles and Practices for Quality Maintenance, 3rd ed.; Siddiqui, M.W., Ed.; Apple Academic Press: Waretown, NJ, USA, 2015; ISBN 1498709249. [Google Scholar]
- Miceli, A.; Vetrano, F.; Sabatino, L.; D’Anna, F.; Moncada, A. Influence of preharvest gibberellic acid treatments on postharvest quality of minimally processed leaf lettuce and rocket. Horticulturae 2019, 5, 63. [Google Scholar] [CrossRef]
- Miceli, A.; Miceli, C. Effect of nitrogen fertilization on the quality of swiss chard at harvest and during storage as minimally processed produce. J. Food Qual. 2014, 37, 125–134. [Google Scholar] [CrossRef]
- Roura, S.I.; Davidovich, L.A.; Del Valle, C.E. Quality loss in minimally processed swiss chard related to amount of damaged area. LWT-Food Sci. Technol. 2000, 33, 53–59. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Del-Toro-Sánchez, L.; Alvarez-Parrilla, E.; González-Aguilar, G.A. High Relative Humidity In-Package of Fresh-Cut Fruits and Vegetables: Advantage or Disadvantage Considering Microbiological Problems and Antimicrobial Delivering Systems? J. Food Sci. 2008, 73, R41–R47. [Google Scholar] [CrossRef] [PubMed]
- Koukounaras, A.; Bantis, F.; Karatolos, N.; Melissas, C.; Vezyroglou, A. Influence of Pre-Harvest Factors on Postharvest Quality of Fresh-Cut and Baby Leafy Vegetables. Agronomy 2020, 10, 172. [Google Scholar] [CrossRef]
- Robinson, J.E.; Browne, K.M.; Burton, W.G. Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol. 1975, 81, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Song, J.; Liu, J.; Dong, X.; Zhang, H.; Jeong, B.R. Prolonged Post-Harvest Preservation in Lettuce (Lactuca sativa L.) by Reducing Water Loss Rate and Chlorophyll Degradation Regulated through Lighting Direction-Induced Morphophysiological Improvements. Plants 2024, 13, 2564. [Google Scholar] [CrossRef] [PubMed]
- Vile, D.; Garnier, É.; Shipley, B.; Laurent, G.; Navas, M.-L.; Roumet, C.; Lavorel, S.; Díaz, S.; Hodgson, J.G.; Lloret, F.; et al. Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Ann. Bot. 2005, 96, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Chang, M.-S. Effect of nutrient solution concentration in the second half of growing period on the growth and postharvest quality of leaf lettuce (Lactuca sativa L.) in a deep flow technique system. Korean J. Hortic. Sci. Technol. 2017, 35, 456–464. [Google Scholar] [CrossRef]
- Lee, J.-S.; Chandra, D.; Son, J. Growth, Physicochemical, Nutritional, and Postharvest Qualities of Leaf Lettuce (Lactuca sativa L.) as Affected by Cultivar and Amount of Applied Nutrient Solution. Horticulturae 2022, 8, 436. [Google Scholar] [CrossRef]
