High Humidity Storage Close to Saturation Reduces Kiwifruit Postharvest Rots and Maintains Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Postharvest Storage Conditions
2.2. Evaluation of Rot Incidence and Fungal Identification
2.3. Quality Analyses
2.4. Weight Loss
2.5. Sensory Analysis
2.6. Statistical Analyses
3. Results
3.1. Evaluation of Rot Incidence
3.2. Quality Analyses
3.3. Weight Loss
3.4. Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, K.; Liu, L.; McClements, D.J.; Liu, Z.; Liu, X.; Liu, F. A Review of the Bioactive Compounds of Kiwifruit: Bioactivity, Extraction, Processing and Challenges. Food Rev. Int. 2023, 40, 996–1027. [Google Scholar] [CrossRef]
- Moysidou, A.M.; Cheimpeloglou, K.; Koutra, S.I.; Finos, M.A.; Ofrydopoulou, A.; Tsoupras, A. A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties. Appl. Sci. 2024, 14, 5990. [Google Scholar] [CrossRef]
- Meena, N.K.; Baghel, M.; Jain, S.K.; Asrey, R. Postharvest Biology and Technology of Kiwifruit. In Postharvest Biology and Technology of Temperate Fruits; Mir, S., Shah, M., Mir, M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- FAO. Food and Agriculture Data. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 18 December 2024).
- Chen, Q.; Ma, X.; Hu, J.; Zhang, X. Comparison of comprehensive performance of kiwifruit production in China, Iran, and Italy based on energy and carbon emissions. Ecol. Model. 2023, 483, 110439. [Google Scholar] [CrossRef]
- Testolin, R. Kiwifruit (Actinidia spp.) in Italy: The history of the industry, international scientific cooperation and recent advances in genetics and breeding. Acta Hortic. 2015, 1096, 47–61. [Google Scholar] [CrossRef]
- Cacioppo, O. Italy, the second largest kiwifruit producer in the world. Acta Hortic. 2020, 1299, 173–178. [Google Scholar] [CrossRef]
- Bakoğlu, N.; Gunes, N.T. Impact of harvest time on cold storage performance in Kiwifruit. J. Food Compos. Anal. 2024, 135, 106601. [Google Scholar] [CrossRef]
- Kubo, Y. Ethylene, Oxygen, Carbon Dioxide, and Temperature in Postharvest Physiology. In Abiotic Stress Biology in Horticultural Plants; Kanayama, Y., Kochetov, A., Eds.; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Zhao, J.M.; Bronlund, J.E.; East, A.R. Effect of cooling rate on kiwifruit firmness and rot incidence in subsequent storage. Acta Hortic. 2015, 1079, 313–318. [Google Scholar] [CrossRef]
- Krupa, T.; Latocha, P.; Liwińska, A. Changes of physicochemical quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia arguta and its hybrid) during storage. Sci. Hortic. 2011, 130, 410–417. [Google Scholar] [CrossRef]
- Brizzolara, S.; Manganaris, G.A.; Fotopoulos, V.; Watkins, C.B.; Tonutti, P. Primary Metabolism in Fresh Fruits During Storage. Front. Plant Sci. 2020, 11, 80. [Google Scholar] [CrossRef]
- Dias, M.; Caleja, C.; Pereira, C.; Calhelha, R.C.; Kostic, M.; Sokovic, M.; Tavares, D.; Baraldi, I.J.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Res. Int. 2020, 127, 108753. [Google Scholar] [CrossRef]
- Burdon, J.N.; Wang, R. Postharvest: Fresh fruit harvest, storage and supply. In Kiwifruit: Botany, Production and Uses; Richardson, A.C., Burdon, J.N., Ferguson, A.R., Eds.; CABI: Wallingford, UK, 2024; pp. 353–374. [Google Scholar]