- Luna, M.; Martínez-Sánchez, A.; Selma, M.; Tudela, J.; Baixauli, C.; Gil, M. Influence of nutrient solutions in an open-field soilless system on the quality characteristics and shelf life of fresh-cut red and green lettuces (Lactuca sativa L.) in different seasons. J. Sci. Food Agric. 2013, 93, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Moncada, A.; Miceli, A.; Vetrano, F. Use of plant growth-promoting rhizobacteria (PGPR) and organic fertilization for soilless cultivation of basil. Sci. Hortic. 2021, 275, 109733. [Google Scholar] [CrossRef]
- Miceli, A.; Vetrano, F.; Moncada, A. Effects of Foliar Application of Gibberellic Acid on the Salt Tolerance of Tomato and Sweet Pepper Transplants. Horticulturae 2020, 6, 93. [Google Scholar] [CrossRef]
- Alfonzo, A.; Gaglio, R.; Miceli, A.; Francesca, N.; Di Gerlando, R.; Moschetti, G.; Settanni, L. Shelf life evaluation of fresh-cut red chicory subjected to different minimal processes. Food Microbiol. 2018, 73, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Gaglio, R.; Francesca, N.; Ciminata, A.; Moschetti, G.; Settanni, L. Evolution of shelf life parameters of ready-to-eat escarole (Cichorium endivia var. latifolium) subjected to different cutting operations. Sci. Hortic. 2019, 247, 175–183. [Google Scholar] [CrossRef]
- Vitális, F.; Munćan, J.; Anantawittayanon, S.; Kovács, Z.; Tsenkova, R. Aquaphotomics Monitoring of Lettuce Freshness during Cold Storage. Foods 2023, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Kaur, D.; Kaur, R.; Younis, K.; Qadri, O.S. Shelf-life extension of green leafy vegetables through minimal processing: Special emphasis on the use of novel techniques. J. Agric. Food Res. 2025, 19, 101703. [Google Scholar] [CrossRef]
- Zdulski, J.A.; Rutkowski, K.P.; Konopacka, D. Strategies to Extend the Shelf Life of Fresh and Minimally Processed Fruit and Vegetables with Edible Coatings and Modified Atmosphere Packaging. Appl. Sci. 2024, 14, 11074. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Volpe, S.; Pierro, P.; Sorrentino, A.; Cavella, S.; Torrieri, E. Kinetics of Enzymatic Browning of Minimally Processed Iceberg Salad. Chem. Eng. Trans. 2019, 75, 493–498. [Google Scholar] [CrossRef]
- Jacxsens, L.; Devlieghere, F.; Debevere, J. Temperature dependence of shelf-life as affected by microbial proliferation and sensory quality of equilibrium modified atmosphere packaged fresh produce. Postharvest Biol. Technol. 2002, 26, 59–73. [Google Scholar] [CrossRef]
Source of Variance | Plant Height (cm) | Stem Diameter (mm) | Plant Fresh Weight (g FW) | Plant Dry Weight (mg DW) | Shoot Dry Matter (%) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Roots | Stem | Leaves | S/R | Total | Roots | Stem | Leaves | S/R | ||||||||||||||||||
Plant Density | |||||||||||||||||||||||||||
365 | z 2.7 | 1.9 | a | 1.3 | a | 0.3 | 0.3 | 0.8 | a | 3.7 | 97.3 | a | 24.7 | a | 18.7 | 54.0 | 2.9 | 7.2 | b | ||||||||
497 | 2.4 | 1.7 | ab | 1.2 | b | 0.3 | 0.2 | 0.7 | b | 3.4 | 93.9 | a | 23.1 | a | 17.9 | 52.9 | 3.1 | 7.8 | a | ||||||||
615 | 2.4 | 1.8 | b | 1.1 | c | 0.2 | 0.2 | 0.6 | c | 3.6 | 84.0 | b | 19.6 | b | 17.0 | 47.5 | 3.3 | 7.8 | a | ||||||||
Nutrient Solution (NS) | |||||||||||||||||||||||||||
0 | 2.1 | b | 1.4 | c | 0.5 | c | 0.1 | 0.2 | 0.2 | c | 3.2 | 43.5 | c | 10.9 | c | 11.7 | 20.9 | 3.1 | 8.0 | a | |||||||
HS | 2.3 | b | 1.8 | b | 1.1 | b | 0.3 | 0.2 | 0.6 | b | 3.1 | 88.4 | b | 24.2 | b | 15.4 | 48.8 | 2.7 | 7.8 | a | |||||||
FS | 3.1 | a | 2.1 | a | 1.9 | a | 0.4 | 0.4 | 1.2 | a | 4.3 | 143.4 | a | 32.2 | a | 26.5 | 84.7 | 3.5 | 7.1 | b | |||||||
Density × NS | |||||||||||||||||||||||||||
365 | 0 | 2.2 | 1.5 | 0.58 | 0.14 | c | 0.19 | bc | 0.25 | 3.21 | b | 46.3 | 12.7 | 13.0 | b | 20.6 | d | 2.7 | b | 7.5 | |||||||
HS | 2.7 | 2.0 | 1.25 | 0.30 | bc | 0.24 | b | 0.71 | 3.19 | b | 100.8 | 27.3 | 16.6 | b | 56.9 | b | 2.7 | b | 7.7 | ||||||||
FS | 3.3 | 2.2 | 2.09 | 0.37 | ab | 0.40 | a | 1.32 | 4.59 | a | 144.9 | 34.0 | 26.4 | a | 84.6 | a | 3.3 | ab | 6.5 | ||||||||
497 | 0 | 2.3 | 1.4 | 0.58 | 0.15 | d | 0.17 | c | 0.25 | 2.82 | b | 47.1 | 12.0 | 12.2 | bc | 22.9 | d | 3.0 | b | 8.2 | |||||||
HS | 2.2 | 1.7 | 1.06 | 0.24 | c | 0.22 | bc | 0.6 | 3.41 | b | 87.6 | 22.7 | 16.3 | b | 48.7 | bc | 2.9 | b | 7.9 | ||||||||
FS | 2.8 | 2.1 | 1.92 | 0.39 | a | 0.34 | a | 1.19 | 3.92 | ab | 146.9 | 34.7 | 25.2 | a | 87.1 | a | 3.3 | ab | 7.3 | ||||||||
615 | 0 | 2.0 | 1.4 | 0.45 | 0.10 | c | 0.13 | c | 0.21 | 3.46 | b | 37.0 | 8.0 | 9.7 | c | 19.3 | d | 3.6 | ab | 8.4 | |||||||
HS | 2.1 | 1.8 | 0.96 | 0.26 | c | 0.19 | bc | 0.51 | 2.73 | b | 76.7 | 22.7 | 13.1 | b | 40.9 | c | 2.4 | b | 7.7 | ||||||||
FS | 3.1 | 2.2 | 1.83 | 0.33 | b | 0.39 | a | 1.11 | 4.50 | a | 138.4 | 28.0 | 28.0 | a | 82.4 | a | 3.9 | a | 7.4 | ||||||||
Significance x | |||||||||||||||||||||||||||
Density | ns | * | *** | ** | ** | *** | ns | ** | ** | ns | * | ns | ** | ||||||||||||||
NS | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||||||||||||||
Density × NS | ns | ns | ns | * | * | ns | * | ns | ns | * | * | * | ns |
Source of Variance | Number of Leaves | Leaf Width | Leaf Area (cm2 plant−1) | Leaf Area (cm2 leaf−1) | SLA (cm2 g DW−1) | L* | Chroma | Hue° | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Density | |||||||||||||||||
365 | z 7.1 | 11.8 | 9.5 | a | 1.2 | 169.0 | a | 48.3 | 39.5 | a | 121.4 | ||||||
497 | 6.9 | 11.0 | 7.9 | b | 1.1 | 144.4 | b | 47.4 | 36.8 | b | 121.2 | ||||||
615 | 7.0 | 11.4 | 8.0 | b | 1.1 | 166.7 | a | 48.3 | 38.8 | ab | 121.1 | ||||||
Nutrient Solution (NS) | |||||||||||||||||
0 | 5.6 | c | 7.3 | c | 3.1 | c | 0.6 | c | 149.2 | b | 52.1 | a | 39.8 | a | 117.2 | c | |
HS | 7.3 | b | 11.4 | b | 7.9 | b | 1.1 | b | 162.5 | a | 47.7 | b | 40.3 | a | 121.8 | b | |
FS | 8.1 | a | 15.5 | a | 14.3 | a | 1.8 | a | 168.5 | a | 44.1 | c | 34.9 | b | 124.8 | a | |
Density × NS | |||||||||||||||||
365 | 0 | 5.4 | 7.2 | 3.1 | 0.6 | 152.2 | 50.8 | 41.0 | 117.9 | ||||||||