- Huang, W.; Shen, S.; Wang, Z.; Yang, J.; Lv, H.; Tian, H.; Burdon, J.; Zhong, C. Freezing Points of Fruit from Different Kiwifruit Genotypes at Harvest and during Cold Storage. Horticulturae 2024, 10, 624. [Google Scholar] [CrossRef]
- Park, Y.S.; Polovka, M.; Suhaj, M.; Ham, K.S.; Kang, S.G.; Park, Y.K.; Arancibia-Avila, P.; Toledo, F.; Robles Sánchez, M.; Gorinstein, S. The postharvest performance of kiwi fruit after long cold storage. Eur. Food Res. Technol. 2015, 241, 601–613. [Google Scholar] [CrossRef]
- Fahmy, K.; Nakano, K. Influence of relative humidity on development of chilling injury of cucumber fruits during low temperature storage. Asia Pac. J. Sustain. Agric. Food Energy 2013, 1, 1–5. [Google Scholar]
- Zuo, X.; Cao, S.; Zhang, M.; Cheng, Z.; Cao, T.; Jin, P.; Zheng, Y. High relative humidity (HRH) storage alleviates chilling injury of zucchini fruit by promoting the accumulation of proline and ABA. Postharvest Biol. Technol. 2021, 171, 111344. [Google Scholar] [CrossRef]
- Zuo, X.; Cao, S.; Ji, N.; Li, Y.; Zhang, J.; Jin, P.; Zheng, Y. High relative humidity enhances chilling tolerance of zucchini fruit by regulating sugar and ethanol metabolisms during cold storage. Postharvest Biol. Technol. 2022, 189, 111932. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, D.T.; Ali, M.; Liu, Y.; Zhuang, Q.G.; Wadood, S.A.; Liao, Q.H.; Liu, H.Y.; Gan, R.Y. Innovative postharvest strategies for maintaining the quality of kiwifruit during storage: An updated review. Food Front. 2024, 5, 1933–1950. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Y.; Liu, Y.; Gu, Z.; Liu, Z. High O2/N2 controlled atmosphere accelerates postharvest ripening of ‘Hayward’kiwifruit. Sci. Hortic. 2022, 300, 111073. [Google Scholar] [CrossRef]
- Van den Berg, L. The Role of Humidity, Temperature, and Atmospheric Composition in Maintaining Vegetable Quality During Storage. In Quality of Selected Fruits and Vegetables of North America; Teranishi, R., Barrera-Benitez, H., Eds.; American Chemical Society: Washington, DC, USA, 1981; Chapter 8; pp. 95–107. [Google Scholar]
- McDonald, B.; Harman, J.E. Controlled-atmosphere storage of kiwifruit: I. Effect on fruit firmness and storage life. Sci. Hortic. 1982, 17, 113–123. [Google Scholar] [CrossRef]
- Harman, J.E.; McDonald, B. Controlled atmosphere storage of kiwifruit: Effect on fruit quality and composition. Sci. Hortic. 1989, 37, 303–315. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Zhang, S.; Ding, K.; Wang, R.; Shan, Y.; Ding, S. Transcriptomic and metabolomic analyses reveal the mechanism of cold chain breaks accelerate postharvest kiwifruit ripening and flavonoid loss. Sci. Hortic. 2025, 341, 113958. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Z.; Leng, J.; Sui, Y.; Jiang, M.; Wisniewski, M.; Liu, J.; Wang, Q. Eco-friendly management of postharvest fungal decays in kiwifruit. Crit. Rev. Food Sci. Nutr. 2022, 62, 8307–8318. [Google Scholar] [CrossRef]
- Mari, M.; Spadoni, A.; Ceredi, G. Alternative technologies to control postharvest diseases of kiwifruit. Stewart Postharvest Rev. 2015, 11, 1–5. [Google Scholar] [CrossRef]