HS | 7.8 | 12.0 | 9.7 | 1.2 | 169.7 | 48.3 | 40.8 | 122.3 | |||||||||
FS | 8.2 | 16.1 | 15.7 | 1.9 | 185.1 | 45.8 | 36.6 | 124.1 | |||||||||
497 | 0 | 5.4 | 7.2 | 3.0 | 0.6 | 132.0 | 51.4 | 38.6 | 116.9 | ||||||||
HS | 7.0 | 11.1 | 7.3 | 1.0 | 148.8 | 47.9 | 38.8 | 121.3 | |||||||||
FS | 8.3 | 14.7 | 13.3 | 1.6 | 152.4 | 42.9 | 33.1 | 125.4 | |||||||||
615 | 0 | 5.9 | 7.7 | 3.1 | 0.5 | 163.2 | 54.1 | 39.8 | 116.7 | ||||||||
HS | 7.1 | 11.0 | 6.9 | 1.0 | 168.9 | 47.0 | 41.5 | 121.8 | |||||||||
FS | 8.0 | 15.6 | 13.9 | 1.7 | 168.0 | 43.6 | 35.0 | 125.0 | |||||||||
Significance x | |||||||||||||||||
Density | ns | ns | * | ns | *** | ns | * | ns | |||||||||
NS | *** | *** | *** | *** | ** | *** | *** | *** | |||||||||
Density × NS | ns | ns | ns | ns | ns | ns | ns | ns |
Source of Variance | Plant Height (cm) | Stem Diameter (mm) | Plant Fresh Weight (g FW) | Plant Dry Weight (mg DW) | Shoot Dry Matter (%) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Roots | Stem | Leaves | S/R | Total | Roots | Stem | Leaves | S/R | ||||||||||||||||||
Plant Density | |||||||||||||||||||||||||||
615 | z 17.2 | a | 2.8 | a | 1.67 | 0.20 | a | 0.31 | a | 1.16 | 6.7 | b | 119.1 | 16.5 | a | 21.4 | 80.8 | 5.8 | 7.8 | ||||||||
947 | 15.0 | b | 2.4 | b | 1.33 | 0.14 | b | 0.28 | b | 0.91 | 7.8 | a | 89.2 | 12.6 | b | 17.5 | 59.2 | 6.0 | 7.6 | ||||||||
Nutrient Solution (NS) | |||||||||||||||||||||||||||
0 | 13.7 | b | 2.2 | b | 0.50 | 0.12 | b | 0.16 | c | 0.22 | 3.5 | c | 48.0 | 9.6 | b | 12.8 | 25.7 | 4.3 | 10.1 | ||||||||
HS | 15.7 | b | 2.7 | a | 1.75 | 0.20 | a | 0.32 | b | 1.23 | 7.7 | b | 122.7 | 17.1 | a | 21.2 | 84.3 | 6.1 | 6.8 | ||||||||
FS | 19.0 | a | 2.9 | a | 2.25 | 0.20 | a | 0.41 | a | 1.65 | 10.5 | a | 141.9 | 17.0 | a | 24.5 | 100.1 | 7.2 | 6.0 | ||||||||
Density × NS | |||||||||||||||||||||||||||
615 | 0 | 14.6 | 2.3 | 0.54 | d | 0.14 | 0.16 | 0.25 | d | 2.8 | 51.5 | d | 11.7 | 13.0 | d | 26.9 | d | 3.5 | c | 9.9 | a | ||||||
HS | 17.5 | 3.0 | 2.07 | b | 0.24 | 0.35 | 1.48 | b | 7.6 | 145.1 | a | 19.2 | 24.7 | ab | 101.0 | ab | 6.5 | ab | 6.9 | b | |||||||
FS | 19.6 | 3.1 | 2.40 | a | 0.23 | 0.41 | 1.77 | a | 9.6 | 160.8 | a | 18.8 | 26.7 | a | 114.7 | a | 7.3 | a | 6.5 | b | |||||||
947 | 0 | 12.8 | 2.0 | 0.45 | d | 0.09 | 0.15 | 0.20 | d | 4.2 | 44.5 | d | 7.5 | 12.5 | d | 24.5 | d | 5.1 | b | 10.3 | a | ||||||
HS | 13.8 | 2.5 | 1.43 | c | 0.16 | 0.28 | 0.99 | c | 7.8 | 100.2 | c | 15.0 | 17.8 | c | 67.5 | c | 5.7 | b | 6.7 | b | |||||||
FS | 18.4 | 2.7 | 2.10 | ab | 0.17 | 0.40 | 1.53 | ab | 11.3 | 123.0 | b | 15.2 | 22.3 | b | 85.5 | b | 7.2 | a | 5.6 | c | |||||||
Significance x | |||||||||||||||||||||||||||
Density | * | *** | *** | *** | * | *** | ** | *** | *** | *** | *** | ns | ns | ||||||||||||||
NS | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||||||||||||||
Density × NS | ns | ns | ** | ns | ns | ** | ns | ** | ns | * | *** | * | *** |
Source of Variance | Number of Leaves | Leaf Width | Leaf Area | Leaf Area (cm2 Leaf−1) | SLA (cm2 g DW−1) | L* | Chroma | Hue ° | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(cm2 plant−1) | |||||||||||||||||
Plant Density | |||||||||||||||||
615 | z 5.2 | 22.2 | 18.0 | 3.2 | 201.7 | 45.3 | b | 31.8 | b | 125.3 | a | ||||||
947 | 5.0 | 19.5 | 14.8 | 2.7 | 221.3 | 46.3 | a | 33.6 | a | 124.2 | b | ||||||
Nutrient Solution (NS) | |||||||||||||||||
0 | 3.9 | b | 9.0 | 3.4 | 0.9 | 133.6 | 52.4 | a | 42.2 | a | 118.4 | b | |||||
HS | 5.6 | a | 24.3 | 19.6 | 3.5 | 233.6 | 42.3 | b | 27.9 | b | 127.6 | a | |||||
FS | 5.9 | a | 29.1 | 26.3 | 4.4 | 267.3 | 42.8 | b | 28.0 | b | 128.2 | a | |||||
Density × NS | |||||||||||||||||
615 | 0 | 3.9 | 9.7 | d | 3.8 | d | 1.0 | d | 139.5 | c | 52.0 | 42.0 | 119.3 | ||||
HS | 5.8 | 27.1 | b | 23.0 | b | 4.0 | b | 227.7 | b | 42.1 | 27.1 | 127.9 | |||||
FS | 6.0 | 29.8 | a | 27.3 | a | 4.5 | a | 237.8 | b | 41.9 | 26.2 | 128.6 | |||||
947 | 0 | 3.9 | 8.4 | d | 3.1 | d | 0.8 | d | 127.7 | c | 52.8 | 42.4 | 117.5 | ||||
HS | 5.3 | 21.6 | c | 16.1 | c | 3.0 | c | 239.4 | b | 42.4 | 28.7 | 127.4 | |||||
FS | 5.9 | 28.5 | ab | 25.3 | ab | 4.3 | ab | 296.9 | a | 43.8 | 29.8 | 127.7 | |||||
Significance x | |||||||||||||||||
Density | ns | *** | *** | *** | *** | ** | ** | ** | |||||||||
NS | *** | *** | *** | *** | *** | *** | *** | *** | |||||||||
Density × NS | ns | *** | ** | ** | *** | ns | ns | ns |
Source of Variance | K (mg 100 g−1) | Na (mg 100 g−1) | Ca (mg 100 g−1) | Mg (mg 100 g−1) | P (mg 100 g−1) | Fe (mg 100 g−1) | Cu (mg 100 g−1) | Mn (mg 100 g−1) | Zn (mg 100 g−1) | Oxalic Acid (mg 100 g−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Density | |||||||||||||||||||||
365 | z 98.9 | b | 89.9 | 41.8 | b | 29.6 | b | 21.2 | 2.9 | 0.15 | b | 0.31 | 1.8 | 844.7 | b | ||||||
497 | 111.5 | a | 99.0 | 50.6 | ab | 38.8 | a | 28.4 | 2.8 | 0.16 | ab | 0.41 | 1.6 | 933.0 | a | ||||||
615 | 117.3 | a | 99.6 | 60.5 | a | 45.9 | a | 29.1 | 2.7 | 0.24 | a | 0.38 | 2.1 | 958.2 | a | ||||||
NS | |||||||||||||||||||||
0 | 94.6 | c | 88.7 | 41.3 | b | 29.5 | b | 20.7 | 2.8 | 0.14 | b | 0.29 | 1.6 | 963.8 | a | ||||||
HS | 109.2 | b | 98.1 | 50.4 | ab | 40.2 | a | 24.1 | 2.8 | 0.17 | ab | 0.41 | 1.6 | 918.8 | ab | ||||||
FS | 123.8 | a | 101.7 | 61.3 | a | 44.6 | a | 33.8 | 2.8 | 0.24 | a | 0.40 | 2.2 | 853.3 | b | ||||||
Density × NS | |||||||||||||||||||||
365 | 0 | 89.1 | 85.2 | c | 39.2 | 28.7 | 19.7 | b | 2.6 | 0.10 | 0.19 | 1.3 | b | 872.6 | |||||||
HS | 93.3 | 87.0 | c | 40.5 | 29.4 | 20.6 | b | 2.8 | 0.13 | 0.33 | 1.4 | b | 888.0 | ||||||||
FS | 114.2 | 97.4 | b | 45.8 | 30.7 | 23.2 | b | 3.1 | 0.22 | 0.40 | 2.8 | a | 773.4 | ||||||||
497 | 0 | 93.3 | 87.0 | c | 40.5 | 29.4 | 20.6 | b | 2.8 | 0.13 | 0.33 | 1.4 | b | 980.4 | |||||||