- Romanazzi, G.; Elmer, P.A.; Feliziani, E. Table grape, kiwifruit, and strawberry. In Postharvest Pathology of Fresh Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2019; pp. 141–186. [Google Scholar]
- Spadaro, D.; Galliano, A.; Pellegrino, C.; Gilardi, G.; Garibaldi, A.; Gullino, M.L. Dry matter, mineral composition, and commercial storage practices influence the development of skin pitting caused by Cadophora luteo-olivacea on kiwifruit ‘hayward’. J. Plant Pathol. 2010, 92, 349–356. [Google Scholar]
- Li, L.; Pan, H.; Liu, W.; Chen, M.; Zhong, C. First report of Alternaria alternata causing postharvest rot of kiwifruit in China. Plant Dis. 2017, 101, 1046. [Google Scholar] [CrossRef]
- Li, L.; Pan, H.; Liu, W.; Chen, M.; Zhong, C. First report of Diaporthe actinidiae causing stem-end rot of kiwifruit during post-harvest in China. Plant Dis. 2017, 101, 1054. [Google Scholar] [CrossRef]
- Luo, A.; Bai, J.; Li, R.; Fang, Y.; Li, L.; Wang, D.; Zhang, L.; Liang, J.; Huang, T.; Kou, L. Effects of ozone treatment on the quality of kiwifruit during postharvest storage affected by Botrytis cinerea and Penicillium expansum. J. Phytopathol. 2019, 167, 470–478. [Google Scholar] [CrossRef]
- Li, X.; Zeng, S.; Liu, J.; Wang, Y.; Sui, Y. Introduction and multiplex management strategies of postharvest fungal diseases of kiwifruit: A review. Biol. Control. 2022, 176, 105096. [Google Scholar] [CrossRef]
- Brecht, J.K.; Chau, K.V.; Fonseca, S.C.; Oliveira, F.A.R.; Silva, F.M.; Nunes, M.C.N.; Bender, R.J. Maintaining optimal atmosphere conditions for fruits and vegetables throughout the postharvest handling chain. Postharvest Biol. Technol. 2003, 27, 87–101. [Google Scholar] [CrossRef]
- Yahia, E.M.; De Jesus Ornelas-Paz, J.; Elansari, A. 5—Postharvest technologies to maintain the quality of tropical and subtropical fruits. In Woodhead Publishing Series in Food Science, Technology and Nutrition: Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 142–195. [Google Scholar]
- Apparatus for Treatment of the Atmosphere of a Storage Space for Vegetable Products. Patent US20210000127A1. Available online: https://patents.google.com/patent/US20210000127A1/en?oq=US20210000127A1 (accessed on 18 December 2024).
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Prencipe, S.; Nari, L.; Vittone, G.; Gullino, M.L.; Spadaro, D. Effect of bacterial canker caused by Pseudomonas syringae pv. actinidiae on postharvest quality and rots of kiwifruit ‘Hayward’. Postharvest Biol. Technol. 2016, 113, 119–124. [Google Scholar] [CrossRef]
- Schiavon, G.; Garello, M.; Prencipe, S.; Meloni, G.R.; Buonsenso, F.; Spadaro, D. Essential Oils Reduce Grey Mould Rot of Apples and Modify the Fruit Microbiome during Postharvest Storage. J. Fungi 2023, 9, 22. [Google Scholar] [CrossRef]
- Buonsenso, F.; Schiavon, G.; Spadaro, D. Efficacy and Mechanisms of Action of Essential Oils’ Vapours against Blue Mould on Apples Caused by Penicillium expansum. Int. J. Mol. Sci. 2023, 24, 2900. [Google Scholar] [CrossRef] [PubMed]
- Remolif, G.; Buonsenso, F.; Schiavon, G.; Garello, M.; Spadaro, D. Efficacy of Essential Oil Vapours in Reducing Postharvest Rots and Effect on the Fruit Mycobiome of Nectarines. J. Fungi 2024, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Maghenzani, M.; Chiabrando, V.; Santoro, K.; Spadaro, D.; Giacalone, G. Effects of treatment by vapour of essential oil from Thymus vulgaris and Satureja montana on postharvest quality of sweet cherry (cv. Ferrovia). J. Food Nutr. Res. 2018, 57, 161–169. [Google Scholar]