HS | 113.0 | 101.7 | a | 52.7 | 41.3 | 26.3 | b | 2.9 | 0.19 | 0.50 | 1.7 | b | 940.1 | ||||||||
FS | 128.3 | 108.3 | a | 58.7 | 45.7 | 38.3 | a | 2.7 | 0.17 | 0.41 | 1.8 | ab | 878.5 | ||||||||
615 | 0 | 101.5 | 93.8 | bc | 44.2 | 30.5 | 21.9 | b | 3.1 | 0.21 | 0.34 | 2.2 | ab | 1038.5 | |||||||
HS | 121.3 | 105.7 | a | 58.0 | 50.0 | 25.3 | b | 2.5 | 0.18 | 0.41 | 1.8 | ab | 928.2 | ||||||||
FS | 129.0 | 99.3 | a | 79.3 | 57.3 | 40.0 | a | 2.7 | 0.34 | 0.39 | 2.2 | ab | 907.9 | ||||||||
Significance x | |||||||||||||||||||||
Density | ** | *** | ** | *** | *** | ns | * | ns | ns | ** | |||||||||||
NS | *** | *** | ** | ** | *** | ns | * | ns | ** | ** | |||||||||||
Density × NS | ns | ** | ns | ns | * | ns | ns | ns | * | ns |
Source of Variance | K (mg 100 g−1) | Na (mg 100 g−1) | Ca (mg 100 g−1) | Mg (mg 100 g−1) | P (mg 100 g−1) | Fe (mg 100 g−1) | Cu (mg 100 g−1) | Mn (mg 100 g−1) | Zn (mg 100 g−1) | Oxalic Acid (mg 100 g−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Density | |||||||||||||||||||||
616 | z 130.5 | a | 111.3 | a | 65.1 | 40.4 | a | 33.7 | 4.9 | a | 0.26 | a | 0.42 | 1.6 | 1008.5 | b | |||||
947 | 115.7 | b | 101.8 | b | 58.7 | 34.1 | b | 31.3 | 3.8 | b | 0.20 | b | 0.41 | 1.4 | 894.5 | a | |||||
NS | |||||||||||||||||||||
0 | 120.3 | b | 98.6 | b | 41.3 | b | 31.8 | b | 25.6 | 3.7 | b | 0.2 | b | 0.3 | b | 1.3 | 1011.5 | a | |||
HS | 119.4 | b | 104.6 | b | 50.0 | ab | 31.3 | b | 29.0 | 4.4 | ab | 0.2 | ab | 0.4 | a | 1.3 | 957.1 | ab | |||
FS | 129.6 | a | 116.5 | a | 94.5 | a | 48.8 | a | 43.0 | 4.9 | a | 0.3 | a | 0.5 | a | 1.9 | 885.9 | b | |||
Density × NS | |||||||||||||||||||||
615 | 0 | 128.9 | 104.9 | 46.4 | 35.5 | 27.2 | bc | 4.5 | 0.20 | 0.34 | 1.49 | b | 1086.5 | ||||||||
HS | 128.4 | 108.0 | 51.5 | 34.5 | 32.1 | b | 4.9 | 0.26 | 0.46 | 1.50 | b | 997.2 | |||||||||
FS | 134.2 | 120.9 | 97.5 | 51.3 | 41.8 | a | 5.3 | 0.32 | 0.47 | 1.90 | a | 941.9 | |||||||||
947 | 0 | 111.7 | 92.2 | 36.1 | 28.2 | 23.9 | c | 2.8 | 0.14 | 0.31 | 1.14 | c | 936.5 | ||||||||
HS | 110.3 | 101.1 | 48.5 | 28.0 | 25.9 | c | 3.9 | 0.19 | 0.43 | 1.17 | c | 917.1 | |||||||||
FS | 125.1 | 112.0 | 91.5 | 46.2 | 44.2 | a | 4.6 | 0.25 | 0.49 | 1.95 | a | 829.9 | |||||||||
Significance x | |||||||||||||||||||||
Density | *** | ** | ns | *** | * | * | * | ns | ns | ** | |||||||||||
NS | * | *** | *** | *** | *** | * | ** | *** | ** | ** | |||||||||||
Density × NS | ns | ns | ns | ns | ** | ns | ns | ns | * | ns |
Plant Density (Plant m−2) | Storage (d at 4 °C) | Weight Loss (g 100 g−1 FW) | L* | Chroma | Hue | ∆E | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
365 | 2.86 | a | 44.49 | 34.77 | 123.79 | 5.70 | |||||
497 | 2.23 | b | 45.40 | 35.68 | 124.27 | 5.25 | |||||
615 | 3.59 | b | 46.26 | 37.76 | 123.14 | 6.80 | |||||
0 | 44.10 | 34.91 | 124.82 | a | |||||||