- Krupa, T.; Tomala, K. Effect of Oxygen and Carbon Dioxide Concentration on the Quality of Minikiwi Fruits after Storage. Agronomy 2021, 11, 2251. [Google Scholar] [CrossRef]
- Latocha, P.; Krupa, T.; Jankowski, P.; Radzanowska, J. Changes in postharvest physicochemical and sensory characteristics of hardy kiwifruit (Actinidia arguta and its hybrid) after cold storage under normal versus controlled atmosphere. Postharvest Biol. Technol. 2014, 88, 21–33. [Google Scholar] [CrossRef]
- Gunny, A.A.N.; Gopinath, S.C.; Ali, A.; Wongs-Aree, C.; Salleh, N.H.M. Challenges of postharvest water loss in fruits: Mechanisms, influencing factors, and effective control strategies—A comprehensive review. J. Agric. Food Res. 2024, 17, 101249. [Google Scholar]
- Shin, Y.; Rui, J.A.; Liu, H.; Nock, J.F.; Watkins, C.B. Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol. Technol. 2008, 49, 201–209. [Google Scholar] [CrossRef]
- Wei, X.; Xie, D.; Mao, L.; Xu, C.; Luo, Z.; Xia, M.; Zhao, X.; Han, X.; Lu, W. Excess water loss induced by simulated transport vibration in postharvest kiwifruit. Sci. Hortic. 2019, 250, 113–120. [Google Scholar] [CrossRef]
- Latocha, P.; Debersaques, F.; Hale, I. Actinidia arguta (Kiwiberry): Botany, production, genetics, nutritional value, and postharvest handling. Hortic. Rev. 2021, 48, 37–152. [Google Scholar]
- Lin, M.; Gao, Z.; Wang, X.; Huo, H.; Mao, J.; Gong, X.; Chen, L.; Ma, S.; Cao, Y. Eco-friendly managements and molecular mechanisms for improving postharvest quality and extending shelf life of kiwifruit: A review. Int. J. Biol. Macromol. 2024, 257, 128450. [Google Scholar] [CrossRef]
- Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem. 2008, 107, 282–288. [Google Scholar] [CrossRef]
- Kader, A.A. (Ed.) Postharvest biology and technology: An overview. In Postharvest Technology of Horticultural Crops, 3rd ed.; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 2002. [Google Scholar]
- Asiche, W.O.; Mitalo, O.W.; Kasahara, Y.; Tosa, Y.; Mworia, E.G.; Ushijima, K.; Nakano, R.; Kubo, Y. Effect of storage temperature on fruit ripening in three kiwifruit cultivars. Hortic. J. 2017, 86, 403–410. [Google Scholar] [CrossRef]
- Marsh, K.; Attanayake, S.; Walker, S.; Gunson, A.; Boldingh, H.; MacRae, E. Acidity and taste in kiwifruit. Postharvest Biol. Technol. 2004, 32, 159–168. [Google Scholar] [CrossRef]
- Mao, J.; Gao, Z.; Lin, M.; Zhang, X.; Ning, X.; Gong, X.; Lu, Y.; Chen, L.; Wang, X. Targeted multi-platform metabolome analysis and enzyme activity analysis of kiwifruit during postharvest ripening. Front. Plant Sci. 2023, 14, 1120166. [Google Scholar] [CrossRef]
- Wegrzyn, T.F.; MacRae, E.A. Pectinesterase, polygalacturonase, and β-galactosidase during softening of ethylene-treated kiwifruit. HortScience 1992, 27, 900–902. [Google Scholar] [CrossRef]
- Redgwell, R.J.; Fry, S.C. Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening (implications for fruit softening). Plant Physiol. 1993, 103, 1399–1406. [Google Scholar] [CrossRef]
- Hewett, E.W.; Kim, H.O.; Lallu, N. Postharvest physiology of kiwifruit: The challenges ahead. Acta Hortic. 1999, 498, 203–216. [Google Scholar] [CrossRef]
- Mitchell, F.G. Postharvest physiology and technology of kiwifruit. Acta Hortic. 1990, 282, 291–307. [Google Scholar] [CrossRef]
- Chai, J.; Li, J.; Liu, Q.; Chen, Z.; Liu, Z. Differential changes in respiratory metabolism and energy status in the outer pericarp and core tissues affect the ripening of ‘Xuxiang’ kiwifruit. Postharvest Biol. Technol. 2024, 212, 112876. [Google Scholar] [CrossRef]
- Burdon, J.; Lallu, N.; Pidakala, P.; Barnett, A. Soluble solids accumulation and postharvest performance of ‘Hayward’ kiwifruit. Postharvest Biol. Technol. 2013, 80, 1–8. [Google Scholar] [CrossRef]
- Burdon, J. Soluble solids revisited: A maturity or harvest index for kiwifruit. Acta Hortic. 2015, 1096, 257–266. [Google Scholar] [CrossRef]
- Mitchell, F.G.; Mayer, G.; Sommer, N.F. Storage Practices to Control Flesh Softening of Kiwifruits; Dept. Pomology. Prog. Rep. to Kiwi Growers of California; University of California: Davis, CA, USA, 1979. [Google Scholar]
- Wildman, T.; Luh, B.S. Effect of sweetener types on quality and composition of canned kiwi nectars. J. Food Sci. 1981, 46, 387–390. [Google Scholar] [CrossRef]
- Lombardo, M.; Aulisa, G.; Padua, E.; Annino, G.; Iellamo, F.; Pratesi, A.; Caprio, M.; Bellia, A. Gender differences in taste and foods habits. Nutr. Food Sci. 2020, 50, 229–239. [Google Scholar] [CrossRef]
- Melis, M.; Mastinu, M.; Naciri, L.C.; Muroni, P.; Tomassini Barbarossa, I. Associations between Sweet Taste Sensitivity and Polymorphisms (SNPs) in the TAS1R2 and TAS1R3 Genes, Gender, PROP Taster Status, and Density of Fungiform Papillae in a Genetically Homogeneous Sardinian Cohort. Nutrients 2022, 14, 4903. [Google Scholar] [CrossRef] [PubMed]
Time Points | ||
---|---|---|
1st Year | 2nd Year | |
Fruit harvest | 8 November 2018 | 18 November 2019 |
Beginning of storage | 22 November 2018 | 18 November 2019 |
Survey at harvest time | - | 19 November 2019 |
Survey at 30 days | 21 December 2018 | 18 December 2019 |
Survey at 60 days | 21 January 2019 | 20 January 2020 |
Survey at 75 days | - | 5 February 2020 |
Survey after shelf life | - | 20 February 2020 |
Rot Incidence (%) | |||||
---|---|---|---|---|---|
1st Year | 2nd Year | ||||
Time of Analysis | Treatment | Mean ± S.D. | t-Student | Mean ± S.D. | t-Student |
At harvest | - | N.m. | - | N.m. | - |
30 days of storage | Control | - | - | 0.85 ± 0.30 | N.s. |
Xedavap® | - | 0.63 ± 0.14 | |||
60 days of storage | Control | 23.03 ± 2.56 | ** | 9.20 ± 0.79 | ** |
Xedavap® | 4.48 ± 2.90 | 6.30 ± 0.76 | |||
75 days of storage | Control | - | - | 9.80 ± 1.20 | N.s. |
Xedavap® | - | 8.51 ± 1.53 | |||
After shelf life | Control | - | - | 42.03 ± 2.98 | ** |
Xedavap® | - | 12.80 ± 4.49 |
Firmness (N/cm2) | |||||
---|---|---|---|---|---|
1st Year | 2nd Year | ||||
Time of Analysis | Treatment | Mean ± S.D. | t-Student | Mean ± S.D. | t-Student |
At harvest | - | 53.17 ± 0.66 | - | 23.67 ± 6.58 | - |
30 days of storage | Control | 3.95 ± 0.29 | ** | 11.92 ± 0.21 | N.s. |
Xedavap® | 11.34 ± 0.40 | 12.72 ± 1.90 | |||