7 | 1.66 | b | 44.68 | 35.91 | 124.36 | a | 4.64 | b | |||
14 | 3.02 | ab | 44.81 | 35.22 | 124.06 | a | 4.83 | b | |||
21 | 3.99 | a | 47.93 | 38.23 | 121.70 | b | 8.27 | a | |||
365 | 0 | 42.87 | c | 33.05 | b | 124.08 | |||||
7 | 1.69 | 44.65 | bc | 36.15 | b | 125.12 | 5.22 | ||||
14 | 3.14 | 44.74 | bc | 34.75 | b | 124.55 | 4.96 | ||||
21 | 3.74 | 45.69 | bc | 35.14 | b | 121.41 | 6.91 | ||||
497 | 0 | 45.79 | bc | 36.64 | ab | 125.39 | |||||
10 | 1.40 | 43.48 | c | 33.60 | b | 124.22 | 4.41 | ||||
7 | 1.97 | 44.22 | bc | 33.75 | b | 124.13 | 4.09 | ||||
21 | 3.31 | 48.10 | ab | 38.72 | ab | 123.36 | 7.25 | ||||
615 | 0 | 43.65 | c | 35.04 | b | 125.01 | |||||
7 | 1.88 | 45.92 | b | 37.98 | ab | 123.74 | 4.29 | ||||
14 | 3.96 | 45.46 | bc | 37.17 | ab | 123.50 | 5.44 | ||||
21 | 4.92 | 50.01 | a | 40.85 | a | 120.33 | 10.66 | ||||
Plant Density | * | * | *** | ns | ns | ||||||
Storage | *** | *** | ** | *** | *** | ||||||
Plant Density × Storage | ns | * | * | ns | ns |
Source of Variance | Weight Loss (%) | L* | Chroma | Hue | ∆E | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days at 4 °C | ||||||||||||
0 | 42.55 | 27.96 | 127.91 | a | ||||||||
7 | z 0.75 | c | 42.96 | 28.25 | 127.11 | b | 2.27 | b | ||||
14 | 2.38 | b | 42.64 | 28.89 | 126.65 | c | 2.96 | a | ||||
21 | 3.78 | a | 42.96 | 28.14 | 126.65 | c | 3.07 | a | ||||
Plant Density | ||||||||||||
615 | 2.14 | b | 42.14 | b | 27.25 | b | 127.37 | a | 2.63 | |||
947 | 2.46 | a | 43.41 | a | 29.37 | a | 126.79 | b | 2.91 | |||
Nutrient Solution (NS) | ||||||||||||
HS | 2.12 | b | 42.40 | b | 28.26 | 126.78 | b | 2.66 | ||||
FS | 2.48 | a | 43.15 | a | 28.35 | 127.37 | a | 2.88 | ||||
Day × Density × NS | ||||||||||||
0 | 615 | HS | 42.1 | 27.1 | 127.9 | |||||||
FS | 41.9 | 26.2 | 128.6 | |||||||||
947 | HS | 42.4 | 28.7 | 127.4 | ||||||||
FS | 43.8 | 29.8 | 127.7 | |||||||||
7 | 615 | HS | 0.7 | 42.0 | 27.2 | 127.0 | 2.2 | |||||
FS | 0.9 | 42.6 | 27.0 | 127.7 | 2.2 | |||||||
947 | HS | 0.7 | 43.4 | 29.4 | 126.5 | 2.5 | ||||||
FS | 0.8 | 43.9 | 29.4 | 127.3 | 2.1 | |||||||
14 | 615 | HS | 2.0 | 41.1 | 27.2 | 126.7 | 2.5 | |||||
FS | 2.5 | 42.4 | 27.6 | 127.3 | 2.8 | |||||||
947 | HS | 2.4 | 42.8 | 30.2 | 126.1 | 3.2 | ||||||
FS | 2.6 | 44.3 | 30.6 | 126.4 | 3.4 | |||||||
21 | 615 | HS | 3.2 | 42.2 | 27.4 | 126.8 | 2.4 | |||||
FS | 3.6 | 43.0 | 28.3 | 127.0 | 3.6 | |||||||
947 | HS | 3.8 | 43.3 | 28.9 | 125.9 | 3.1 | ||||||
FS | 4.6 | 43.4 | 27.9 | 127.0 | 3.1 | |||||||
Significance x | ||||||||||||
Days | *** | ns | ns | *** | * | |||||||
Density | * | *** | *** | *** | ns | |||||||
NS | * | ** | ns | *** | ns | |||||||
Day × Density | ns | ns | ns | ns | ns | |||||||
Day × NS | ns | ns | ns | ns | ns | |||||||
Density × NS | ns | ns | ns | ns | ns | |||||||
Day × Density × NS | ns | ns | ns | ns | ns |