60 days of storage | Control | N.m. | N.m. | 6.32 ± 0.16 | * |
Xedavap® | N.m. | 9.83 ± 3.15 | |||
75 days of storage | Control | - | - | N.m. | N.m. |
Xedavap® | - | N.m. | |||
After shelf life | Control | - | - | N.m. | N.m. |
Xedavap® | - | N.m. |
TSS (%) | |||||
---|---|---|---|---|---|
1st Year | 2nd Year | ||||
Time of Analysis | Treatment | Mean ± S.D. | t-Student | Mean ± S.D. | t-Student |
At harvest | - | 10.03 ± 0.63 | - | 10.54 ± 1.09 | - |
30 days of storage | Control | 13.65 ± 0.60 | * | 16.67 ± 0.05 | ** |
Xedavap® | 12.78 ± 0.61 | 13.45 ± 0.41 | |||
60 days of storage | Control | 14.39 ± 0.62 | N.s. | 17.95 ± 0.42 | ** |
Xedavap® | 14.22 ± 0.63 | 13.99 ± 0.32 | |||
75 days of storage | Control | - | - | 17.99 ± 1.04 | ** |
Xedavap® | - | 13.79 ± 1.10 | |||
After shelf life | Control | - | - | 15.17 ± 2.79 | N.s. |
Xedavap® | - | 14.84 ± 1.04 |
TA (%) | |||||
---|---|---|---|---|---|
1st Year | 2nd Year | ||||
Time of Analysis | Treatment | Mean ± S.D. | t-Student | Mean ± S.D. | t-Student |
At harvest | - | 1.61 ± 0.19 | - | 0.96 ± 0.16 | - |
30 days of storage | Control | 1.38 ± 0.10 | ** | 0.51 ± 0.03 | * |
Xedavap® | 1.50 ± 0.61 | 0.58 ± 0.02 | |||
60 days of storage | Control | 1.30 ± 0.10 | ** | 0.57 ± 0.09 | N.s. |
Xedavap® | 1.49 ± 0.04 | 0.57 ± 0.05 | |||
75 days of storage | Control | - | - | 0.65 ± 0.03 | * |
Xedavap® | - | 0.61 ± 0.04 | |||
After shelf life | Control | - | - | 0.73 ± 0.04 | N.s. |
Xedavap® | - | 0.72 ± 0.09 |
Weight Loss (%) | |||||
---|---|---|---|---|---|
1st Year | 2nd Year | ||||
Time of Analysis | Treatment | Mean ± S.D. | t-Student | Mean ± S.D. | t-Student |
At harvest | - | N.m. | - | N.m. | - |
30 days of storage | Control | N.m. | - | N.m. | - |
Xedavap® | N.m. | N.m. | |||
60 days of storage | Control | 10.26 ± 0.74 | N.s. | 5.65 ± 0.14 | N.s. |
Xedavap® | 8.85 ± 0.61 | 4.64 ± 1.13 | |||
75 days of storage | Control | - | - | 7.36 ± 0.16 | * |
Xedavap® | - | 6.23 ± 1.16 | |||
After shelf life | Control | - | - | 10.50 ± 0.54 | ** |
Xedavap® | - | 8.42 ± 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonsenso, F.; Prencipe, S.; Valente, S.; Remolif, G.; de Barbeyrac, J.; Sardo, A.; Spadaro, D. High Humidity Storage Close to Saturation Reduces Kiwifruit Postharvest Rots and Maintains Quality. Horticulturae 2025, 11, 883. https://doi.org/10.3390/horticulturae11080883
Buonsenso F, Prencipe S, Valente S, Remolif G, de Barbeyrac J, Sardo A, Spadaro D. High Humidity Storage Close to Saturation Reduces Kiwifruit Postharvest Rots and Maintains Quality. Horticulturae. 2025; 11(8):883. https://doi.org/10.3390/horticulturae11080883
Chicago/Turabian StyleBuonsenso, Fabio, Simona Prencipe, Silvia Valente, Giulia Remolif, Jean de Barbeyrac, Alberto Sardo, and Davide Spadaro. 2025. "High Humidity Storage Close to Saturation Reduces Kiwifruit Postharvest Rots and Maintains Quality" Horticulturae 11, no. 8: 883. https://doi.org/10.3390/horticulturae11080883
APA StyleBuonsenso, F., Prencipe, S., Valente, S., Remolif, G., de Barbeyrac, J., Sardo, A., & Spadaro, D. (2025). High Humidity Storage Close to Saturation Reduces Kiwifruit Postharvest Rots and Maintains Quality. Horticulturae, 11(8), 883. https://doi.org/10.3390/horticulturae11080883