Variable | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Plant height | 0.583 | −0.774 | 0.051 | 0.123 |
Stem diameter | 0.868 | −0.350 | 0.022 | 0.222 |
Total FW | 0.955 | 0.233 | −0.124 | 0.078 |
Roots FW | 0.459 | 0.833 | 0.014 | 0.270 |
Stem FW | 0.927 | 0.254 | −0.121 | 0.028 |
Leaves FW | 0.977 | 0.107 | −0.140 | 0.048 |
S/R_FW | 0.833 | −0.453 | −0.207 | −0.156 |
Total DW | 0.912 | 0.338 | −0.056 | 0.193 |
Roots DW | 0.423 | 0.850 | −0.028 | 0.259 |
Stem DW | 0.875 | 0.342 | 0.013 | 0.178 |
Leaves DW | 0.961 | 0.168 | −0.072 | 0.160 |
S/R DW | 0.735 | −0.634 | −0.054 | −0.010 |
Shoot DM | −0.758 | −0.245 | 0.492 | 0.281 |
WUE | 0.789 | 0.471 | 0.170 | 0.098 |
NUE | −0.035 | −0.616 | 0.425 | 0.528 |
Leaf number | 0.318 | 0.922 | −0.091 | −0.029 |
Leaf width | 0.950 | −0.257 | −0.159 | −0.008 |
Plant area | 0.976 | −0.095 | −0.172 | −0.013 |
Leaf area | 0.926 | −0.325 | −0.178 | −0.016 |
SLA | 0.812 | −0.313 | −0.343 | −0.256 |
L* | −0.914 | −0.179 | 0.116 | −0.199 |
Chroma | −0.898 | 0.206 | 0.193 | −0.082 |
Hue | 0.960 | 0.033 | −0.124 | 0.148 |
Yield | 0.919 | −0.241 | −0.089 | −0.084 |
K | 0.734 | −0.064 | 0.617 | 0.124 |
Na | 0.817 | −0.174 | 0.387 | −0.062 |
Ca | 0.821 | −0.021 | 0.280 | −0.413 |
Mg | 0.593 | 0.308 | 0.596 | −0.288 |
P | 0.853 | −0.036 | 0.370 | −0.118 |
Fe | 0.653 | −0.623 | −0.018 | −0.026 |
Cu | 0.785 | 0.002 | 0.384 | −0.211 |
Mn | 0.773 | 0.015 | 0.197 | 0.010 |
Zn | 0.378 | 0.538 | 0.162 | −0.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, A.; Moncada, A.; Vetrano, F.; Palazzolo, E.; Lucia, C.; Miceli, A. Effects of Hydroponic Cultivation on Baby Plant Characteristics of Tetragonia tetragonioides (Pallas) O. Kunze at Harvest and During Storage as Minimally Processed Produce. Horticulturae 2025, 11, 846. https://doi.org/10.3390/horticulturae11070846
Esposito A, Moncada A, Vetrano F, Palazzolo E, Lucia C, Miceli A. Effects of Hydroponic Cultivation on Baby Plant Characteristics of Tetragonia tetragonioides (Pallas) O. Kunze at Harvest and During Storage as Minimally Processed Produce. Horticulturae. 2025; 11(7):846. https://doi.org/10.3390/horticulturae11070846
Chicago/Turabian StyleEsposito, Alessandro, Alessandra Moncada, Filippo Vetrano, Eristanna Palazzolo, Caterina Lucia, and Alessandro Miceli. 2025. "Effects of Hydroponic Cultivation on Baby Plant Characteristics of Tetragonia tetragonioides (Pallas) O. Kunze at Harvest and During Storage as Minimally Processed Produce" Horticulturae 11, no. 7: 846. https://doi.org/10.3390/horticulturae11070846
APA StyleEsposito, A., Moncada, A., Vetrano, F., Palazzolo, E., Lucia, C., & Miceli, A. (2025). Effects of Hydroponic Cultivation on Baby Plant Characteristics of Tetragonia tetragonioides (Pallas) O. Kunze at Harvest and During Storage as Minimally Processed Produce. Horticulturae, 11(7), 846. https://doi.org/10.3390/horticulturae11070846